LPC# 0310965121 Cook County
Williams Pipeline Company - Franklin Park
ILD 000673053

SF/HRS

Prepared by:
Office of Site Evaluation
Division of Remediation Management
Bureau of Land

SIGNATURE PAGE

Title:

CERCLA Site Reassessment for Williams Pipeline

Preparer:

Ken Corkill, Project Manager, Office of Site Evaluation,

Illinois Environmental Protection Agency

Signature

WE VO

Date

Approval:

Patrick Hamblin, NPL Coordinator, United States Environmental

Protection Agency, Region 5

Signature

Date

The approval signatures on this page indicate that this document has been authorized for information release to the public through appropriate channels. No other forms or signatures are required to document this information release.

SITE REASSESSMENT

for:

WILLIAMS PIPELINE COMPANY FRANKLIN PARK, ILLINOIS

ILD 000673053

PREPARED BY: ILLINOIS ENVIRONMENTAL PROTECTION AGENCY BUREAU OF LAND REMEDIAL PROJECT MANAGEMENT SECTION OFFICE OF SITE EVALUATION

September 1, 2020

TABLE OF CONTENTS

Section	Page
1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION and HISTORY	4
2.1 Site Description	4
2.2 Operational History	
2.3 CERCLA Investigative History	
3.0 OTHER CLEANUP AUTHORITY ACTIVITIES	10
3.1 Past Activities	10
3.2 Current Status	11
4.0 SOURCE DISCUSSION and PATHWAY ANALYSIS	13
4.1 Source Summary	13
4.2 Groundwater Pathway	14
4.3 Surface Water Pathway	
4.4 Soil Exposure Pathway	
4.5 Air Pathway	
5.0 SUMMARY and CONCLUSIONS	21
6.0 REFERENCES	23

FIGURES

Figure 1 Williams Pipeline Company Site Location Map
Figure 2 Williams Pipeline Company Site Topographic Map
Figure 3 Williams Pipeline Company Site and Surrounding Area Map
Figure 4 Williams Pipeline Company Site Property Map
Figure 5 Williams Pipeline Company Wetlands Map
Figure 6 Williams Pipeline Company - Aerial 4-7-17
Figure 7 Williams Pipeline Company - Aerial 3-17-18
Figure 8 Williams Pipeline Company - Aerial 5-23-18
Figure 9 Williams Pipeline Company - Aerial 10-15-18
Figure 10 Williams Pipeline Company - Aerial 10-18-19

APPENDICES

Appendix A	4-Mile Radius Map
	15-Mile Surface Water Route Map
	Photographs of Site
	EGSL Remedial Action Completion Report 2-1-19
1.1	IEPA SRP Summary 3-29-19
	EGSL 5.22.19 Supplement to the 2-1-19 RACR
* *	IEPA Approved Comprehensive NFR Letter 6-17-19

1.0 Introduction

On March 20, 2019, the Illinois Environmental Protection Agency's (IEPA) Office of Site Evaluation (OSE) was tasked by the Region V Offices of United States Environmental Protection Agency (U.S. EPA) to conduct a Site Reassessment without sampling at the former Williams Pipeline Company (ILD000673053), a refined petroleum storage facility and distribution terminal. The location of the former terminal is in the northwest portion of the Village of Franklin Park, Illinois in Cook County (Figure 1), approximately one quarter mile west of the intersection of Franklin Avenue and Mannheim Road (Figure 2).

The current owner of the property is Bridge Franklin Park (Bridge Development Partners, LLC). Bridge Franklin Park has owned the property since 2017, having purchased it from the former owner Magellan Pipeline Company. All storage tanks, piping, and structures were removed by Bridge Franklin Park after taking possession. Williams Pipeline Company had owned the property since 1966. In September 2003 Magellan Midstream Partners, LP submitted a RCRA Subtitle C Site Identification Form as notification of a company name change. The name was changed from Williams Pipeline Company to Magellan Pipeline Company, LLC. Company ownership remained the same. For this reassessment the company will remain being referred to as Williams.

U.S. EPA authorized a Site Reassessment to be conducted in order to determine the current status of the 48.0 acre site. The Site Reassessment addresses former petroleum product storage areas, the truck loading area, spill and/or leak areas, run-off routes, and potential human health and environmental concerns. This Site Reassessment will also consist of an evaluation of recent information to determine if further Superfund investigation is warranted. The reassessment will

supplement previous assessment work, and is not intended to replace previous CERCLA assessments.

The Site Reassessment is designed to provide necessary information that will help determine if the site qualifies for possible inclusion on the National Priorities List, or should receive a No Further Remedial Action Planned (NFRAP) designation. At the end of the reassessment process the author will recommend that the site may be given a NFRAP designation, receive further Superfund investigation, or be referred to another state or federal clean-up program. The Site Reassessment is performed under the authority of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) commonly known as Superfund.

Williams Pipeline Company was placed on the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS), now known as Superfund Enterprise Management System (SEMS) in February 1990. The IEPA has conducted a number of investigations at and around the terminal from 1983 through 2017. The site was originally investigated on May 27, 1974 due to citizens' complaints regarding an oily sheen and odors in Bensenville Ditch, also known as Silver Creek (in this report it will be indicated as Silver Creek), immediately adjacent to the Williams property. Franklin Park Police responding to the complaint found a Williams employee draining water and gasoline from a storage tank containment area. The complainants also voiced concerns that past activities at the facility may have resulted in contamination of soil, sediment, surface water, and groundwater on site and within the immediate area surrounding the terminal. No other complaints are known to have been referred to the IEPA or the Cook County Health Department regarding the facility. IEPA began investigating the facility in February 1983 to aid in the IEPA Permit Sections' review of the

facility for renewal of their NPDES Permit. IEPA also conducted a Preliminary Assessment (PA) of Williams on April 4, 1986 due to the historic nature of tank farm tank cleaning procedures and potential for soil, water, and air contamination, in addition to potential uncontrolled run-off from the facility. In 1987 U.S. EPA's contracted Field Inspection Team (FIT), Ecology and Environment (E & E), conducted a Site Inspection based on the PA's recommendation to further investigate the facility to gain necessary additional information in order to completely evaluate the facility and surrounding area. The SI also evaluated a November 6, 1986 release of gasoline near AST 272. Additional investigations were conducted at the property in 1996 and 1999 due to fuel releases reported from aboveground storage tank (AST) 272 and related recovery sump. Another investigation was conducted in 2004 due to a suspected leak of an inactive eight inch diameter isolated segment of an underground former gasoline return transfer line from AST 723 to the loading racks manifold. Work was subsequently conducted on site under IEPA's Site Remediation Program (SRP) resulting in issuance of a Comprehensive No Further Action Required (NFR) letter, issued June 17, 2019.

This Site Reassessment report will describe current site conditions and illustrate how or if the site has changed since the previous inspections. This report will contain a review of existing information to determine site history, current site conditions, and evaluate analytical data that may exist on the site. The Site Reassessment will also support emergency response or time-critical removal activities if it is determined that they are warranted.

2.0 Site Description and History

2.1 Site Description

The former Williams Pipeline Company was located in the suburban Chicago Village of Franklin Park, Illinois west of the intersection of Franklin Avenue and Mannheim Road in the northwest portion of the community. The former pipeline company is approximately 6700 feet (1.27 miles) directly west of the Franklin Park Village Hall. The site is situated in the south ½ of the southeast ¼ of Section 20, Township 40 North, Range 12 East, of the Third Principal Meridian in Cook County. Specifically, the property can be found at latitude 41.55300, longitude -87.50150 in Leyden Township, Cook County. This property is located within the Corporate Limits of the Village of Franklin Park.

The Williams Pipeline Company petroleum storage facility and transfer station no longer exists on the property. The property was sold in 2017. The current owner has, since purchase, remediated the property and constructed three large warehouse structures containing office space, industrial/storage space, and multiple tractor trailer docks (Figures 3 and 4). Also reference Section 3.0, Other Cleanup Activities, as well as Appendix D and Appendix F for further remedial information. The property is bounded on the north by Franklin Avenue, across which is the Canadian Pacific Railroad Intermodal Terminal – Bensenville Yard; on the east by two businesses, Reebie Storage and Moving warehouse on the north half of the east boundary, and Life Fitness (exercise equipment) on the south half; on the south by Belmont Avenue, across which are two (2) stand-alone structures associated with Life Fitness; and on the west by Silver Creek, an intermittent creek which trends north and south with a drainage flow to the south. Beyond the creek to the west is Midwest Can Company and Container Specialties, Inc, a

manufacturer and warehouse facility. In addition, residential neighborhoods are present to the southwest of the southwest property boundary, south, southeast, east, and northeast of the property. The nearest residence is approximately 120 feet southwest of the former Williams property line (Figure 3). Most of the residences near the facility have been present for over 75 years (Appendix A, 4-Mile Radius Map).

The facility property is located in the near west Chicago suburb of Franklin Park approximately 20 miles west of Lake Michigan where surficial terrain is fairly flat due to the area being underlain by lacustrine lake bottom sand and sediments of ancient Lake Chicago. Some areas near the facility location exhibit slightly rolling terrain due to various types of glacial action and deposition. The facility property is flat throughout with a slight slope toward the west, the drainage ditch at the western property perimeter being the only alteration in elevation. When the property was occupied by Williams Pipeline Company the majority of the facility surface was grass covered with concrete, asphalt, and gravel used for driveways, loading pads, and pathways for accessing storage tanks and tank containment berms (Figure 3 and 4). Currently, with the three Bridge Franklin Park warehouses and two retention ponds being built on the property, the ground surface is covered mainly by concrete foundation and flooring in the warehouses, concrete for semi-trailer truck dock areas, and asphalt for employee parking areas. Grass cover surrounds the retention ponds and remains established along the area adjacent to Silver Creek at the west property boundary. Along with grass cover, semi-mature to mature trees are growing from within the banks of Silver Creek.

As a petroleum pipeline storage and transfer company the facility consisted of two (2) primary structures, the office and the tank truck loading rack, two (2) small storage buildings, a fuel vapor flare stack, a rail line tank car loading area, and fifteen (15) aboveground petroleum

storage tanks: one -2,500 barrel (bbl.), two -74,000 bbl., four -52,000 bbl., and eight -25,000 bbl. Tanks are between 75 feet and 120 feet in diameter.

Land surface elevation along the east side of the property is 651 feet above mean sea level (MSL) and 642 feet above MSL along the west side of the property. Due to the nature of the former facility's ground surface being predominantly grass and soil much of the moisture through rain and snow generally percolated into the soil, any moisture contacting gravel and concrete would pool or flow into area drainage grates and enter the facility's sewer system. Moisture which did not percolate into the soil, evaporate, or enter the sewer system would flow toward the west due to the facility's slight slope in that direction. Surface run-off flowed toward the west side of the property and into Silver Creek. Silver Creek is not registered in the Illinois Department of Natural Resources (IDNR) Division of fisheries as a fishery, but does contain minnows and other aquatic life. Silver Creek at the property perimeter is classified as a riverine, intermittent, streambed, seasonally flooded (R4SBC), by the U.S. Department of the Interior, River Forest, Illinois, National Wetlands Inventory Map (Figure 5). The creek then flows south and southeast 5.16 miles where it enters the Des Plaines River. According to the River Forest National Wetlands Inventory Map, at the confluence of Silver Creek and the Des Plaines River, the Des Plaines is classified as a riverine, lower perennial, unconsolidated bottom, permanently flooded water body (R2UBH). The Des Plaines River flows approximately 20 miles to the Illinois River (Appendix B, 15-Mile In-Water Segment Map). The River Forest, Illinois, National Wetlands Inventory Map also indicates that the closest off-site wetland to the former pipeline terminal is a palustrine, forested, broad-leaved deciduous, temporarily flooded (POF1A) area located 2310 feet (0.44 miles) downstream of the confluence of Silver Creek and the Des

Plaines River. The wetland has a total measured perimeter distance of 1,293 feet (0.24 miles) and is 2.25 acres in size.

The former petroleum terminal property could only be accessed by vehicle or pedestrian traffic at the main gate location off of Franklin Avenue. The entire property was surrounded by eight foot tall chain-link fence topped with multiple strands of barbed wire. The access gate was also chain-link and barbed wire on a roller system for opening and closing.

2.2 Operational History

The property on which the former Williams Pipeline Company was located was unimproved until 1900 when one building was constructed. Between 1900 and 1928, the property was improved with railroad tracks and two additional buildings. The property became established as a tank farm and common carrier for refined petroleum between 1928 and 1931. Williams Pipeline Company purchased the terminal from Great Lakes Pipeline Company in 1966. At this writing it is believed that Great Lakes was the original owner of the property and terminal. Williams was sold to Magellan Midstream Partners, LP (property known as Magellan Pipeline Company) in September 2003. Magellan operated until September 2016, at which time operations were shut down. The tanks and piping were emptied at this time. Bridge Franklin Park then purchased the Magellan property in 2017.

As a petroleum terminal, refined petroleum products such as leaded gasoline, unleaded gasoline, #1 fuel oil, and #2 fuel oil were transferred from off-site to the terminal via a 12 inch fuel pipeline to the facilities Tank Distribution Manifold where they were then pumped to one of fifteen (15) above ground storage tanks. The products were transferred to tank trucks at the facility's tank truck loading rack and to rail tank cars at the rail tank car loading rack. When

loaded the trucks distributed the products to area businesses. Rail cars distributed products to further destinations. During fuel loading into trucks and rail cars, displacement vapors are produced. Instead of allowing the raw vapors to vent into the atmosphere they were collected at the truck and rail car fill ports, vented to a flare stack, and incinerated. Any spill occurring in this area or waste from releases on-site were drained into the company sewer and recovery system which drained to one of two oil-water gravity separators. The separator then discharged wastewater to Silver Creek via one of two NPDES permitted outfalls at the northwest corner of the facility. Recaptured fuel was blended back into appropriate storage tanks. All storage tanks were surrounded by earthen containment dikes/berms. Each containment area was provided with manually operated valves which allowed draining of accumulated water or spilled/leaked fuel to the sewer and recovery system. As part of the facility's operations, approximately every ten (10) years on a rotating basis, all storage tanks were cleaned. When the tanks were cleaned approximately ¼ inch to three (3) inches of leaded sludge was removed. Between the years 1935 and 1978 leaded tank bottom sludge was allegedly pumped into unlined excavated trenches within each storage tanks containment area and covered with backfill. After 1978 tank bottom sludge was transferred to holding tanks until off-site disposal was arranged. On June 5, 1981 Williams Pipeline Company submitted (filed), to the IEPA, a 103(c) notification for the disposal of leaded tank bottoms.

2.3 CERCLA Investigative History

Inspections conducted by IEPA and U.S. EPA's FIT contractors from 1983 through 2017 have taken place for NPDES permit renewals, site inspections, and compliance purposes. Past inspections had indicated soil surfaces on and off-site and in and along the creek areas appeared

visually satisfactory. Regulatory activities in the past have included a violation of the NPDES permit, and various fuel and fuel oil spills which were subsequently remediated, and six (6) recorded RCRA Subtitle C Site Identification Form notifications of regulated waste activity. These were submitted due to the small quantity generation of maintenance derived waste. There were no off-site releases resulting from spills/leaks. On April 4, 1986 the IEPA initiated a Preliminary Assessment of the Williams Pipeline Company. The PA was conducted due to various citizen complaints of sheens and odors on and around Silver Creek in previous years, and due to the historic nature of tank farm petroleum tank cleaning procedures resulting in tank bottom waste being buried on-site with the potential result of environmental contamination. On September 22, 1987 U.S. EPA's contracted Field Inspection Team (FIT), Ecology and Environment (E & E), conducted a Site Inspection at the facility. On July 30, 1998 a site reconnaissance was conducted by the IEPA Site Assessment Unit. No field investigation was conducted following this reconnaissance. The property was subsequently addressed further through IEPA's SRP (see Section 3.0 OCA of this report). In addition, in accordance with the CERCLA petroleum exclusion, CERCLA excludes petroleum from the definitions of hazardous substance and pollutant or contaminant.

3.0 Other Cleanup Authority Activities

3.1 Past Activities

Besides CERCLA investigations, the Williams Pipeline Company facility, when it was occupying the property, was enrolled in the IEPA's Site Remediation Program (SRP) for BTEX and PNA on-site soil and groundwater contamination related to an unleaded gasoline release in 1986, and releases in 1996 and 1999. The facility was enrolled on September 10, 2004. The responses, investigations, and remediation at the property in 1986, 1996 and 1999 due to fuel releases reported from aboveground storage tank (AST) 272 and related recovery sump was conducted by environmental consulting firms contracted by the pipeline company (see Appendix A). Another investigation was conducted in 2004 due to a suspected leak of an inactive eight inch diameter isolated segment of an underground former gasoline return transfer line from AST 723 to the loading racks manifold (see Appendix A). Further responses, investigations, and remediations were conducted by environmental consulting firms contracted by the pipeline company from 2004 through 2017 due to various product releases on-site. These other releases at the facility occurred on September 24, 2006 (unleaded gasoline leak from a block valve), in February 2008 (potential contact water from AST 654 pipe flange), and on August 2, 2014 (release of diesel fuel from AST 715) (see Appendix A).

Due to the prohibitive costs to receive the intended No Further Action Required (NFR)

Letter, Williams Pipeline Company, through their consultant Environmental Strategies

Consulting, LLC, submitted a Notice to Withdraw letter to the IEPA to remove themselves

from the SRP process on June 17, 2005. The letter also indicates that the company will

continue voluntary groundwater monitoring of select monitoring wells on an annual basis in

accordance with its corporate monitoring program. After the property was sold in July 2017, the subject property was again enrolled in the IEPA SRP on July 16, 2017, with Bridge Development Partners, LLC being the Remediation Applicant (RA). Please see Appendix D - Remediation Action Completion Report (RACR), February 1, 2019, for a sequence of remediation site activities and results. Document submitted by Williams/Magellan Pipeline Company's contractor Environmental Services Group Limited (EGSL). See Appendix E – IEPA Site Remediation Program Summary, March 29, 2019 for summary of activities. See Appendix F – Supplement to the February 1, 2019 RACR document, submitted by EGSL on May 22, 2019. See Appendix G – IEPA approved Comprehensive No Further Action Required (NFR) letter, issued June 17, 2019.

3.2 Current Status

This 2020 CERCLA Site Reassessment (SR) completed by the IEPA's Office of Site Evaluation was conducted to determine if site conditions changed, and /or if any contaminants found during previous investigations remain on the property and if so, is the contamination at concentrations requiring further action. The SR investigation has found that site conditions have changed. The pipeline company is no longer occupying the property. All structures (buildings and storage tanks) have been razed, all under-ground and above-ground piping has been removed, and all concrete paving, asphalt paving, and gravel surfaces have been removed. All surface terrain associated with Williams has been altered by regrading by the current owner in preparation for the construction of the three slab-on-grade warehouses, associated parking facilities, and landscaping now occupying the property (Figures 6 through 10). Contaminated areas remaining on the property once the pipeline facility was dismantled were addressed by the

new owners, Bridge Development Partners, LLC, through their contractor Environmental Services Group Limited, as discussed above. Also see Appendix D and Appendix F for detailed remedial descriptions.

4.0 Source Discussion and Pathway Analysis

4.1 Source Summary – Contaminated Soil on the former Williams Pipeline Company Property

During the previous inspections conducted by IEPA, U.S.EPA contractors, and pipeline company contractors, samples of the various media were collected due to historic and current gasoline, fuel oil, and gasoline/fuel oil/water mixed spills/leaks. Records of occurrences date from 1974 to 2017. Information associated with each release is noted in text, laboratory analytical data, and figures in contractor reports within the Appendices of this report. Throughout the time period that Williams and subsequent owners occupied the property numerous soil and groundwater samples have been collected from locations surrounding each release area, in the overland drainage route leading to Silver Creek, and within the creek sediment if the release reached the creek. Included in the contractor reports attached as Appendices of this report are laboratory analysis of the samples and discussions of results of the analysis. Many of the samples revealed BTEX and PNA compounds that exceeded at least three times background concentrations in soil samples and various groundwater samples, as well as exceeding various TACO limits. The extent of soil/sediment contamination can be determined using numerous sample points collected over the course of property occupation by the pipeline companies. The drainage route of Silver Creek is classified by the U.S. Department of the Interior, River Forest, Illinois, National Wetlands Inventory Map as a 5.16 mile long intermittent stream. Soil samples were collected from the upper six inches of material to approximately five (5) feet bgs. in and near release locations and in the upper six inches in drainage ways. Samples within drainage ways were collected to determine if any contaminant had migrated to an overland flow route and entered Silver Creek and to determine if there was any contaminant that

may be attributable to the former activities and operations at the pipeline company. Also within the contractor reports are waste disposal manifests indicating amount and disposal destination of contaminated soil excavated from the former Williams property. Soil was excavated in conjunction with the removal of all above-ground and below-ground piping, dismantling and removal of all storage tanks, and dismantling and removal of all buildings and structures on the property. All contaminated soil was transported by Sunset Logistics, LLC trucking of Crystal Lake, Illinois and disposed at Winnebago Landfill Co., Rockford, Illinois. Between October 19, 2017 and November 16, 2017, 13,049.23 tons of contaminated soil was removed from the site and disposed.

4.2 Groundwater

According to the Illinois State Geological Survey (ISGS) and the Illinois State Water Survey (ISWS) geology beneath the site consists of unconsolidated glacial drift deposits (clay, silt, and some sand) of the Carmi Member (approximately 25 feet thick) of the Equality Formation which, in the Chicago area, varies in thickness from approximately 50 feet to 150 feet. Beneath the surficial glacial deposits, and hydrologically connected, is the uniform, relatively impermeable Lake Plain glacial and lacustrine deposits consisting primarily of clayey and silty tills of the Wadsworth Member of the Wedron Formation. This formation is approximately 50 feet thick beneath the property and encountered at approximately 25-35 feet bgs. Beneath the Wedron Formation is the Silurian age carbonate upper bedrock formation consisting principally of beds of limestone, and dolomite which dip west-southwesterly at approximately 1.75 feet per mile. Bedrock below the property is contacted at approximately 95 – 105 feet bgs. The bedrock stratigraphy in the vicinity of the property is composed of a thick sequence of Paleozoic

sedimentary rock that generally consists of carbonate rocks of Silurian age in the shallower sequences.

The regional near-surface hydrostratigraphic units are present in two aquifers: a shallow aquifer in more permeable soil present in the glacial drift, and the deep aquifer in the underlying limestone and dolomite bedrock formations.

Municipal drinking water for the Village of Franklin Park is obtained from Lake Michigan via supply lines from the City of Chicago. All municipal water supply wells previously used by Franklin Park have been removed from service or sealed. The Village adopted a groundwater use ordinance prohibiting the use of groundwater as a potable water source and supply on November 9, 1998.

ISGS and ISWS well logs indicate that there are twenty (20) water wells (monitor wells, industrial use water wells, or private water wells) located within a 1.0 mile radius of the former Williams property. Well logs from within this distance indicate that limestone/dolomite bedrock was encountered at depths ranging from 75 to 105 feet bgs., east to west. Of these twenty (20) wells, one (1) is located to the west, five (5) to the southwest, south and southeast, one (1) to the east, nine (9) to the northwest and north, and four (4) to the northeast. Nine (9) of the twenty (20) wells are located within a 0.5 mile radius of the former Williams property. Eight (8) wells are located hydraulically upgradient to the northwest, north, and northeast, and one (1) well is located cross-gradient directly east of the property at Precise Casting Company. This well was installed in 1961 to a depth of 287 feet bgs. into limestone/dolomite bedrock. This well does not appear to be a potential receptor due to its cross-gradient location, age and completion in bedrock. The five (5) wells located southwest, south, and southeast, within the 1.0 mile radius of the property are located hydraulically downgradient. Depths of the wells range from 52 to 134

feet bgs. These wells were installed in unconsolidated glacial drift or bedrock between 1939 to 1945. The nearest downgradient well to the property is located approximately 2,050 feet to the southwest. It is unknown whether any of these twenty (20) wells were sampled by the mentioned contractors. There are no known active drinking water wells located within a 4.0 mile radius of the property.

Shallow groundwater at the property is generally identified between five (5) and ten (10) feet bgs. The potential risk of the hydrocarbons remaining in shallow groundwater to potential groundwater receptors is negligible due to the depth of the wells, the distance to the potential receptors, and the groundwater use ordinance prohibiting the use of groundwater as a potable water supply in Franklin Park. Due to the tight glacial till site soils the area of affected groundwater is contained on-site and there will be no direct exposure to groundwater through routine activities by facility personnel or nearby residents. Therefore, the groundwater ingestion route is incomplete and is not evaluated further.

According to the ISWS, one private groundwater well may exist within 1-mile of the former pipeline company. This groundwater well is approximately 2,050 feet (0.38 miles) southwest of the property in a residential neighborhood. Depth of the well is 104 feet deep, installed in December 1944. ISWS well logs indicate that within a four-mile radius of the former pipeline property there are approximately 230 water wells on record. These records indicate most private wells were drilled to and finished from 80 to 350 feet in depth. Some wells utilize(d) the shallow sand and gravel strata of the aquifer and others utilize(d) the deeper limestone bedrock formation. There are no known non-community public drinking water wells (restaurants, parks, gas stations, etc.) being utilized within the 4-mile radius of the facility.

4.3 Surface Water

As mentioned previously, surface water drainage from the property is either collected into the property's stormwater system or flows toward the west side of the property where run-off enters Silver Creek, immediately adjacent to the property. Run-off then flows south and southeast within the intermittent creek, through residential areas generally skirting backyards, and through commercial areas. At various locations the creek is channeled below ground beneath streets and a few buildings and parking lots throughout the course of its route. The creek flows 5.16 miles southeast from the property to the confluence with the Des Plaines River. Because Silver Creek is designated as an intermittent stream by the National Wetlands Inventory, and the creeks distance of flow to a perennial stream is beyond 2.0 miles, there is no designated Probable Point of Entry (PPE) to surface water from the site. As noted in Section 2.1 of this report, Silver Creek is not registered in the IDNR Division of fisheries as a fishery, but does contain minnows and other aquatic life. The Des Plaines River is registered as a fishery.

Silver Creek was always visually inspected for the presence of petroleum products following each release and during subsequent site investigations. No petroleum product oily sheen or discoloration was observed during any of the investigations, or during any previous or subsequent daily inspections of the creek conducted by pipeline personnel. In addition, no petroleum compounds have been detected in monitoring wells that border the east side of Silver Creek along the western property boundary. As designated by the Federal Emergency Management Agency - Flood Insurance Rate Maps for Cook County, Village of Franklin Park, Map Number 17031C Panel 0359J and Panel 0367J, the western property boundary adjacent to Silver Creek's channel is designated as Zone AE, being in the 1% annual chance flood area (within the 100-year floodplain). The remainder of the property is designated as Zone X, being

outside the 0.2% annual chance flood area (outside the 500-year floodplain). ISWS indicates there are no surface water intakes within the 15-mile downstream route from the former pipeline facility.

4.4 Soil Exposure

As mentioned, the Williams Pipeline Company petroleum storage facility and transfer station no longer exists on the property. The property was sold in 2017. The current owner has, since purchase, remediated the property and constructed three large warehouse structures containing office space, industrial/storage space, and multiple tractor trailer docks. The property's surface areas have been covered with concrete for building foundations, building floors, and truck loading dock ground surfaces. Asphalt covers driveway, and general vehicle parking areas surrounding the buildings. All landscaped areas have been covered with eighteen inches of clean soil placed over Mirafi 180N geotextile prior to flora landscaping.

Nine (9) soil gas vapor samples were obtained throughout the property. Specifically three (3) each from the locations of the three (3) proposed concrete building pad areas (north, central, and south areas of the pads). Samples were collected from four (4) feet below surface grade and above the saturated zone. Samples were submitted to the laboratory for VOC analysis.

Laboratory analytical results indicated no VOC compounds were detected above any Tier 1

Remediation Objectives. As such, vapor intrusion (indoor inhalation exposure route) has been addressed and 35 IAC 742.312 has been satisfied.

The property, as it currently exists, can be accessed by vehicle or pedestrian traffic at any location except along the western perimeter which is bordered by Silver Creek. No other fencing or barriers restrict access to the facility.

The area surrounding the former pipeline property is residential and industrial with an estimated population of 980 within one mile of the facility. The nearest residential structure is approximately 120 feet southwest of the southwest corner of the property in an established neighborhood of approximately 75 years. Other residential neighborhoods are present to the south, southeast, east, and northeast of the property.

There are no schools or daycare facilities within 200 feet of documented former contaminated soils.

4.5 Air Route

The first known record of complaints of noxious odors emanating from the Williams

Pipeline Company was on May 27, 1974. A citizen registered a complaint to the Franklin Park

Police regarding an oily sheen and odors in Silver Creek immediately adjacent to the Williams

property. Police responding to the complaint found a Williams employee draining water and

gasoline from a storage tank containment area. While Williams Pipeline Company was still

operating on the property there had been other petroleum odors noted by Williams employees,

Williams contractors, and IEPA personnel when responding to various releases. After

remediation there were no odors remaining. No formal air samples had been collected. Since

the current owners, Bridge Development Partners, LLC, purchased the property, they have

conducted remedial work eliminating or significantly reducing petroleum contaminants, obtained

an IEPA issued Comprehensive NFR Letter, have regraded the property, constructed three

warehouse buildings including concrete and asphalt parking areas, and have landscaped

remaining open soil areas with grass and decorative plantings. In its current state as a warehouse

facility the property's ground surface is covered with the mentioned concrete, asphalt, and landscaping which eliminates almost all wind-blown particulates from the site.

5.0 Summary and Conclusions

Site Investigations conducted at the Williams Pipeline property by IEPA, U.S.EPA contractors, and pipeline company contractors included visual inspections, interviews with company representatives and collection of samples of the various media due to historic and recent gasoline, fuel oil, and gasoline/fuel oil/water mixture on-site releases. Records of occurrences date from 1974 to 2017. Information associated with each release is noted in text, laboratory analytical data, and figures in contractor reports within the Appendices of this report. Throughout the time period that Williams and the subsequent owner occupied the property numerous soil and groundwater samples have been collected from locations surrounding each release area, in the overland drainage route leading to Silver Creek, and within the creek sediment if the release reached the creek. Included in the contractor reports attached as Appendices of this report are laboratory analysis of the samples and discussions of results of the analysis. Many of the samples revealed BTEX and PNA compounds that exceeded at least three times background concentrations in soil samples and various groundwater samples, as well as exceeding various TACO limits. The extent of soil/sediment contamination was determined using numerous sample points collected over the course of property occupation by the pipeline companies.

The pipeline property was sold in July 2017 to Bridge Development Partners, LC. Bridge then entered IEPA's Site Remediation Program at which time they conducted remedial work eliminating or significantly reducing petroleum contaminants, obtained an IEPA issued Comprehensive NFR Letter, have regraded the property, constructed three slab-on-grade

warehouse buildings including concrete and asphalt parking areas, and have landscaped remaining open soil areas with grass and decorative plantings.

6.0 REFERENCES

Bureau of the Census, County and City Data Book, 2010 U.S. Census Data.

Black & Veach Waste Science and Technology Corporation, <u>Site Screening Inspection</u> <u>Implementation Plan for Mendon Farm Center</u>, October 10, 1991.

Ecology and Environment, Inc., Site Inspection Report, September 23, 1987

Environmental Group Services Limited, Remedial Action Completion Report, February 1, 2019.

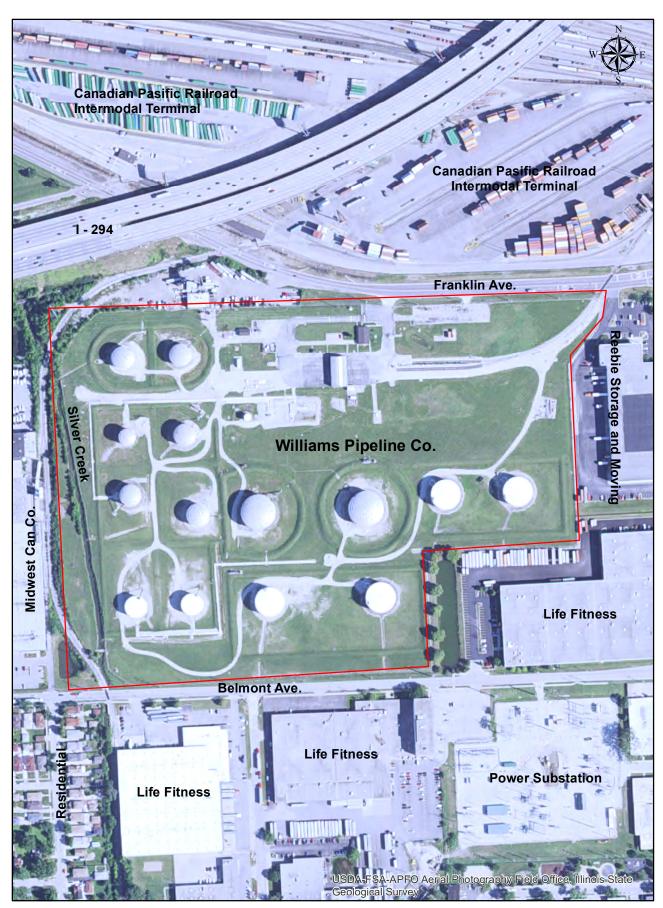
Environmental Strategies Consulting, LLC, <u>Site Investigation, Remediation Objectives</u>, Remedial Action Plan & Completion Report, September 7, 2004.

Illinois Environmental Protection Agency, Preliminary Assessment, April 4, 1986.

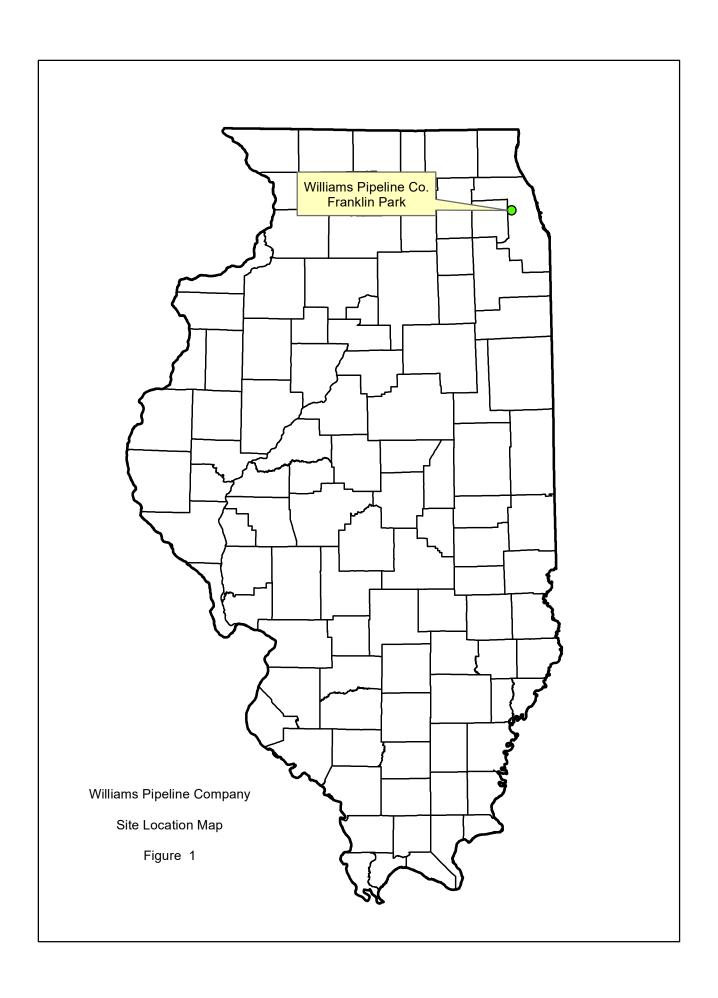
Suter, Max, <u>Preliminary Report on Groundwater Resources of the Chicago Region, Illinois,</u> Illinois State Water Survey, 1959.

Weaver Consultants Group North Central, LLC, <u>Limited Phase II Environmental Site Assessment Report</u>, May 5, 2017.

Willman, H. B., et al., <u>Handbook of Illinois Stratigraphy</u>, Bulletin 95, Illinois State Geological Survey, 1975.


Zeizel, Arthur J., <u>Groundwater Resources of DuPage County, Illinois</u>, Illinois State Water Survey, 1962.

State of Illinois, Department of Energy and Natural Resources, 1988, Tioga, Illinois, 7.5 Minute Topographic Map.


State of Illinois, Department of Energy and Natural Resources, 1968, Photorevised 1975, Scales Mound West, Illinois, 7.5 Minute Topographic Map.

State of Illinois, Department of Energy and Natural Resources, 1968, Hanover, Illinois, 7.5 Minute Topographic Map.

State of Illinois, Department of Energy and Natural Resources, 1988, Mendon, Illinois, 7.5 Minute Topographic Map.

Williams Pipeline Company and Surrounding Area Map



Site Area Map

Figure 2

Williams Pipeline Company Property Map

Willians Pipeline Company
Wetland Map
Figure 5

Williams Pipeline Company Figure 7 Aerial Photograph 3-17-18

Williams Pipeline Company Figure 8 Aerial Photograph 5-23-18

Williams Pipeline Company
Figure 9
Aerial Photograph 10-15-18

Williams Pipeline Company Figure 10 Aerial Photograph 10-18-19

FIGURES

APPENDICIES

APPENDIX A

4 - Mile Radius Map

Appendix A

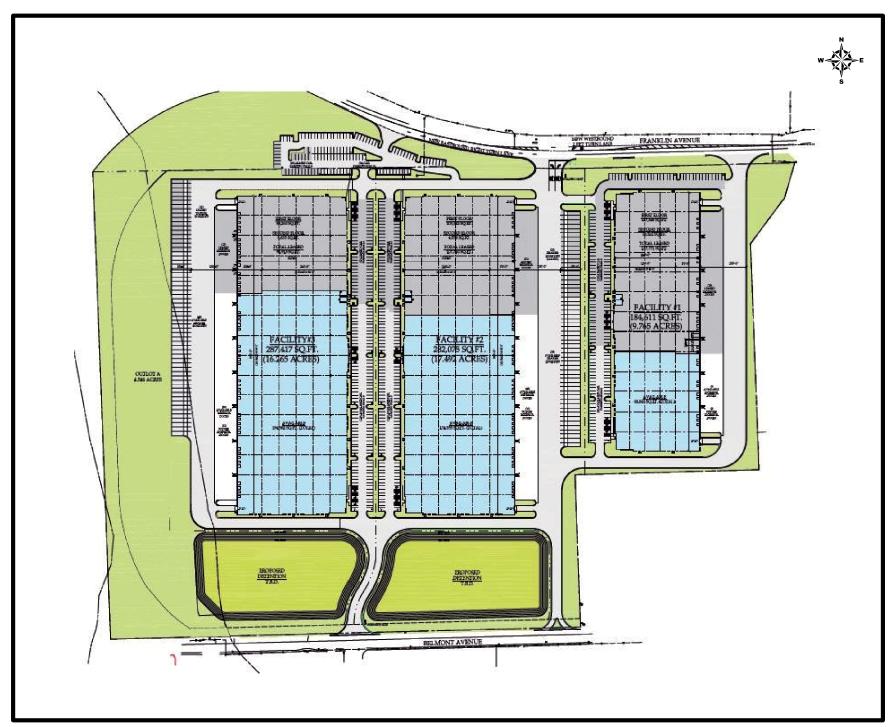


Williams Pipeline Company
4 - Mile Radius Map

APPENDIX B

15 – Mile In-Water Segment Map

Appendix B

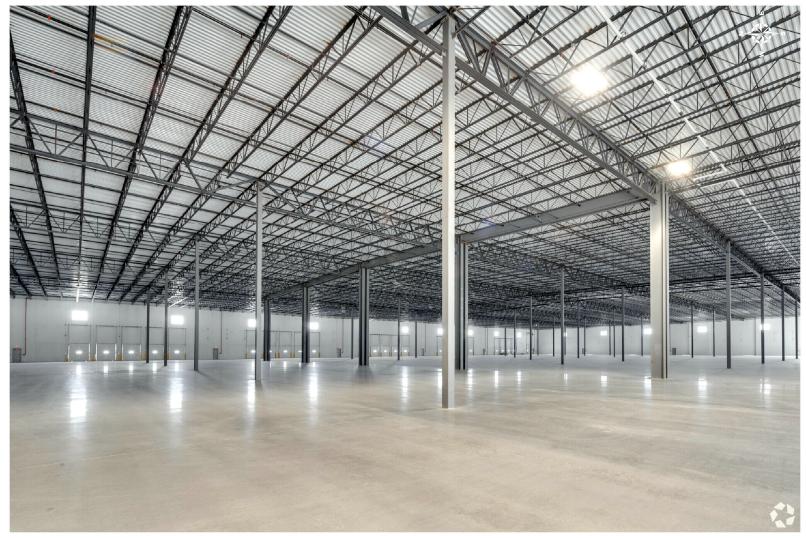


Willians Pipeline Company

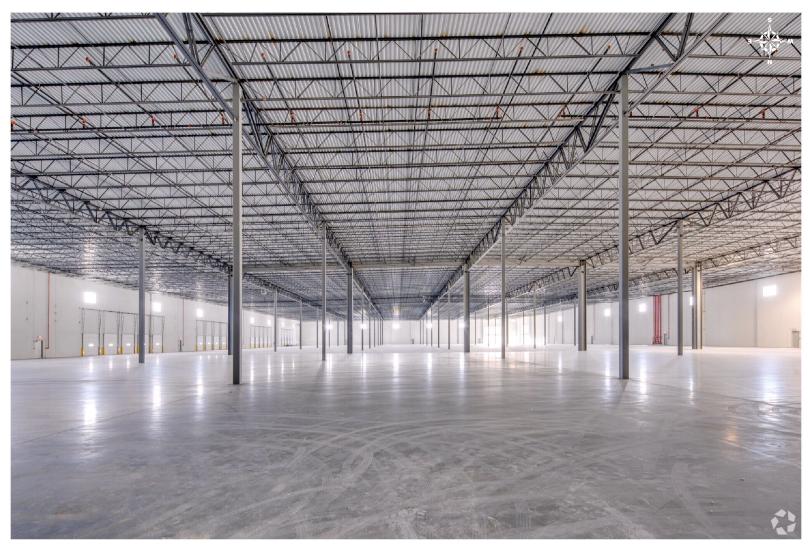
15- Mile In-Water Segment Map

APPENDIX C

Photographs of Site



Bridge Franklin Park Development Plan Photo 1



Aerial Of Bridge FPD As Built 2020

Photo 2

Interior Of Bridge FPD Buildings

Interior of Bridge FPD Building - North to South
Photo 4

APPENDIX D

Remediation Action Completion Report (RACR), February 1, 2019

FILE COPY Illinois Environmental Prote Franklin Park/Magellan Pipeline

19-68700

0310965121-Cook SR/TECH

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62/94-9∠/6

Site Remediation Program Form (DRM-2)

	Site Remedi (To be Submit	ted with al	l Plans and Reports	s) GEMENT
You may co	omplete this form online, save a co	opy, print, si	gn and mail it to the ad	dress aboye age MANARY
I. Site Identifi	(To be Submit)mplete this form online, save a co			dress above page in the page of the page o
Site Name:	Magellan Pipeline Chicago Termin		IEPA	0 2 5/1/2
Street Address:	10601 Franklin Avenue			P. J. Box: IMR
City:	Franklin Park	_ State: <u>IL</u>	Zip Code: 60131	712
`	D Number: 0310965121	IEMA	Incident Number:	Phone - 841 531 3980
II. Remediation	on Applicant:			
Applicant's Name	: Mr./Ms. Mr. Mark Houser			
Company:	Bridge Development Partners		<u> </u>	
Street Address:	1000 Irving Park Rd. Suite 150			P.O. Box:
City:	Itasca	_ State: IL	Zip Code: 60143	Phone: 847 531 3980
Email Address:	mhouser@bridgedev.com			
conditions of the l services agreeme	that the Illinois EPA review and evalue the Illinoi			
III. Contact Pe	erson for Remediation Appli	cant:		
III. Contact Pe Contact's Name:		cant:		
		cant:		
Contact's Name:	Mr./Ms. Mr. Mark Houser	cant:		P.O. Box:
Contact's Name: Company: Street Address: City:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca	cant:	Zip Code: <u>60143</u>	P.O. Box:Phone: 847 531 3980
Contact's Name: Company: Street Address:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd.		Zip Code: <u>60143</u>	
Contact's Name: Company: Street Address: City: Email Address:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca		Zip Code: <u>60143</u>	
Contact's Name: Company: Street Address: City: Email Address:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com		Zip Code: <u>60143</u>	
Contact's Name: Company: Street Address: City: Email Address: Contact Person	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com on for Consultant:		Zip Code: <u>60143</u>	
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com on for Consultant: Mr./Ms. Mr. Bill Lennon			Phone: 847 531 3980 P.O. Box:
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name: Company:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com on for Consultant: Mr./Ms. Mr. Bill Lennon EGSL 557 West Polk Street, Suite 201 Chicago		Zip Code: 60143	Phone: 847 531 3980
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name: Company: Street Address:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com In for Consultant: Mr./Ms. Mr. Bill Lennon EGSL 557 West Polk Street, Suite 201	State: II		Phone: 847 531 3980 P.O. Box:
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name: Company: Street Address: City: Email Address:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com on for Consultant: Mr./Ms. Mr. Bill Lennon EGSL 557 West Polk Street, Suite 201 Chicago	State: IL	Zip Code: 60607	Phone: 847 531 3980 P.O. Box: Phone: (312)447-1200
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name: Company: Street Address: City: Email Address: IV. Review &	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com In for Consultant: Mr./Ms. Mr. Bill Lennon EGSL 557 West Polk Street, Suite 201 Chicago bill@EGSL.com Evaluation Licensed Profess	State: IL	Zip Code: 60607	Phone: 847 531 3980 P.O. Box: Phone: (312)447-1200
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name: Company: Street Address: City: Email Address: IV. Review &	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com In for Consultant: Mr./Ms. Mr. Bill Lennon EGSL 557 West Polk Street, Suite 201 Chicago bill@EGSL.com Evaluation Licensed Profess	State: IL	Zip Code: 60607 ineer or Geologist (Phone: 847 531 3980 P.O. Box: Phone: (312)447-1200 ("RELPEG"), if applicable:
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name: Company: Street Address: City: Email Address: V. Review & I RELPEG's Name	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com In for Consultant: Mr./Ms. Mr. Bill Lennon EGSL 557 West Polk Street, Suite 201 Chicago bill@EGSL.com Evaluation Licensed Profess E: Mr./Ms. Mr.	State: IL	Zip Code: 60607 ineer or Geologist (Phone: 847 531 3980 P.O. Box: Phone: (312)447-1200
Contact's Name: Company: Street Address: City: Email Address: Contact Perso Contact's Name: Company: Street Address: City: Email Address: V. Review & I RELPEG's Name Company:	Mr./Ms. Mr. Mark Houser Bridge Development Partners 1000 Irving park Rd. Itasca mhouser@bridgedev.com In for Consultant: Mr./Ms. Mr. Bill Lennon EGSL 557 West Polk Street, Suite 201 Chicago bill@EGSL.com Evaluation Licensed Profess E: Mr./Ms. Mr.	State: IL	Zip Code: 60607 ineer or Geologist (Phone: 847 531 3980 P.O. Box: Phone: (312)447-1200 ("RELPEG"), if applicable:

RECEIVED

FEB -7 2019

V. Project De	ocuments Being Submitted:			Page 3 of 4
	BAOD			Date of Preparation
Document Title:	RACR			of Plan or Report: 2/1/19
Prepared by:	EGSL			Prepared For: IEPA
Type of Docum	ent Submitted: estigation Report - Comprehensive	П	Sampling	
	estigation Report - Focused	Ħ		d Safety Plan
_	ation Objectives Report - Tier 1 or 2			ty Relations Plan
_	ation Objectives Report - Tier 3		Risk Asse	•
_	al Action Plan		Containme	ent Fate & Transport Modeling
✓ Remedia	al Action Completion Report		Other:	
			· ·	
				Date of Preparation
Document Title:				of Plan or Report:
Prepared by:				Prepared For:
Type of Docume	nt Submitted: estigation Report - Comprehensive		П	Sampling Plan
_	estigation Report - Focused		一百	Health and Safety Plan
_	ation Objectives Report - Tier 1 or 2			Community Relations Plan
Remedia	ation Objectives Report - Tier 3			Risk Assessment
☐ Remedia	al Action Plan			Containment Fate & Transport Modeling
Remedia	al Action Completion Report			Other:
Document Title:				Date of Preparation of Plan or Report:
Prepared by:				Prepared For:
Type of Docume	nt Submitted:			
☐ Site Inve	stigation Report - Comprehensive			Sampling Plan
☐ Site Inve	stigation Report - Focused			Health and Safety Plan
☐ Remedia	ation Objectives Report - Tier 1 or 2			Community Relations Plan
☐ Remedia	ation Objectives Report - Tier 3			Risk Assessment
	al Action Plan			Containment Fate & Transport Modeling
Remedia	al Action Completion Report			Other:

VI. Professional Engineer's or Geologist's Seal or Stamp:

I attest that all site investigations or remedial activities that are subject of this plan(s) or report(s) were performed under my direction, and this document and all attachments were prepared under my direction or reviewed by me, and to the best of my knowledge and belief, the work described in the plan and report has been designed or completed in accordance with the Illinois Environmental Protection Act (415 ILCS 5), 35 III. Adm. Code 7401 and generally accepted engineering practices or principles of professional geology, and the information presented is accepted and complete.

Any person who knowingly makes a table, lecitious, or translated material eletement, orably second or subsequent offense after conviction is a Class 3 felony. (415 fLCS \$44(f))	or in writing, to the silvinois EPA country a Eligible (Palony, A
Engineer's or Geologist's Name: Harold A. Smith, P.E.	Professional Engineer's or
Company: EGSL	Geologist Scal or stamp:
Registration Number: 062-030217 Phone: (312)447	<u> </u>
License Expiration Date: 11/30/2019	
Signature: Hauld a Smith	Date: 1/31/30/07/CUNDIS
Note: The authority of a Licensed Professional Geologist to certify designed and	The state of the s

Note: The authority of a Licensed Professional Geologist to certify documents submitted to the tilinois Environmental Protection Agency for review and evaluation pursuant to Title XVII of the Environmental Protection Act is limited to Site Investigation Reports (415 ILCS 58.7(1), as amended by P. Remedial Action Completion Reports, Remedial Action Plans or

All information submitted is available to the public except when specifically designated by the Genediation Applicant to be treated confidentially as a trade secret of secret process in accordance with the filinois Compiled Statistics, Section 7(a) of the Emfroymental Protection Act, applicable Rules and Regulations of the Illinois Polyton Control Board and applicable Illinois EPA acts and guidelines. The Illinois EPA is authorized to require this information under Sections 415 IL.CS 5:51 • \$8.12 of the Environmental Protection Act and regulations grownly geted the resulting. Distriction of this information under Sections 415 participation in the Site Remediation Program. Failure to do so may prevent this form from being processed and could result in your plan(s) or report(s) being rejected. This form has been approved by the Forms Management Center.

0310965121-Cook Franklin Park/Magellan Pipeline SR/TECH

557 West Polk Street, Suite 201 Chicago, IL 60607 312.447.1200 p 312.447.0922 f www.egsl.com w

Samo

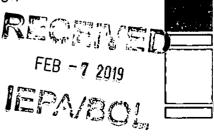
2012/2012

my of her life

-

Remedial Action Completion Report

LPC 0310965121—Cook County
Franklin Park/Magellan Pipeline
(10601 Franklin Avenue, Franklin Park, Illinois 60131)
Site Remediation Program/Technical Reports


EGSL Project No. 1703287 Date: February 1, 2019

Prepared for: Illinois Environmental Protection Agency Site Remediation Program 1021 North Grand Avenue East Springfield, Illinois 62702

On Behalf Of: Mr. Mark Houser Bridge Development Partners, LLC 1000 Irving Park Road, Ste. 150 Itasca, Illinois 60143

Prepared by: Environmental Group Services, Ltd. 557 West Polk Street – Suite 201 Chicago, Illinois 60607

1.	EXECUTIVE SUMMARY	
2.	REMEDIATION SITE ACTIVITES & RESULTS	11
3.	CONCLUSIONS	14
4.	APPENDICIES	
4 D	DENDLY A CITE DACE MAD	•
	PENDIX A – SITE BASE MAP	
ΑP	PENDIX B – EXCAVATION MAPS	
ΑP	PENDIX C – CONTAMINATE PLUME MAPS	
A D	DENDLY D. D. 2C MAGDELLING MAD	

APPENDIX D – R-26 MODELING MAP

APPENDIX E – ARSENIC EXCAVATION DOCUMENTATION

APPENDIX F – INSTITUTIONAL CONTROLS DOCUMENTATION

APPENDIX G – FINAL SITE BASE MAP, PIN & LEGAL DESCRIPTION

APPENDIX H – LANDSCAPING TCL ANALYTICAL DATA

APPENDIX I – IEPA JANUARY 18, 2019 COMMENT LETTER AND REQUESTED MAPS

APPENDIX J – MIRAFI® 180N SPEC SHEET

egsl

1. EXECUTIVE SUMMARY

Environmental Group Services Limited (EGSL) has been retained by *Bridge Development Partners, LLC* to provide environmental consulting services for the property located at 10601 Franklin Avenue, Franklin Park, Cook County, Illinois, also known as the Remediation Site (RS). The Remediation Applicant (RA) is *Bridge Development Partners, LLC* and the point of contact is Mark Houser. Prior to EGSL retaining the RS, a Site Investigation, Remediation Objectives, Remedial Action Plan and Completion Report was prepared by Environmental Strategies Consulting, LLC (ESC), September 7, 2004 and a Limited Phase II Environmental Site Assessment conducted by Weaver Consultants Group North Central, LLC (WCG) on March 30 through April 11, 2017 (Limited Phase II Environmental Site Assessment Report, 10601 Franklin Avenue, Franklin Park, Illinois, May 5, 2017). The site was enrolled into the Illinois Environmental Protection Agency (IEPA) Site Remediation Program (SRP) on July 26, 2017 to obtain a Comprehensive No Further Remediation (NFR) Letter, in accordance with the regulations set forth in 35 IAC 740 (Site Remediation Program (SRP)) and 35 IAC 742 (Tiered Approach to Corrective Action Objectives (TACO)).

The Subject Property was previously occupied by Magellan Pipeline Company. The Property was comprised of approximately 48.065 acres of land improved with one approximately 2,240 square-foot one- story office building, one approximately 6,000 square-foot loading rack building, one approximately 800 square-foot garage building, and twenty (20) aboveground storage tanks (ASTs) ranging in size from approximately 500 to 2,300,000 gallons. The Property was also improved with underground and aboveground pipelines and gravel roads throughout the Property. Railroad tracks are present from the northern to northeastern portion of the Property, but are no longer in use. Asphalt-paved areas are located on the northern portion of the Property in the vicinity of the office building and loading rack building. The areas around the ASTs are grass-covered and include earthen berms as secondary containment areas. The Property was used as a tank farm, storing a variety of petroleum products including distillate, gasoline, and transmix, since at least 1931. In their Phase I ESA, WCG stated that they observed a creek located on the western portion of the Property. This creek was identified as Silver Creek and runs north to south through the western portion of the Property. (A Site Base Map is included in Appendix A, Figure 1).

An environmental investigation and remediation activities were conducted by ESC in 1999 at the Magellan Terminal (Terminal) in response to mixtures of gasoline, diesel fuel, and water that were released from a sump in incidents occurring in March and August 1999 (IEPA) Release Incident Numbers: 991878 and 990556); and a release of unleaded gasoline in 1986. In response to these releases, 19 monitoring wells were installed and soil excavation and plume stability monitoring remedial activities were performed. On April 30, 1999, ESC collected soil samples from nine soil borings (P-1 through P-9) to evaluate the potential presence of petroleum hydrocarbons in soil due to the March 1999 release. Two additional soil samples were collected on August 18, 1999 after six additional inches of soil were excavated from the area. On August 12, 1999, after a release of 90 gallons of gasoline and diesel fuel, the affected soil was excavated from the release area. The depth of the excavation varied from approximately 3 to 8 feet below grade and included the sump area and area to the southwest. Both near surface soils affected by the release and deeper soils that had been affected by historical activities in the area (assumed to be the 1986 release) were removed. Four soil samples (B-1 through B-4), were collected from the base of the excavation and five soil samples, SW-1 through SW-5, were collected from the excavation side walls to confirm that the affected soil had been removed or to evaluate the concentrations of hydrocarbons remaining in soil that could not be removed. All of the soil samples collected were analyzed for Benzene, Toluene, Ethylbenzene

and Xylenes (BTEX) and Polynuclear Aromatic Hydrocarbons (PNAs).

The analytical results for soil samples collected by ESC were compared to baseline cleanup objectives presented in Part 742 (Tiered Approach to Corrective Action Objectives (TACO)) of the Illinois Administrative Code (IAC) Tier 1 Class II Soil Remediation Objectives (SROs) for Industrial/Commercial properties. It was concluded that *Benzene*, *Toluene*, and *Ethylbenzene* exceeded the Tier 1 SROs in some soil samples. These compounds exceeded the remediation objectives for Industrial/Commercial Inhalation, Construction Worker Inhalation exposure pathways and exceeded the Class II Soil Component of the groundwater exposure pathway. *Naphthalene* was the only PNA that exceeded the Tier 1 SROs for the Construction Worker Inhalation exposure route.

According to ESC, the monitoring well network at the Terminal consists of 16 monitoring wells; MW-1 through MW-8, MW-10, MW-12 through MW-14, and MW-16 through MW-19. Monitoring wells MW-1 through MW-7 were installed in 1987 in response to the November 1986 release that occurred near Tank 272. By June 1988, a perimeter groundwater monitoring network was established; which, included the installation of MW-8 through MW-18. An additional monitoring well, MW-19, was installed approximately 10 feet southwest (downgradient) of the product recovery sump/separator system to evaluate subsurface conditions after the 1999 petroleum release incidents. Monitoring wells MW-9, MW-11, and MW-15 were abandoned because petroleum compounds have never been detected in groundwater samples collected from these wells. Groundwater samples collected by ESC were analyzed for BTEX and Hexane. BTEX was detected in groundwater, but only Benzene was detected at concentrations exceeding its Class II Groundwater Remediation Objective (GRO). The criterion for Benzene was exceeded in recent groundwater samples from MW-1, MW-6, MW-7, and MW-19. The historical data indicates that benzene concentrations have also exceeded the Tier 1 GRO in previous samples from these wells. Therefore, ESC concluded that Benzene is the only constituent of concern for groundwater and that plume stability monitoring has shown that Benzene concentrations are stable to decreasing, and affected groundwater has not migrated offsite.

Based upon the assessments described in the WCG Phase I ESA report it was revealed that there was no evidence of *recognized environmental conditions* (RECs) in connection with the Property, except for the following:

- REC-1: The potential presence of surface and subsurface impacts associated with the historical
 use of the Property as a petroleum bulk storage facility with associated ASTs, pipelines, and
 releases.
- REC-2: The potential presence of surface and subsurface impacts associated with the historical presence of a UST and associated LUST incident.
- REC-3: The known and potential presence of surface and subsurface impacts associated with a November 6, 1986 release of gasoline near Tank 272, a March 8, 1999 release of gasoline, diesel fuel, and water mixture from the product recovery sump system (Incident No. 990556), and an August 10, 1999 release of gasoline and diesel fuel mixture from the discharge line of the water separator sump to Tank No. 654 (Incident No. 991878).
- REC-4: The presence of surface and subsurface impacts associated with the October 22, 1999 spreading of approximately 225 yards of petroleum-impacted soil excavated from the 1999 release areas. Area was approximately 100 feet by 165 feet with soil thickness ranging from three to six inches.

- REC-5: The potential presence of subsurface impacts associated with potential unknown fill materials in the former water feature that transected the northwest corner of the Property.
- REC-6: The potential presence of subsurface impacts associated with the northern adjoining properties used as a railroad yard, automotive storage and machineshop.
- REC-7: The potential and known presence of subsurface impacts associated with the eastern, western, and southern adjoining properties whose industrial operations include plastics products manufacturing and industrial package manufacturing.

Based upon the assessments described in the WCG Phase I ESA report it was revealed that there was no evidence of *controlled recognized environmental conditions* (CRECs) in connection with the Property, except for the following:

 CREC-1: The known presence of surface and subsurface impacts associated with the August 2, 2014 release of approximately 588 gallons of diesel fuel from Tank No. 715 (Incident No. 20140897) and the presence of an Environmental Land Use Control.

Based on the results of the WCG Phase I ESA, a limited Phase II ESA was conducted by WCG to assess potential subsurface environmental conditions associated with the RECs identified above. The Scope of Work for the Limited Phase II ESA generally included the advancement of soil probes and hand augers and the installation of temporary groundwater monitoring wells for soil and groundwater sample collection. Sediment samples were also collected from the on-site creek and groundwater samples were collected from existing permanent monitoring wells.

On March 30 to April 11, 2017, a total of seventy-four (74) soil probes and four hand augers were advanced, two temporary groundwater monitoring wells installed, two sediment samples were collected, and twelve (12) existing permanent monitoring wells were sampled (see Appendix A, Figures 2, 2A, and 3 for approximate locations of the soil probes, hand augers, sediment samples and monitoring wells). Soil samples collected from each probe and hand auger were field screened using a photoionization detector (PID). In addition, soil samples were screened for the presence of visual and olfactory indications of impacts. Soil and sediment samples collected intermittingly from March 30 to April 10, 2017 were submitted for laboratory analysis of contaminants of concern (COCs) related to the above RECs. These COCs included Target Compound List (TCL) parameters, total petroleum hydrocarbons (TPH), Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Methyl tert-butyl ether (MTBE), Resource Conservation and Recovery Act (RCRA) Metals, Toxicity Characteristic Leaching Procedure (TCLP) Metals, Synthetic Precipitation Leaching Procedure (SPLP) Metals, and pH. In addition, select soil samples were submitted for laboratory analysis of Fraction of Organic Carbon (Foc). Groundwater samples collected on April 10 and April 11, 2017 were also submitted for laboratory analysis of TCL parameters, BTEX, MTBE, PNAs, and RCRA Metals (total and dissolved).

Soil and sediment analytical results were compared to Illinois Environmental Protection Agency (IEPA) TAC) Tier 1 SROs for Industrial/Commercial Properties. Samples were also compared to the soil Background Concentrations within Metropolitan Statistical Areas (Backgrounds) for PNAs and inorganics. Groundwater analytical results were compared to IEPA TACO Tier 1 Groundwater Remediation Objectives (GROs) for Class I and Class II Groundwater and GROs for the Indoor Inhalation Exposure Route. In addition, Remediation Objectives (ROs) for COCs not listed within TACO were calculated using toxicity data and chemical/physical data listed in the USEPA Regional Screening Level (RSL) summary tables and

calculations listed in TACO.

According to the analytical results, soil samples exhibited concentrations below Tier 1 SROs for Industrial/Commercial Properties, with the exception of the following:

- MG-SB-GP-14/2-4', MG-SB-GP-59/2-4', MG-SB-GP-65/4-6', and MG-SB-GP-66/3-5' exhibited Benzene, Naphthalene, and/or Ethylbenzene concentrations in excess of the Soil Inhalation Exposure Route;
- MG-SB-GP-14/2-4', MG-SB-GP-59/2-4', MG-SB-GP-65/4-6', and MG-SB-GP-66/3-5' exhibited Benzene, Ethylbenzene, Xylenes, Naphthalene, and/or Mercury concentrations in excess of the Soil Inhalation Exposure Route for the Construction Worker Scenario;
- MG-SB-GP-14/2-4' and MG-SB-GP-66/3-5' exhibited *TPH* concentrations in excess of the TACO default soil attenuation capacity for soils below 1 meter;
- MG-SB-GP-66/3-5' exhibited a Xylene concentration in excess of the TACO Soil Saturation Limits (C_{sat}) for Chemicals Whose Melting Point is Less Than 30° C (TACO 742.APPENDIX A) for the SCGIR;
- Twenty-four (24) soil samples and two (sediment samples) exhibited *Arsenic* concentrations in excess of the Soil Ingestion Exposure Route and Backgrounds within MSAs;
- MG-SB-GP-14/2-4', MG-SB-GP-25/2-4', MG-SB-GP-29/1-3', MG-SB-GP-32/2-4, MG-SB-GP-59/2-4', MG-SB-GP-60/6-8', MG-SB-GP-62/4-6', and MG-SB-GP-63/0-2', MG-SB-GP-65/4-6', and MG-SB-GP-66/3-5' exhibited *Benzene* concentrations in excess of the Soil Component of the Groundwater Ingestion Exposure Route;
- MG-SB-GP-14/2-4', MG-SB-GP-59/2-4', MG-SB-GP-65/4-6' and MG-SB-GP-66/3-5' exhibited Ethylbenzene concentrations in excess of the Soil Component of the Groundwater Ingestion Exposure Route;
- MG-SB-GP-14/2-4', MG-SB-GP-59/2-4' and MG-SB-GP-66/3-5 exhibited *Xylene* concentrations in excess of the Soil Component of the Groundwater Ingestion Exposure Route;
- MG-SB-GP-64 /13-15' exhibited Mercury concentrations in excess of the Soil Component of the Groundwater Ingestion Exposure Route;
- MG-SB-GP-73/2-4' exhibited 1,1,2,2-tetrachloroethane concentrations in excess of the Soil Component of the Groundwater Ingestion Exposure Route;
- MG-SB-GP-14/2-4', MG-SB-GP-32/2-4, MG-SB-GP-59/2-4', MG-SB-GP-61/5-7', and MG-SB-GP-66/3-5 exhibited 2-Methylnaphthalene concentrations in excess of the Soil Component of the Groundwater Ingestion Exposure Route.

In addition, multiple soil samples exhibited concentrations of *Chromium, Cobalt, Iron* and *Manganese* that did not achieve at least one of the Tier 1 Class II SROs (Concentrations of Inorganic Chemicals in Background Soils for Counties within Metropolitan Statistical Areas, pH-Specific concentrations and TCLP concentrations) for the SCGIR. The soil analytical results either comprised of concentrations that exceeded the background & pH specific Tier 1 SROs and there was no SPLP/TCLP analysis performed or the background Tier 1 SRO was exceeded, there were no pH-specific values available and, no SPLP/TCLP analysis was completed.

According to the WCG analytical results, groundwater samples exhibited concentrations below Tier 1 Class II GROs, with the exception of the following:

egsl

- MG-GW-TW-02 and MG-GW-MW-19 exhibited *Benzene* concentrations in excess of the Groundwater Ingestion Exposure Route and Indoor Inhalation Exposure Route;
- MG-GW-TW-01 exhibited *Benzene* concentrations in excess of the Groundwater Ingestion Exposure Route; and
- MG-GW-TW-01, MG-GW-TW-02 and MG-GW-MW-19 exhibited dissolved *Iron* concentrations in excess of the Groundwater Ingestion Exposure Route.

The primary fate and transport of contaminants in the subsurface would be largely controlled by the migration of potentially contaminated groundwater encountered at the site.

Based on the results of the Limited Phase II ESA, WCG's following findings and conclusions (concurred by EGSL) are presented below:

- 1. Future development does not appear to be inhibited based on the analytical results.
- 2. Impacts may be address through a risk based remedial strategy and/or active remediation.
- 3. A construction worker safety precaution may be applied to the Property to address benzene, ethylbenzene, xylenes, naphthalene, and mercury concentrations in excess of the Soil Inhalation Exposure Route for the Construction Worker Scenario.
- 4. As a groundwater use ordinance is not currently established for the Village of Franklin Park, a groundwater use restriction may be applied to the Property prohibiting the installation or use of potable groundwater wells to mitigate exposure to shallow groundwater.
- 5. Should redevelopment of the Property occur, consideration should be given to special management requirements that may apply to excavation of soils for Property grading, foundations and/or utility installations.
- 6. Owing to the historical commercial use of the Property, should redevelopment occur, we would advise that a contingency be developed for unexpected conditions including, but not limited to, areas of soil and/or groundwater impacts, discovery of underground storage tanks (USTs), dry wells, catch basins, remnant subsurface foundations and other similar structures.

The Comprehensive Site Investigation Report, Remedial Objectives Report and Remedial Action Plan was completed in accordance with the IEPA's SRP, 35 IAC 740, and the Tiered Approach to Corrective Action Objectives (TACO), 35 IAC 742. This Report contains all information pertinent to the following IEPA reporting:

- Comprehensive Site Investigation Report
- Remediation Objectives Report
- Remedial Action Plan

Tier 1 Industrial/Commercial Ingestion, Inhalation and Construction Worker Inhalation exceedances have been identified in select areas of the Subject Property. These pathways have been evaluated under the SRP ROR process, and it had been determined that Hot Spot removal was conducted to remove soils exhibiting benzene in excess of the Indoor/Outdoor Soil Inhalation Exposure Route, *TPH* and/or source material in the vicinity of groundwater impacts in excess of Tier 1 GROs for the Indoor Inhalation Exposure Route. Refer to **Appendix B, Figure 5 and 5A** for the four (4) Hot Spot excavation areas.

Following the removal of the *Benzene* and *TPH* impacted locations, which correspond to the MG-GW-TW-02 and MG-GW-MW-19 well locations exhibiting impacts in excess of Tier 1 GROs for the Indoor Inhalation Exposure Route, nine (9) soil gas vapor samples were obtained throughout the site. Specifically, three (3) samples were obtained from each of the proposed building pad areas (one in the northern, central, and southern sections of each building). It should be noted that soil gas sample SGV-3N was obtained from the area of MW-19, and soil gas sample SGV-2N was obtained from the area of TW-02. The samples were collected at a depth of four feet below grade surface and above the saturated zone. The samples were submitted for VOC analysis to a NELAP certified laboratory, with a completed chain of custody. According to the laboratory results, no VOCs were detected above any Tier 1 ROs. As such, soil gas vapor (i.e. the indoor inhalation exposure route) has been addressed and 35 IAC 742.312 has been satisfied. Refer to Appendix A, Figure 4 for the location of the soil gas samples.

In addition, Hot Spot removal was completed at two (2) soil or sediment locations (HA-01 and, HA-02) exhibiting arsenic concentrations in excess of the Tier 1 SRO for the Soil Ingestion Exposure Route. Confirmation soil samples were collected upon excavation completion and soil samples were submitted to the project laboratory for the analysis of the COCs with analytical results indicating successful mitigation at the four soil sediment locations. The remaining Arsenic locations will utilize engineered barriers consisting of 1.5 feet of clean fill (underlain by IEPA-approved Mirafi® 180N, spec sheet can be found in Appendix J) to address the ingestion exceedances in the landscaped areas. Refer to Appendix B, Figure 5B for the Arsenic abatement locations.

For the Construction Worker Inhalation Exposure Route, a safety plan will be developed to address possible worker exposure for the COCs that exceeded the Construction Worker Inhalation Exposure Pathway in the event that any future excavation and construction activities may occur within the contaminated soil. Any excavation within the contaminated soil will require implementation of a safety plan consistent with NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities, OSHA regulations, (particularly in 29 CFR 1920 and 1926), state, and local regulations, and other USEPA guidance. Excavated soil must be returned to the same depth from which it was excavated or properly managed or disposed in accordance with applicable state and federal regulations. The safety plan will include those areas that exceeded the Tier 1 SROs for the Construction Worker Inhalation Exposure Route (that were not removed during hot spot excavations).

For the COCs that exceeded the Class I SCGIR SROs and the Class I GROs (shown to not migrate off-site), an on-site groundwater restriction prohibiting the use of groundwater for potable purposes must be implemented.

The soil results that exceeded TACO Tier 1 Remediation Objectives (ROs) after RAP execution are as follows:

• The soil analytical results of the CSI indicated that Arsenic at one or more locations exceeded the TACO Tier 1 SROs for the <u>Industrial/Commercial Ingestion Exposure Route</u>, the <u>Industrial/Commercial Inhalation Exposure Route</u> was exceeded for Benzene at seven (7) locations; the <u>Construction Worker Inhalation Exposure Route</u> was exceeded by Benzene at six (6) locations, Total Xylenes at six (6) locations, Naphthalene at four (4) location and Mercury at one (1) location. COCs that exceeded the <u>Class I Soil Component of the Groundwater Ingestion Route (SCGIR)</u> were Benzene at twenty (20) locations, Toluene at one (1) location, Naphthalene at one (1) location, 2-Methylnaphthalene at three (3) locations, and 1,1,2,2-Tetrachloroethane at

one (1) location. The Construction Worker Ingestion Exposure Route was not exceeded.

- Nine (9) soil gas vapor samples were obtained throughout the site. Specifically, three (3) samples were obtained from each of the proposed building pad areas (one in the northern, central, and southern sections of each building). It should be noted that soil gas sample SGV-3N was obtained from the area of MW-19, and soil gas sample SGV-2N was obtained from the area of TW-02. The samples were collected at a depth of four feet below grade surface and above the saturated zone. The samples were submitted for VOC analysis to a NELAP certified laboratory, with a completed chain of custody. According to the laboratory results, no VOCs were detected above any Tier 1 ROs. As such, soil gas vapor (i.e. the indoor inhalation exposure route) has been addressed and 35 IAC 742.312 has been satisfied. Soil gas sample locations are depicted in Appendix A, Figure 4.
- Based on the <u>Soil Component of the Groundwater Ingestion Route (SCGIR)</u> exceedances, Tier 2 modeling was conducted by EGSL and it has been calculated that the COC *Benzene, Toluene, Naphthalene, 2-Methylnaphthalene,* and *1,1,2,2-Tetrachloroethane* would not migrate off-site in a radial pattern from the sample location.

The groundwater flow direction utilized from ESC was determined to be variable from the south/southwest to south/southeast and the site-specific hydraulic conductivity was 3.08x10⁻⁴ cm/sec. Based on these results, the RS groundwater is classified as Class I groundwater as per 35 IAC 620, Subpart B. According to ESC, the hydraulic gradient was calculated to be 0.009 feet/feet (ft/ft) (average result from MW-1 to MW-16 and MW-6 to MW-2) across the site.

As a part of the Remedial Action Completion Report and strategy to pursue No Further Remediation (NFR) status, the following are proposed:

- The soil Industrial/Commercial <u>Soil Ingestion Exposure Route</u> and Industrial/Commercial <u>Soil Inhalation Exposure Route</u> may be excluded by utilizing a site-wide engineered barrier requirement (see Site Base Map in Appendix A, Figure 2A). Engineered barriers in the forms of slab-on-grade building foundations, concrete/asphalt driveways/parking/walkways, and 1.5' of clean, compacted clay (underlain by IEPA-approved Mirafi® 180N, spec sheet can be found in Appendix J) in the landscaped areas. It should be noted that it was previously determined that no outdoor inhalation exceedances were located within the landscaped areas.
- The soil <u>Construction Worker Inhalation Exposure Route</u> may be excluded by use of a site-specific area worker caution requirement.
- The <u>SCGIR</u> and the <u>Groundwater Inhalation Route</u> may be excluded by the use of an on-site groundwater restriction prohibiting the use of groundwater for potable purposes for those COCs on-site. No COCs were calculated to migrate off-site in a radial direction from sampling location.
- In addition, an institutional control in the form of a recorded IEPA NFR letter filed by the property/remediation site owner with the local county recorder's office will remain in force for the Site in perpetuity or until such time as the contaminants of concern have been remediated to below IEPA TACO Tier 1 Industrial/Commercial Remediation Objectives.

Please note the following:

egsl

- Only portion of the Subject Property has completed development of the required engineered barriers. An NFR is requested at this time only for the Remediation Site Boundary as identified in G. The Legal Description and PIN associated with this portion of the site can also be found in Appendix G. The remaining portions of the Subject Property are in the final stages of development, and an additional RACR requesting an NFR for those portions will be submitted upon completion of the engineered barriers.
- Clean, compacted clay that was utilized in the landscaped areas was obtained from the over-excavation of the large retention pond areas located along the southern portion of the Subject Property. Approximately 16,500 cubic yards of native clay was utilized in the landscaped areas. As such, 34 samples were submitted for TCL analysis. None of the samples contained any chemicals of concern above IEPA. Complete analytical data can be found in Appendix H.
- Maps requested in the IEPA January 17, 2019 comment letter can be found in Appendix I.

2. REMEDIATION SITE ACTIVITES & RESULTS

The following sequential activities have been performed at the RS (Site Base Map found in Appendix A):

- On September 7, 2014, ESC submitted a Site Investigation, Remediation Objectives, Remedial Action Plan and Completion Report.
- Between March 30 through April 11, 2017, WCG conducted a Limited Phase II Environmental Site Assessment.
- On March 30 to April 11, 2017, EGSL completed a total of seventy-four (74) soil probes and four hand augers were advanced, two temporary groundwater monitoring wells installed, two sediment samples were collected, and twelve (12) existing permanent monitoring wells were sampled (see Appendix A, Figures 2, 2A, and 3 for approximate locations of the soil probes, hand augers, sediment samples and monitoring wells). Soil samples collected from each probe and hand auger were field screened using a photoionization detector (PID). In addition, soil samples were screened for the presence of visual and olfactory indications of impacts. Soil and sediment samples collected intermittingly from March 30 to April 10, 2017 were submitted for laboratory analysis of contaminants of concern (COCs) related to the above RECs. These COCs included Target Compound List (TCL) parameters, total petroleum hydrocarbons (TPH), Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Methyl tert-butyl ether (MTBE), Resource Conservation and Recovery Act (RCRA) Metals, Toxicity Characteristic Leaching Procedure (TCLP) Metals, Synthetic Precipitation Leaching Procedure (SPLP) Metals, and pH. In addition, select soil samples were submitted for laboratory analysis of Fraction of Organic Carbon (Foc). Groundwater samples collected on April 10 and April 11, 2017 were also submitted for laboratory analysis of TCL parameters, BTEX, MTBE, PNAs, and RCRA Metals (total and dissolved).
- On July 16, 2017, the Subject Property was enrolled in the IEPA SRP under LPC# 0310965121 with Bridge Development Partners as Remediation Applicant (RA).
- On August 8, 2017, EGSL submitted a Comprehensive Site Investigation Report (CSIR)/Remediation Objectives Report (ROR)/Remedial Action Plan (RAP) for IEPA review.
- On November 20, 2017, EGSL submitted an Addendum to the CSIR/ROR/RAP dated August 8, 2017 was submitted to the IEPA for review.
- On February 20, 2018, the IEPA issued a letter disapproving the CSIR/ROR/RAP and Addendum to the CSIR/ROR/RAP – dated August 8, 2017.
- On April 9, 2018, EGSL submitted a response letter to the IEPA's February 20, 2018 Comments Letter.
- On June 8, 2018, the IEPA issued a letter disapproving the Response to IEPAs Comments for the February 20, 2018 Comment Letter Disapproving the EGSL CSIR/ROR/RAP, dated April 9, 2018.
- On July 20, 2018, EGSL submitted a response letter to the IEPA's June 8, 2018 Comments Letter.
- On October 25, 2018, EGSL submitted a Supplement to EGSL's July 20, 2018 Response Letter to the IEPA.
- On October 30, 2018, EGSL hand excavated two (2) areas of Arsenic exceedances along the
 drainage ditch. Ten (10) soil samples were collected were submitted to STAT Analysis Corporation
 for the analysis of Arsenic. Two (2) 55-gallon drums of contaminated soils were removed and
 properly disposed of at American Waste Industries. Refer to Appendix B, Figure 4B for excavation
 areas and Appendix E for arsenic excavation and sampling documentation.
- On January 17, 2019, the IEPA issued a letter approving the October 25, 2018 Supplement to

EGSL's July 20, 2018 Response Letter to the IEPA.

Hot spot soil excavation activities has resulted in the following remaining soil sample locations exceeding TACO Tier 2 Remediation Objectives (ROs) are as follows:

बी धुटीप्पञ्ज	Semple Dapth (ft)	මෙන්නම)	िर्वाद्धाः	ගුන්වැතියාස	මාපාපාහුර්මහ	9,9,2,2 Verrediforcethene	2 Wethylnephthelene	Mexensy
TACC	Tier 2 SCGI	0.30	61	N/E	12	0.03	1.7	0.002
TACO Tier 2 Res. Inh	alation SRO	5.4	N/E	N/E	N/E	N/E	N/E	N/E
TACO Tier 2 Ind/Com. Inha	alation SRO	7.6	N/E	N/E	N/E	N/E	N/E	N/E
TACO Tier 2 Cons. Worl	ker Inh. SRO	6.3	N/E	32.4	1.8	N/E	N/E	N/E
P-2	8	4.1	*	9.3	*	*	*	*
P-4a	1.5	0.60	38.6	33.8	*	*	*	*
B-1	8	5.19	*	7.9	2.0	*	*	*
B-2	9	3.29	*	*	1.9	*	*	*
B-3	5	11.8	*	*	*	*	*	*
B-4	4	0.34	*	21.1	33.5	*	*	*
SW-1	5	4.98	*	*	*	*	*	*
SW-2	4	5.95	*	8.0	2.0	*	*	*
SW-5	5	15.9	*	*	*	*	*	*
MG-SB-23	2-4	0.04	*	*	*	*	*	*
MG-SB-25	2-4	0.25	*	*	*	*	*	*
MG-SB-27	2-4	0.14	*	*	*	*	*	*
MG-SB-29	1-3	0.21	*	*	*	*	*	*
MG-SB-32	2-4	*	*	*	*	*	4.7	*
MG-SB-44	2-4	0.49	*	*	*	*	*	*
MG-SB-55	1-3	0.05	*	*	*	*	1.7	*
MG-SB-56	2-4	0.06	*	*	*	*	*	*
MG-SB-57	2-4	0.08	*	*	*	*	*	*
MG-SB-60	6-8	0.51	*	*	*	*	*	*
MG-SB-61	5-7	*	*	*	*	*	9.1	*
MG-SB-62	4-6	1.60	*	*	*	*	*	*
MG-SB-63	0-2	1.20	*	*	*	*	*	*
MG-SB-64	13-15	*	*	*	*	*	*	0.027
MG-SB-73	2-4	*	*	*	*	0.032	*	*

Notes:

Analytical testing results are expressed in parts-per-million (ppm) concentrations.

Groundwater analytical results from the four monitoring wells (MW-7, MW-19, MG-GW-TW-01, and MG-GW-TW-02) indicated that Benzene exceeded the Class I GROs and three monitoring wells (MW-19, MG-GW-TW-01, and MG-GW-TW-02) indicated that Iron exceeded the Class I GROs. Refer to Appendix C, Figure 6 for the groundwater contaminate plume.

^{* -} Sample below Tier 1 SROs for specified contaminate

- Hot spot soil excavation activities have resulted in Arsenic exceedances at twenty-one (21) sample locations: hand auger locations HA-03 (2'-4'), HA-04 (2'-4') and soil boring locations MG-SB-GP-10 (4'-6'), MG-SB-GP-16 (2'-4'), MG-SB-GP-17 (1'-3'), MG-SB-GP-20 (3'-5'), MG-SB-GP-24 (2'-4' & 10'-12'), MG-SB-GP-29 (1'-3'), MG-SB-GP-36 (4'-6' & 12'-14'), MG-SB-GP-37 (1'-3'), MG-SB-GP-44 (2'-4'), MG-SB-GP-45 (4'-6'), MG-SB-GP-56 (2'-4' & 10'-12'), MG-SB-GP-58 (6'-8'), MG-SB-GP-67 (2'-4'), MG-SB-GP-68 (4'-6'), MG-SB-GP-76 (2'-4').
- Based on the <u>Soil Component of the Groundwater Ingestion Route (SCGIR)</u> exceedances, concentrations of these COCs exceeding the applicable SROs were modeled using default TACO RBCA equations R-26 to predict the *potential* groundwater impact corresponding to the value detected in soil. Based on the Tier 2 modeling conducted by EGSL, it has been calculated that the no COC would migrate off-site in a radial pattern originating from the sampling location. The R-26 Modeling diagram is found in **Appendix D**, Figure 16.
- The groundwater flow direction was determined to be variable from the south/southwest to south/southeast and the site-specific hydraulic conductivity was 3.08x10⁻⁴ cm/sec. Based on these results, the RS groundwater is classified as Class I groundwater as per 35 IAC 620, Subpart B. The hydraulic gradient was calculated to be 0.0009 feet/feet (ft/ft).

· Base site maps can be found in Appendix A depicted in the following figures:

- Figure 1: Site Base Map Shows a generalized site location.
- Figure 2: Boring Locations Map Shows soil boring locations.
- Figure 2A: Boring Locations Map Shows soil boring locations on new construction.
- Figure 3: Monitoring Well Locations Map Shows monitoring well locations.
- Figure 4: Soil Gas Sample Locations Map Shows soil gas sample locations.

Excavation maps can be found in **Appendix B** depicted in the following figures:

- Figure 5: Excavation Map Shows the excavation areas.
- <u>Figure 5A: Zoomed in Excavation Map</u> Shows zoomed in excavation areas completed in November 2017.
- <u>Figure 5B: Arsenic Excavation Map</u> Shows the *Arsenic* excavation areas completed on October 30, 2018.

Soil and groundwater contaminate plume maps can be found in **Appendix C** depicted in the following figures:

- <u>Figure 6: Groundwater Contaminate Levels</u> Shows benzene and iron groundwater plumes.
- <u>Figure 7: Benzene Migration to Groundwater</u> Shows benzene plumes for all samples collected above Tier 1 Migration to Groundwater Objectives and not removed by excavation.
- Figure 8: Benzene IC and Construction Worker Inhalation—Shows benzene plumes for all samples collected above Tier 1 I/C and C/W Objectives and not removed by excavation.
- Figure 9: Toluene Migration to Groundwater Shows toluene plume for all samples

- collected above Tier 1 Migration to Groundwater Objectives and not removed by excavation.
- <u>Figure 10: Total Xylenes Construction Worker Inhalation</u> Shows total xylenes plume for all samples collected above Tier 1 Construction Worker Objectives and not removed by excavation.
- <u>Figure 11: Naphthalene Construction Worker Inhalation</u> Shows naphthalene plume for all samples collected above Tier 1 Construction Worker Objectives.
- <u>Figure 12: 1,1,2,2-Tetrachloroethane Migration to Groundwater</u> Shows 1,1,2,2 Tetrachloroethance plume for all samples collected above Tier 1 Migration to Groundwater.
- Figure 13: 2-Methylnaphthalene Migration to Groundwater Shows 2-Methylnaphthalene plume for all samples collected above Tier 1 Migration to Groundwater.
- Figure 14: Arsenic Industrial/Commercial Ingestion Show arsenic plume above Tier 1 Industrial / Commercial Ingestion.
- <u>Figure 15: Mercury Construction Worker Inhalation</u> Show mercury plume above Tier 1 construction worker inhalation

R-26 modeled contaminate plume map can be found in **Appendix D, Figure 16**. Hot Spot Arsenic soil excavation locations are depicted in **Figure 17** (**Appendix E**).

For any additional details please refer to the EGSL CSIR/ROR/RAP dated August 8, 2017, the November 20, 2017 Addendum to the CSIR/ROR/RAP, the June 9, 2018 Response Letter, and the July 20, 2018 Response Letter 2.

3. CONCLUSIONS

As a part of the Remedial Action Completion Report and strategy to pursue No Further Remediation (NFR) status, the following are concluded:

Industrial/Commercial Soil Ingestion: Proposed engineered barriers in the form of a concrete building slab on-grade and foundation, asphalt/concrete pavement, or 1.5' of clean compacted clay underlain by Mirafi® 180N (spec sheet can be found in Appendix J). These engineered barriers will include those areas that exceeded the Tier 1 SROs for the Industrial/Commercial Soil Ingestion and Soil Inhalation Exposure Route as follows (Photos of the engineered barriers are presented in Appendix F):

egsl

2-2-2-2	SallBoring	Concentration	SRO			
Contaminant	(विद्याधिक कि कि विद्या	Detected (mg/kg)	(mg/Kg)			
Industrial/Commercial Soil Ingestion						
	HA-03 (2-4)	15				
	HA-05 (2-4)	31				
	MG-SB-xx:					
	GP-10 (4-6)	19				
	GP-16 (2-4)	18				
	GP-17 (1-3)	16				
	GP-20 (3-5)	15				
	GP-24 (2-4)	15				
	GP-24 (10-12)	20				
	GP-29 (1-3)	14				
Arsenic	GP-36 (4-6)	14	13			
Arsenic	GP-36 (12-14)	20	13			
	GP-37 (1-3)	22				
	GP-44 (2-4)	14				
	GP-45 (4-6)	14				
	GP-49 (2-4)	16				
	GP-56 (2-4)	16	,			
	GP-56 (10-12) GP-58 (6-8)	15				
		17				
	GP-67 (2-4)	15				
	GP-68 (4-6)	20				
	GP-76 (2-4)	14				

ft bgs = feet below ground surface mg/kg = milligrams/kilogram

Industrial/Commercial Soil Inhalation: Proposed engineered barriers in the form of a concrete building slab on-grade and foundation or asphalt/concrete pavement (potential future development). These engineered barriers will include those areas that exceeded the Tier 1 SROs for the Industrial/Commercial Soil Ingestion and Soil Inhalation Exposure Route as follows (Photos of the engineered barriers are presented in Appendix F):

<u>Gantaminant</u>	මුවේ වැඩිවෙන්ව (ල්පාර් රුදාව)	Concentration Detected (mg/Kg)	SRO (mg/Kig)				
Residential Soil Inhalation							
	B-3 (5)	11.8					
0	B-4 (4)	33.5					
Benzene	SW-2 (4)	5.98	5.4				
	SW-5 (5)	15.9	i				

ft bgs = feet below ground surface mg/kg = milligrams/kilogram

Construction Worker Ingestion and Inhalation: A safety plan should be developed to address possible worker exposure in the event that any future excavation and construction activities may occur within the contaminated soil for the COCs at the following locations:

Conteminant	ින් ලන්තු (ල්කුණු ආ දේශ	Concentration Detected (mg/Kg)	SRO (mg/Rg)
	Construction Worker	Inhalation	
	B-3 (5)	11.8	
Benzene	B-4 (4)	33.5	6.3
	SW-5 (5)	15.9	
Total Xylenes	P-4 (1.5)	33.8	32.4
	B-1 (8)	2	
Alambah alama	B-2 (9)	1.9	1 .
Naphthalene	B-4 (4)	33.5	1.8
	SW-2 (4)	2	

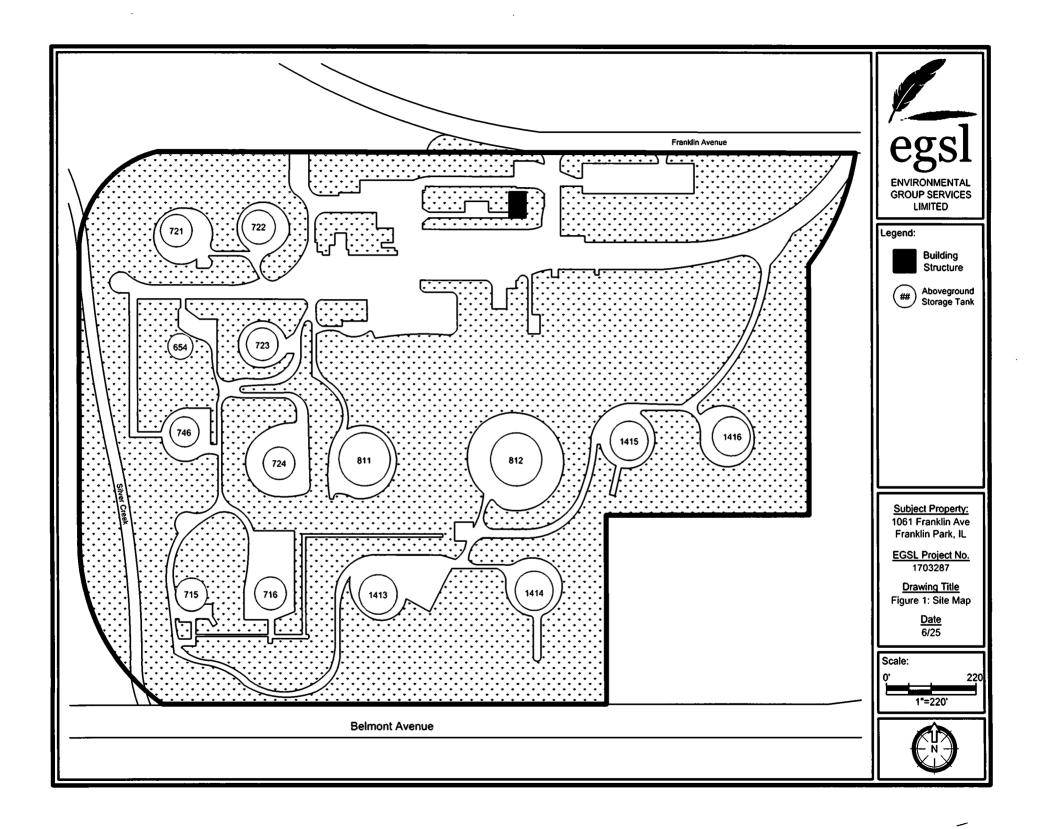
ft bgs = feet below ground surface

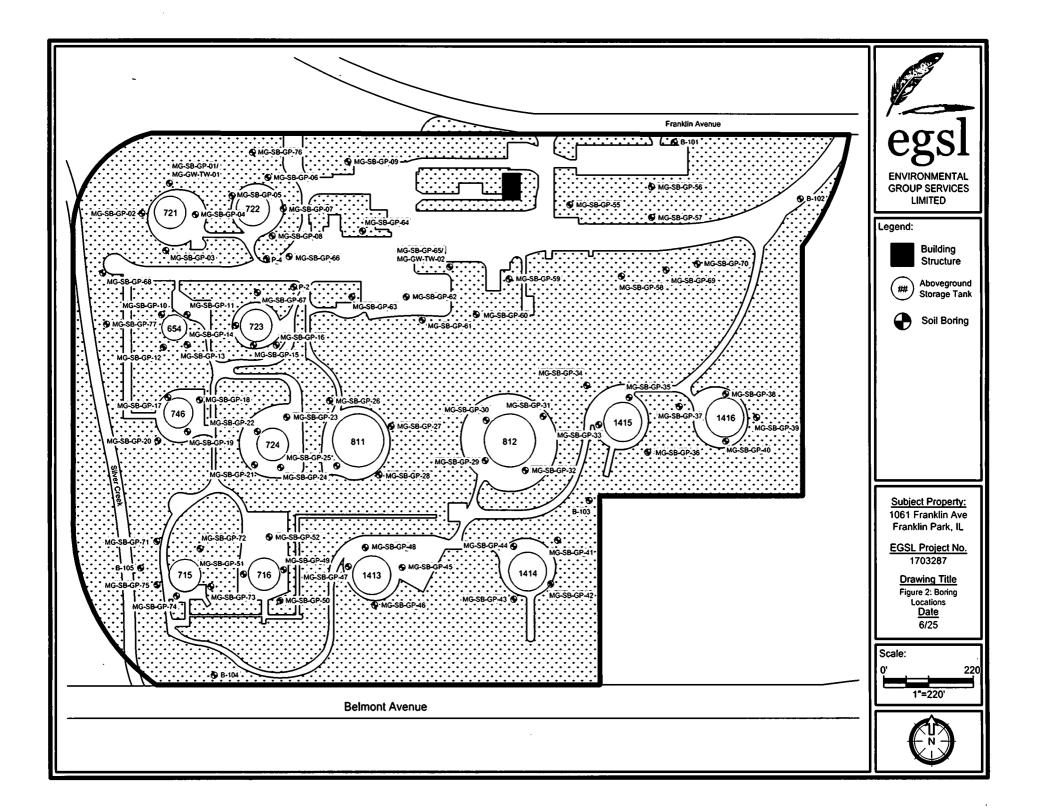
mg/kg = milligrams/kilogram

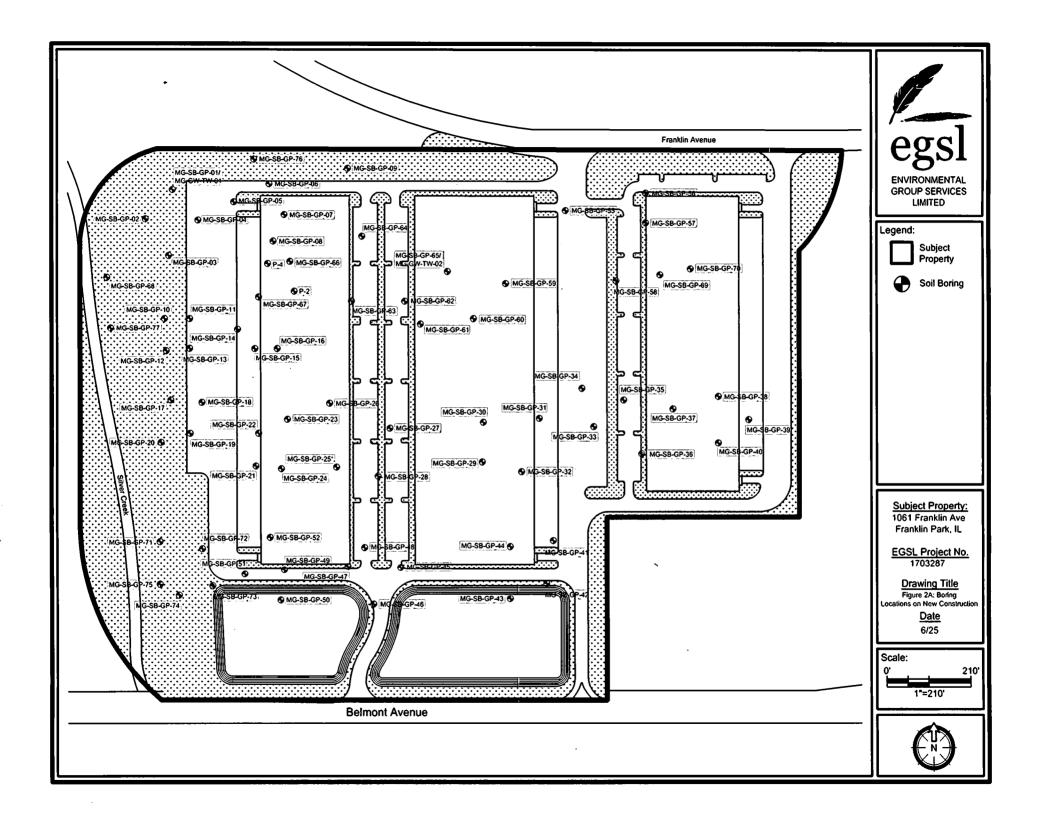
Any excavation within the contaminated soil will require implementation of a safety plan consistent with NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities, OSHA regulations, (particularly in 29 CFR 1920 and 1926), state, and local regulations, and other USEPA guidance. Excavated soil must be returned to the same depth from which it was excavated or properly managed or disposed in accordance with applicable state and federal regulations. The Construction Worker Caution Area location map can be found in **Appendix F, Figure 18**. Please note that this area is not part of this current NFR and will be addressed in the subsequent NFR request.

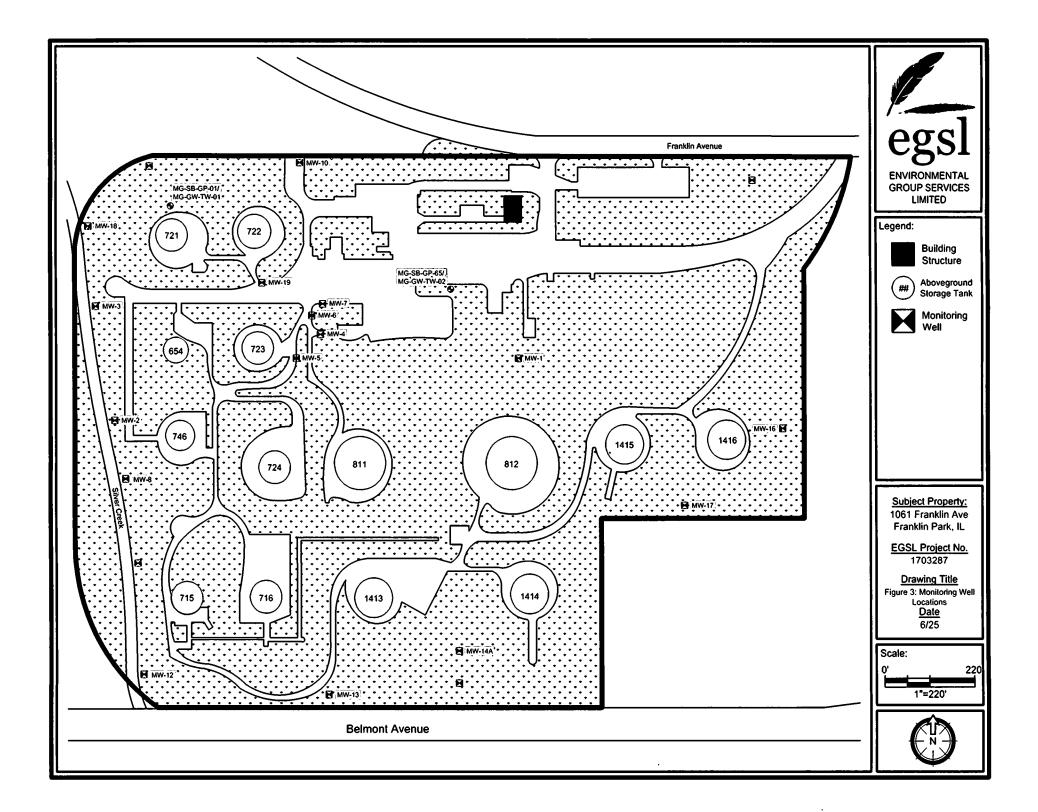
- For the COCs that exceeded the Class I SCGIR SROs and were not projected to migrate off-site, an on-site groundwater restriction prohibiting the use of groundwater for potable purposes must be implemented.
- In addition, an institutional control in the form of a recorded IEPA NFR letter filed by the property/remediation site owner with the local county recorder's office will remain in force for the Site in perpetuity or until such time as the contaminants of concern have been remediated to below IEPA TACO Tier 2 Industrial/Commercial Remediation Objectives.

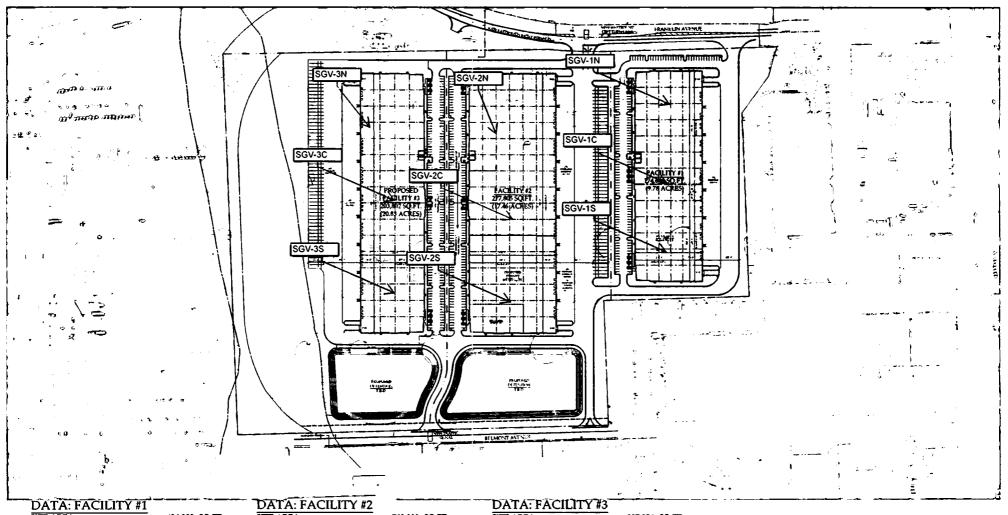
4. APPENDICIES


The appendices of this RACR include the following:

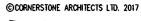

- A) Site Base Maps
- B) Excavation Maps
- C) Contaminate Plume Maps
- D) R-26 Modeling Map
- E) Arsenic Excavation Documentation
- F) Institutional Controls Documentation
- G) Final Site Base Map, PIN, and Legal Descriptions
- H) Landscaping TCL Analytical Data
- I) IEPA January 18, 2019 Comment Letter and Requested Maps
- J) Mirafi® 180N Spec Sheet




APPENDIX A - Site Base Map



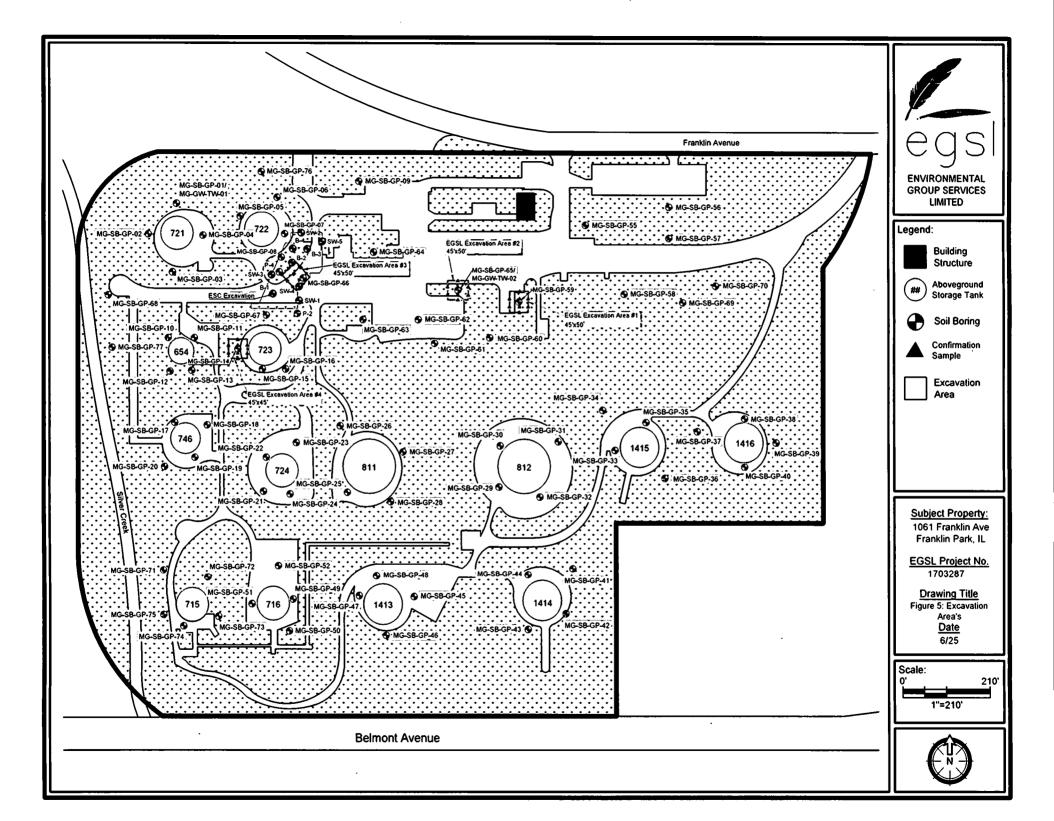
A	
DATA: FACILITY #1	D
SITE AREA: 426,389 SQ.FT. 9.78 ACRES	Sr
BUILDING AREA (GROSS): — 174,646 SQ. FT. EXTERIOR DOCKS: — 27 DOCKS FUTURE DOCKS: — 18 DOCKS DRIVE-IN-DOORS: — 2 DOORS TRAILER POSITIONS: — 0 POSITIONS CAR PARKING: — 163 CARS	В
CLEAR HEIGHT: 32 FEET F.A.R.: 41 SITE PLAN: 0 50 100 200 FEET	CL F.

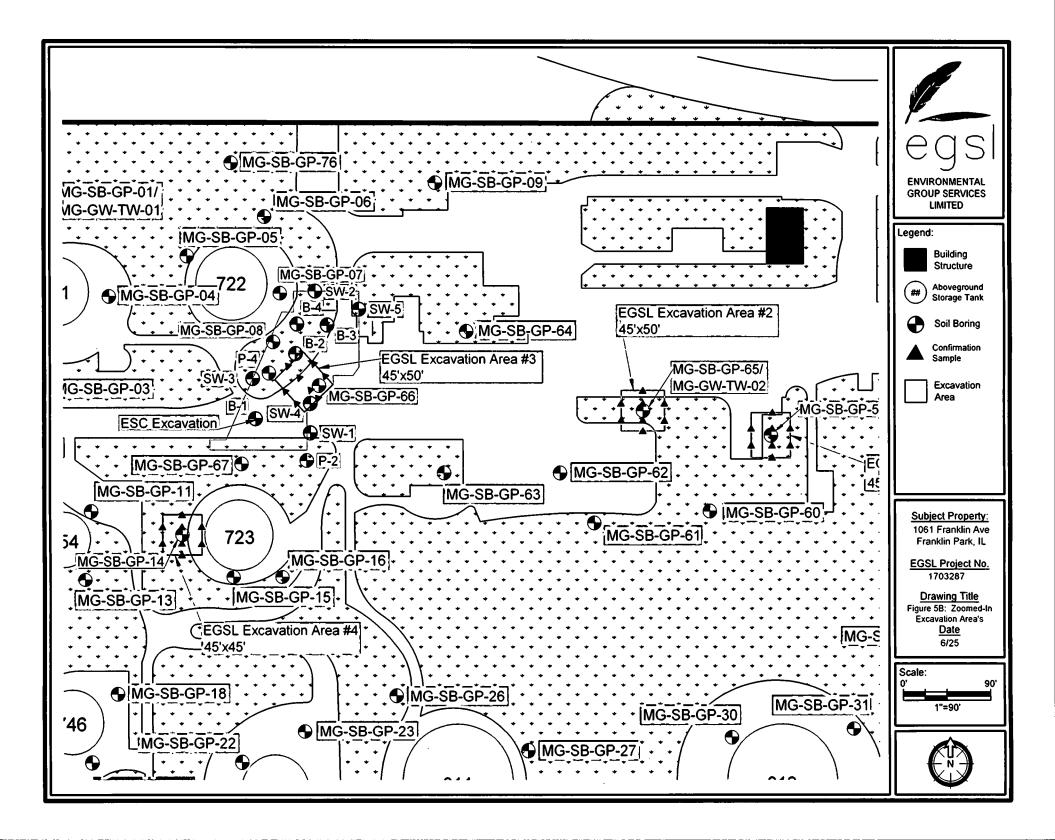

DATA: FACILITY #2		
SITE AREA:	760,000	SQ.FT. ACRES
BUILDING AREA (GROSS): ——— EXTERIOR DOCKS:———	- 277,805	SQ.FT.
FUTURE DOCKS:	— 43 — 16	
DRIVE-IN-DOORS-	2	DOORS
TRAILER POSITIONS:	60	POSITIONS
CAR PARKING:	—— 176	CARS
CLEAR HEIGHT:	32	FEET
F.A.R.: —		.37

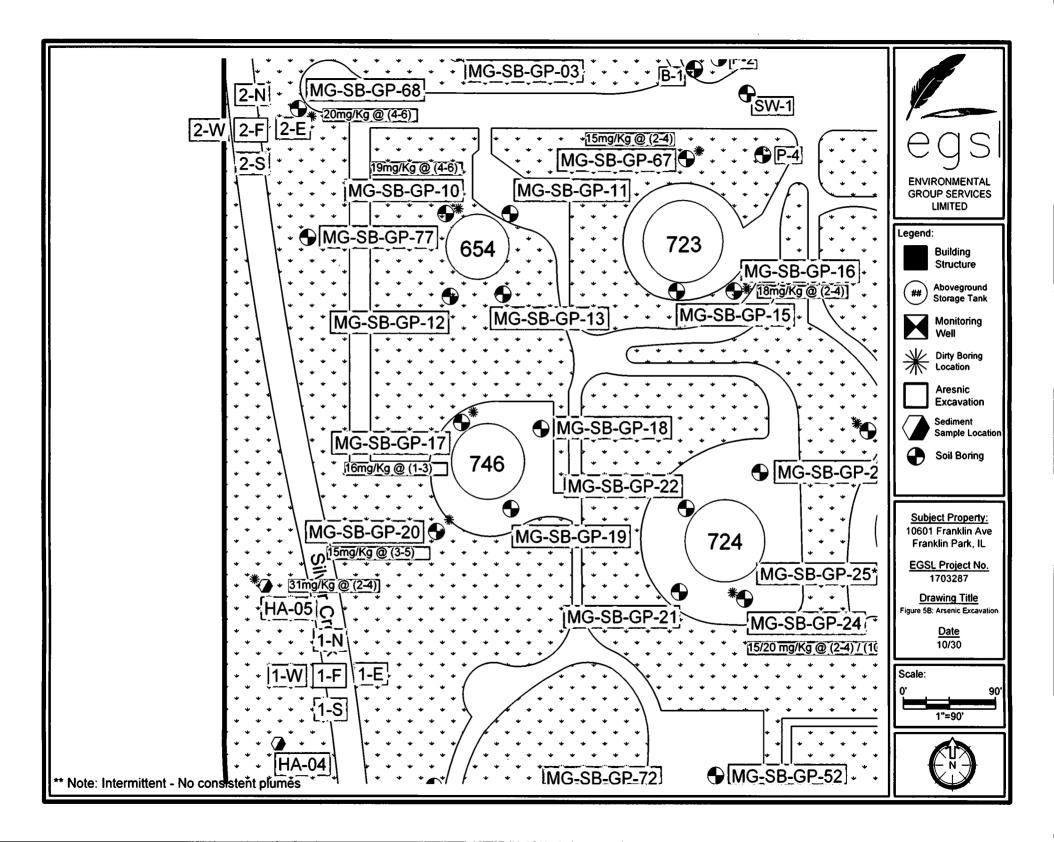
	<u>••</u>	
DATA: FACILITY#3		
SITE AREA:		SQ.FT. ACRES
EXTERIOR DOCKS:—	- 203,802 - 43	SO.FT. DOCKS DOCKS
FUTURE DOCKS: ————————————————————————————————————	2 60	DOORS POSITIONS
CAR PARKING:	176	CARS
CLEAR HEIGHT: ————————————————————————————————————	32	FEET 29

PROPOSED FACILITIES

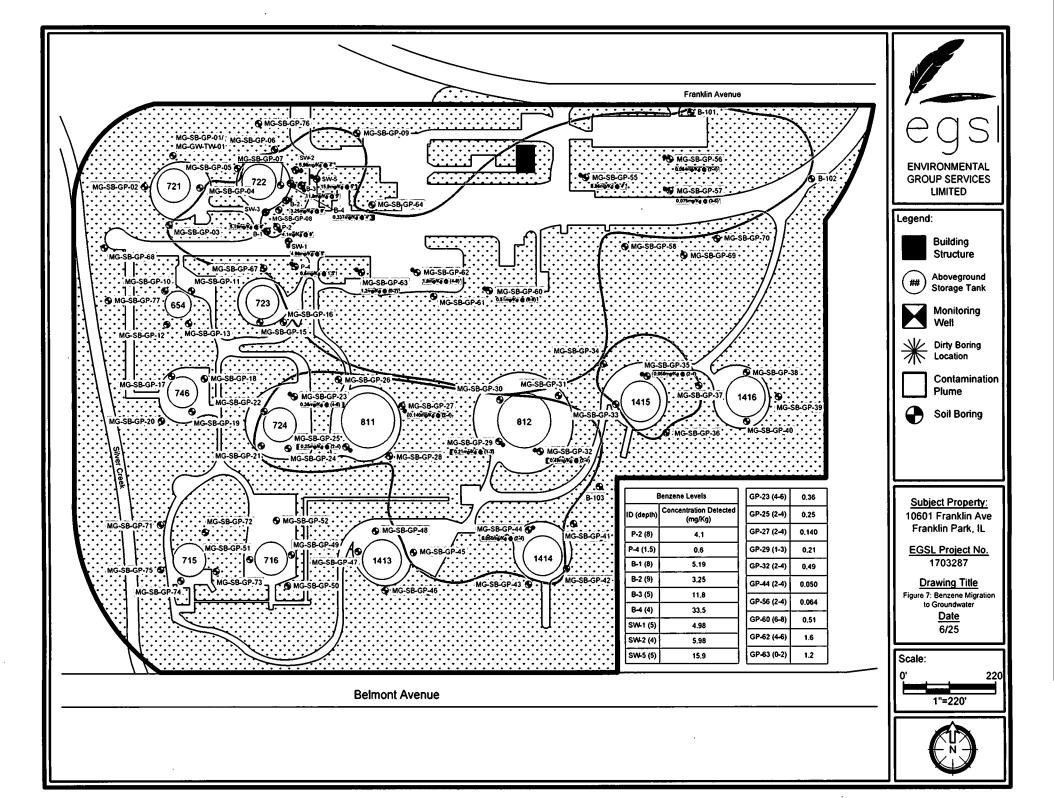
10601 FRANKLIN AVENUE, FRANKLIN PARK, ILLINOIS

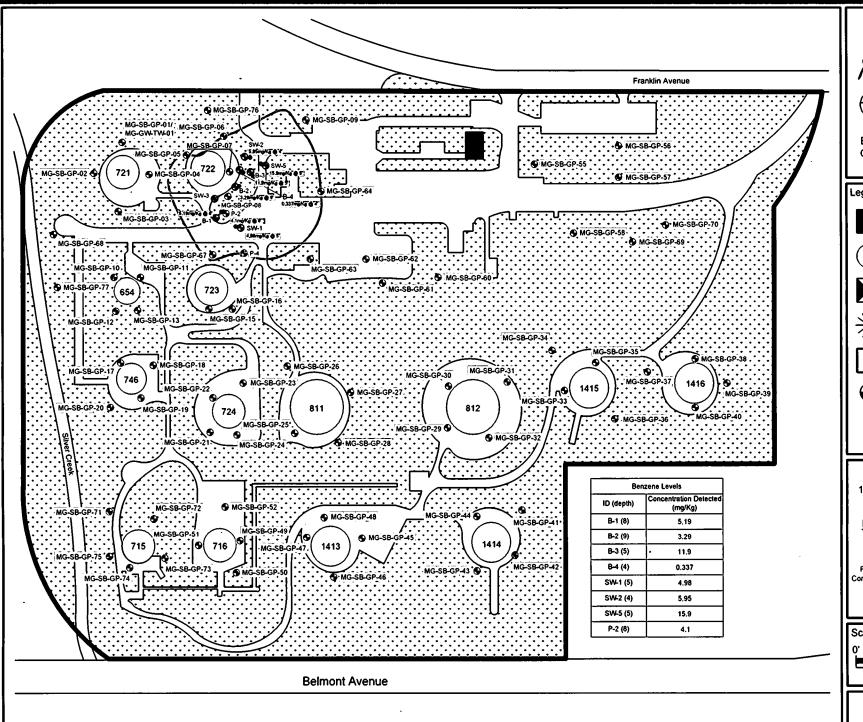

NOVEMBER 3, 2017 #17286





APPENDIX B – Excavation Maps





APPENDIX C – Contaminant Plume Maps

Legend:

Building Structure

LIMITED

Aboveground Storage Tank

Monitoring Well

L Dirty Boring Location

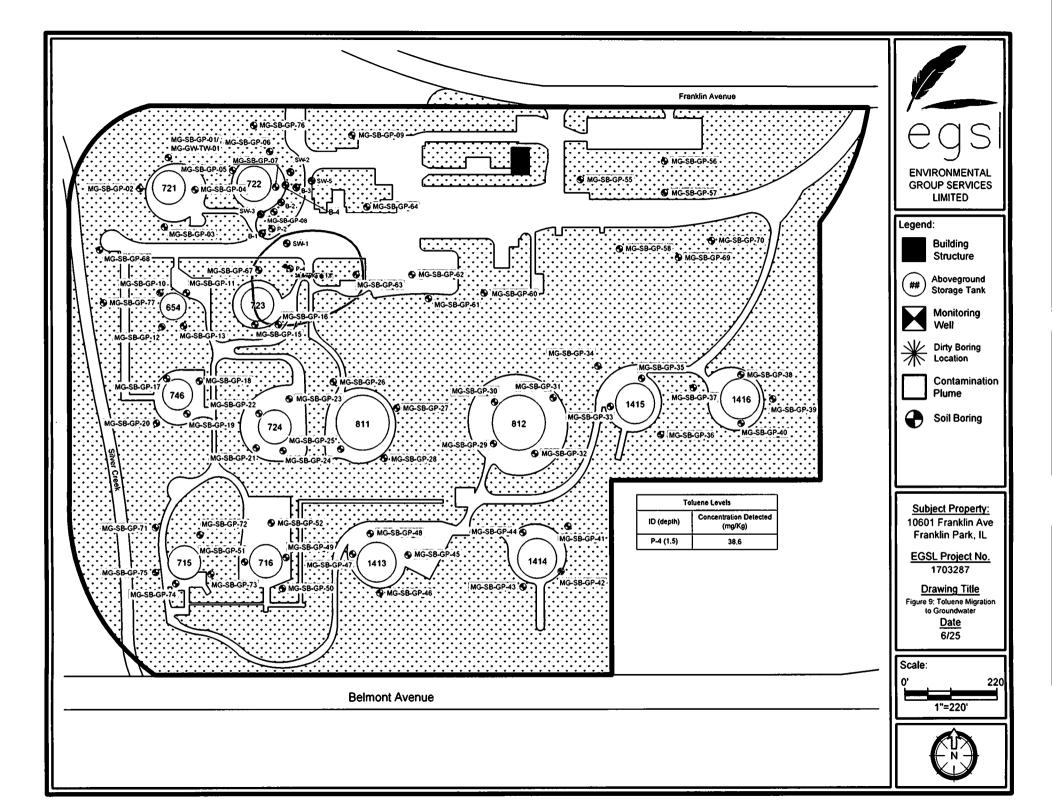
Contamination Plume

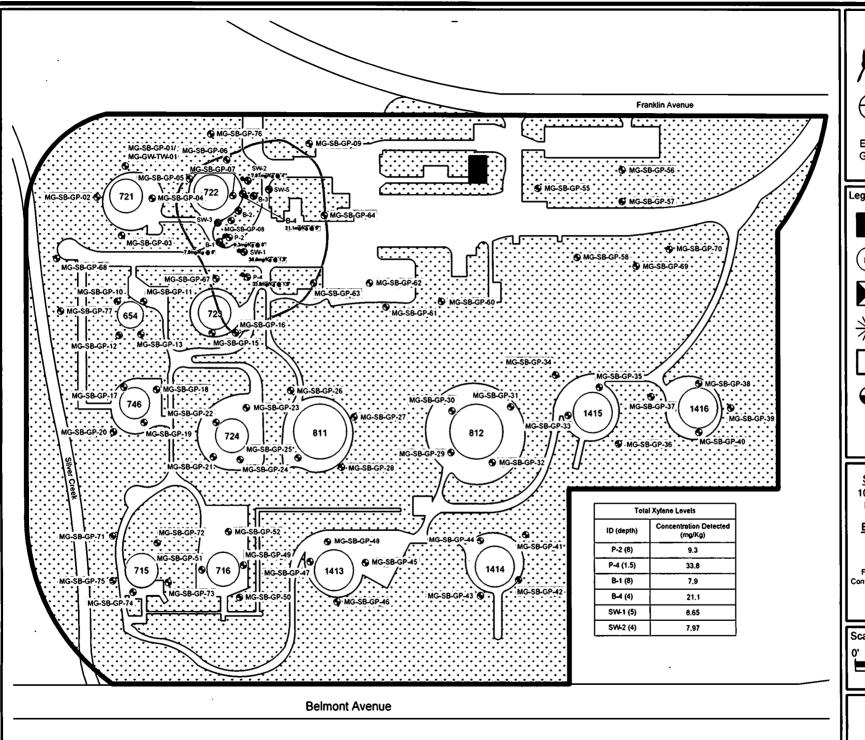
Soil Boring

Subject Property:

10601 Franklin Ave Franklin Park, IL

EGSL Project No. 1703287


Drawing Title


Figure 8: Benzene IC and Construction Worker Inhalation Date

Building Structure

Aboveground Storage Tank

Monitoring Well

Dirty Boring Location

Contamination Plume

Soil Boring

Subject Property: 10601 Franklin Ave Franklin Park, IL

EGSL Project No. 1703287

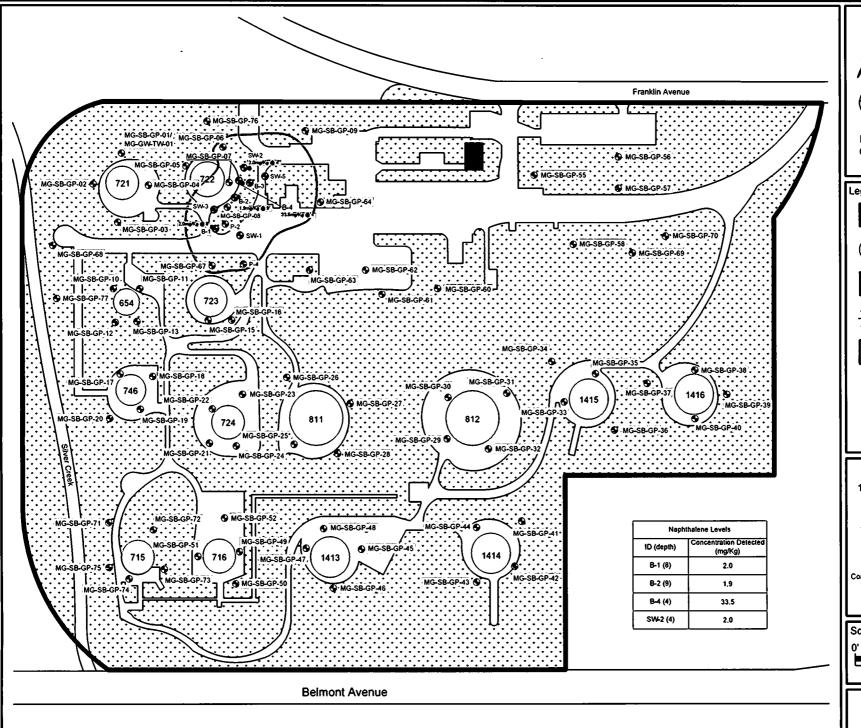

Drawing Title

Figure 10: Total Xylenes Construction Worker Inhalation Date

LIMITED

Legend:

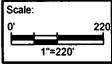
Building Structure

Aboveground Storage Tank

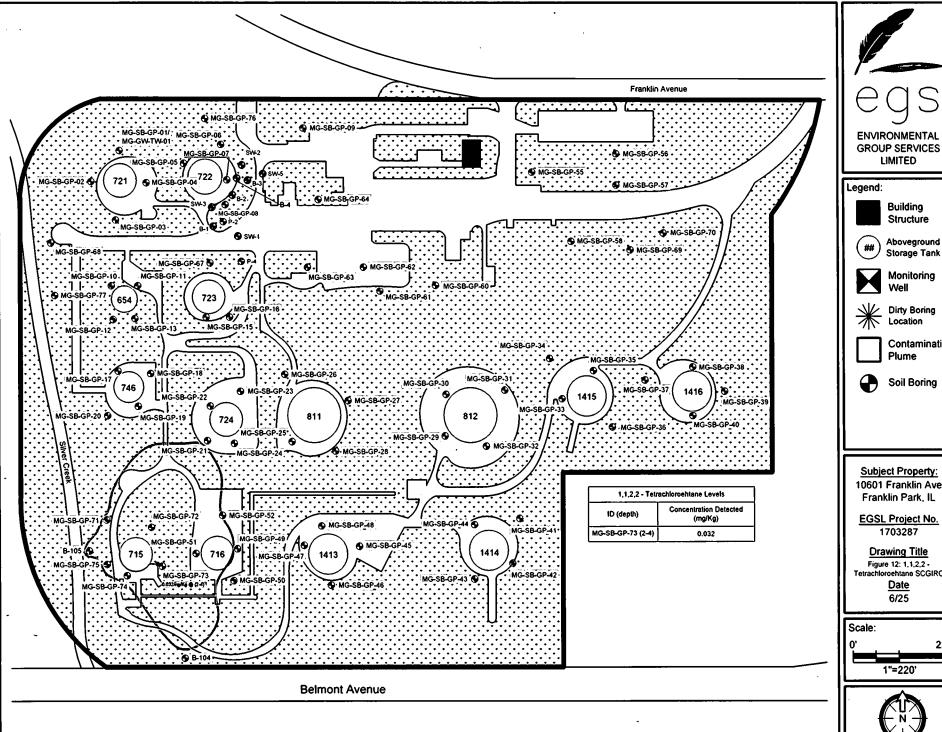
Monitoring Well

Dirty Boring Location

Contamination Plume


Soil Boring

Subject Property: 10601 Franklin Ave Franklin Park, IL


EGSL Project No. 1703287

Drawing Title

Figure 11: Naphthalene Construction Worker Inhalation Date

Building Structure

Aboveground Storage Tank

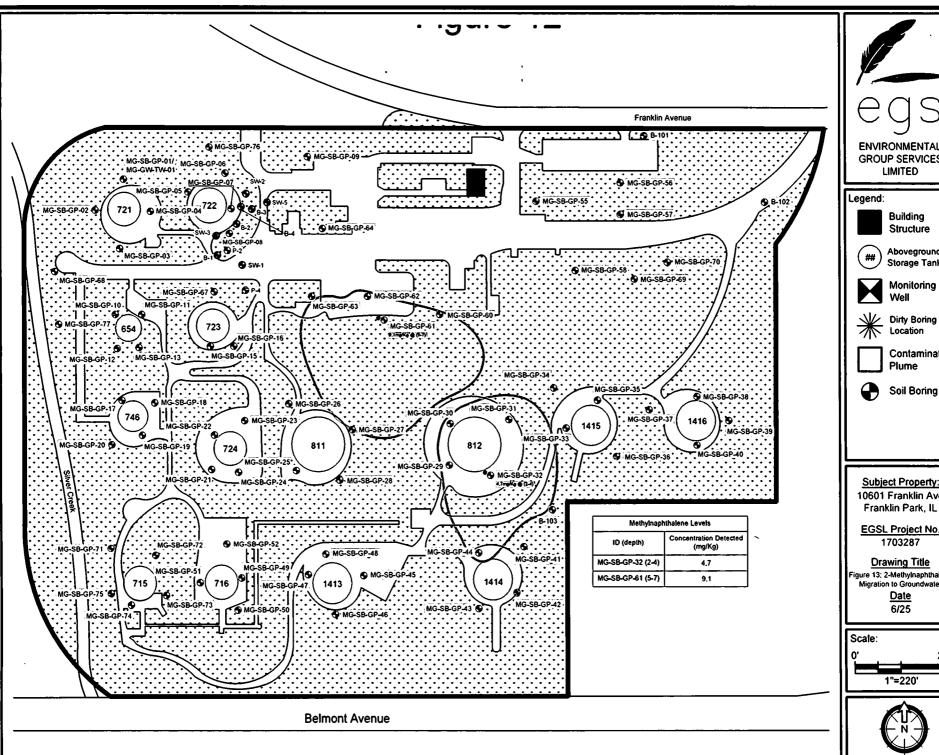
Monitoring Well

Dirty Boring Location

Plume

Soil Boring

Subject Property: 10601 Franklin Ave Franklin Park, IL


EGSL Project No. 1703287

Drawing Title

Figure 12: 1,1,2,2 -Tetrachloroehtane SCGIRO Date

LIMITED

Building Structure

Aboveground Storage Tank

Monitoring Well

Dirty Boring Location

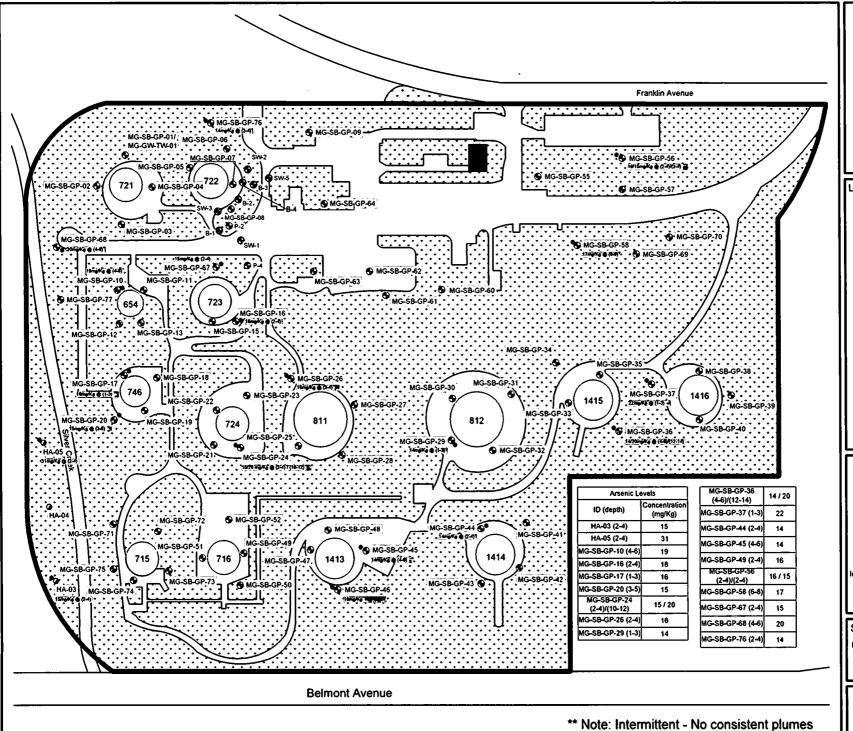
Contamination Plume

Soil Boring

Subject Property: 10601 Franklin Ave

EGSL Project No. 1703287

Drawing Title


Figure 13: 2-Methylnaphthalene Migration to Groundwater

<u>Date</u> 6/25

1"=220"

LIMITED

Legend:

Building Structure

Aboveground Storage Tank

Monitoring Well

Dirty Boring Location

Contamination Plume

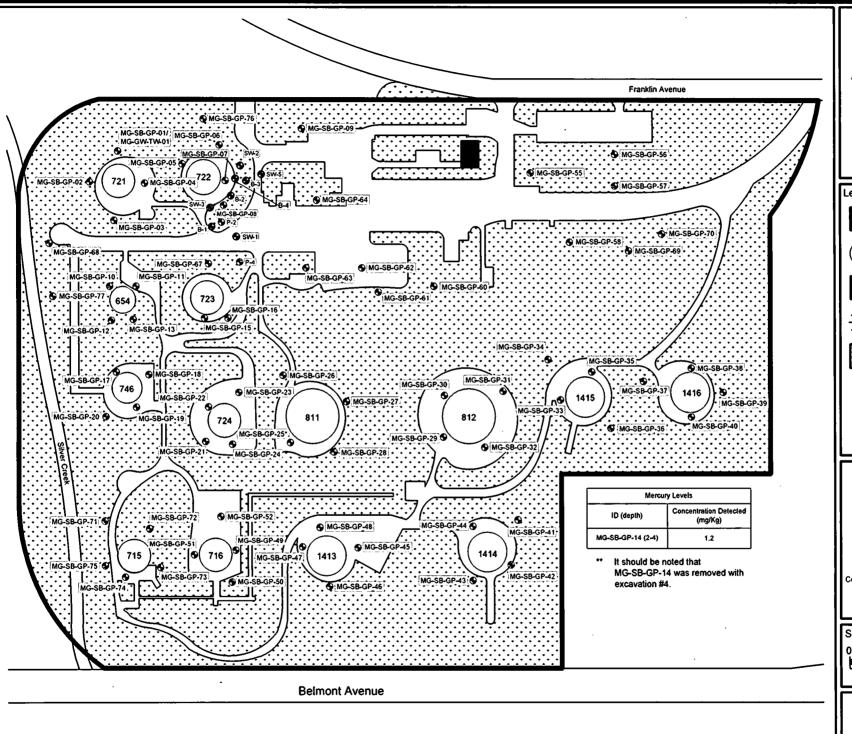
Sediment Sample Location

Soil Boring

Subject Property: 10601 Franklin Ave Franklin Park, IL

EGSL Project No. 1703287

Drawing Title


Figure 14: Arsenic Industrial/Commerical Ingestion <u>Date</u>

6/25

1"=220"

ENVIRONMENTAL GROUP SERVICES LIMITED

Legend:

Building Structure

Aboveground Storage Tank

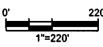
Monitoring Well

Dirty Boring Location

Contamination Plume

Soil Boring

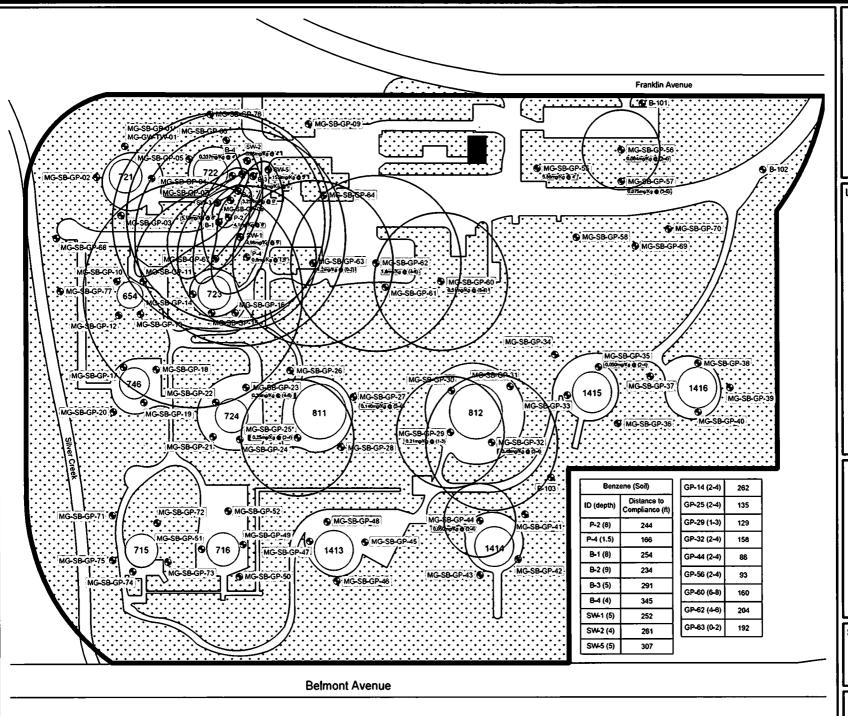
Subject Property: 10601 Franklin Ave Franklin Park, IL


EGSL Project No. 1703287

Drawing Title

Figure 15: Mercury Construction Worker Inhalation

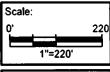
> Date 6/25


Scale:

APPENDIX D - R-26 Modeling Map

Legend:

Soil Boring


Benzene Compliance Distance

Subject Property: 10601 Franklin Ave Franklin Park, IL

EGSL Project No. 1703287

Drawing Title

Figure 16: Soil to Class I Groundwater Modeling Date 6/25

APPENDIX E – Arsenic Excavation Documentation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

November 09, 2018

Environmental Group Services, Ltd.

557 W. Polk

Chicago, IL 60610

Telephone: (312) 447-1200 Fax: (312) 447-0922

Analytical Report for STAT Work Order: 18101083 Revision 1

RE: Franklin Park - Arsenic Conf.

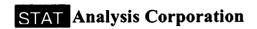
Dear Bill Lennon:

STAT Analysis received 10 samples for the referenced project on 10/31/2018 1:57:00 PM. The analytical results are presented in the following report.

This report is revised to reflect changes made after the last report revision.

All analyses were performed in accordance with the requirements of 3.5 IAC part 186 / NELAP standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.


Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Justice/Kwateng

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entitles named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: November 09, 2018

Client: Environmental Group Services, Ltd.

Project: Franklin Park - Arsenic Conf.

Work Order: 18101083 Revision 1

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
18101083-001A	1-N		10/30/2018 12:00:00 PM	10/31/2018
18101083-002A	1-E		10/30/2018 12:10:00 PM	10/31/2018
18101083-003A	1-S		10/30/2018 12:20:00 PM	10/31/2018
18101083-004A	1-W		10/30/2018 12:30:00 PM	10/31/2018
18101083-005A	1-F		10/30/2018 12:40:00 PM	10/31/2018
18101083-006A	2-N		10/30/2018 12:50:00 PM	10/31/2018
18101083-007A	2-E		10/30/2018 1:00:00 PM	10/31/2018
18101083-008A	2-S		10/30/2018 1:10:00 PM	10/31/2018
18101083-009A	2-W		10/30/2018 1:20:00 PM	10/31/2018
18101083-010A	2-F		10/30/2018 1:30:00 PM	10/31/2018

Date: November 09, 2018

CLIENT:

Environmental Group Services, Ltd.

Project:

Franklin Park - Arsenic Conf.

Work Order:

18101083 Revision 1

CASE NARRATIVE

At the customers request, sample 2-N (18101083-006) was re-digested and analyzed for total Arsenic. The results of the re-analysis are presented in this report.

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: Date Printed:	November 09, 2018 November 09, 2018	ANALYTICAL RESULTS
Client: Project:	Environmental Group Serv Franklin Park - Arsenic Co	
Lab ID: Client Sample ID Analyses	18101083-001 1-N	Collection Date: 10/30/2018 12:00:00 PM Matrix: Soil Result RL Qualifier Units DF Date Analyzed
Metals by ICP/MS Arsenic	,	SW6020A (SW3050B) Prep Date: 11/6/2018 Analyst: JG 8.3 1.1 mg/Kg-dry 10 11/6/2018
Percent Moisture Percent Moisture		D2974 Prep Date: 11/2/2018 Analyst: RW 19.7 0.2 * wt% 1 11/3/2018
Lab ID: Client Sample ID Analyses	18101083-002 1-E	Collection Date: 10/30/2018 12:10:00 PM Matrix: Soil Result RL Qualifier Units DF Date Analyzed
Metals by ICP/MS Arsenic		SW6020A (SW3050B) Prep Date: 11/6/2018 Analyst: JG 6.6 1.1 mg/Kg-dry 10 11/6/2018
Percent Moisture Percent Moisture		D2974 Prep Date: 11/2/2018 Analyst: RW 19.5 0.2 * wt% 1 11/3/2018
Lab ID: Client Sample ID Analyses	18101083-003 1-S	Collection Date: 10/30/2018 12:20:00 PM Matrix: Soil Result RL Qualifier Units DF Date Analyzed
Metals by ICP/MS Arsenic		SW6020A (SW3050B) Prep Date: 11/6/2018 Analyst: JG 10 1.1 mg/Kg-dry 10 11/7/2018
Percent Moisture Percent Moisture		D2974 Prep Date: 11/2/2018 Analyst: RW 19.8 0.2 * wt% 1 11/3/2018
Lab ID: Client Sample ID Analyses	18101083-004 1-W	Collection Date: 10/30/2018 12:30:00 PM Matrix: Soil Result RL Qualifier Units DF Date Analyzed
Metals by ICP/MS Arsenic		SW6020A (SW3050B) Prep Date: 11/6/2018 Analyst: JG 10 1.1 mg/Kg-dry 10 11/7/2018
Percent Moisture Percent Moisture		D2974 Prep Date: 11/2/2018 Analyst: RW 19.8 0.2 * wt% 1 11/3/2018

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: Date Printed:	November 09, 2018 November 09, 2018				ANAI	YTICAL	RESULT
							
Client:	Environmental Group Se	-		,	Work Order:	18101083	Revision 1
Project:	Franklin Park - Arsenic (oni.			WORK Order:	10101003	Kevisioli 1
Lab ID:	18101083-005			Col	lection Date:		2:40:00 PM
Client Sample ID	1-F				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF :	Date Analyzed
Metals by ICP/MS Arsenic		SW6020 A	(SV	•	Prep Da mg/Kg-dry	ate: 11/6/2018 10	Analyst: JG 11/7/2018
Percent Moisture Percent Moisture		D2974 19.0	0.2	•	Prep Da wt%	ate: 11/2/2018 1	Analyst: RV 11/3/2018
Lab ID:	18101083-006			Col	lection Date:	10/30/2018 1	2:50:00 PM
Client Sample ID	2-N				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A	(SW	/3050B)	Prep Di mg/Kg-dry	ate: 11/7/2018 10	Analyst: JG 11/8/2018
Percent Moisture Percent Moisture		D2974 19.4	0.2	•	Prep Down	ate: 11/2/2018 1	Analyst: RV 11/3/2018
Lab ID:	18101083-007	······································		Col	lection Date:	10/30/2018 1	:00:00 PM
Client Sample ID	2-E				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A	(SW	/3050B)	Prep D mg/Kg-dry	ate: 11/6/2018 10	Analyst: JG 11/7/2018
Percent Moisture Percent Moisture		D2974 19.6	0.2	•	Prep D wt%	ate: 11/2/2018 1	Analyst: RV 11/3/2018
Lab ID:	18101083-008			Col	lection Date:	10/30/2018 1	:10:00 PM
Client Sample ID	2-S				Matrix:	Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020 A	(SW	/3050B)	Prep D mg/Kg-dry	ate: 11/6/2018 10	Analyst: JG 11/7/2018
		D2974			Prep D	ate: 11/2/2018	Analyst: RV

ND - Not Detected at the Reporting Limit Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: Date Printed:	November 09, 2018 November 09, 2018				ANA	LYTICAI	L RESULTS
Client:	Environmental Group Serv	rices, Ltd.					
Project:	Franklin Park - Arsenic Co	nf.		,	Work Orde	r: 18101083 ·	Revision 1
Lab ID:	18101083-009	· -		Col	lection Dat	e: 10/30/2018	1:20:00 PM
Client Sample ID	2-W				Matri	x: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A	(SW	/3050B)	Prep mg/Kg-dry	Date: 11/5/201 8 10	8 Analyst: JG 11/6/2018
Percent Moisture Percent Moisture		D2974 19.4	0.2	٠	Prep wt%	Date: 11/2/201 8 1	8 Analyst: RW 11/3/2018 ·
Lab ID:	18101083-010		-	Col	llection Dat	e: 10/30/2018	1:30:00 PM
Client Sample ID	2-F				Matri	x: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic €		SW6020A 4.1	(SW	/3050B)	Prep mg/Kg-dry	Date: 11/5/201 0 10	8 Analyst: JG 11/6/2018
Percent Moisture		D2974			Prep	Date: 11/2/2018	8 Analyst: RW

0.2

20.4

Qualifiers:

Percent Moisture

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

11/3/2018

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

wt%

Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386

e-mail address: STATinfo@STATAnalysis.com

Project Number: Client Tracking No.:										₽.(). No.:			1							Pag		of	
	- 40	16.		Clien	t Trac	king	No.:			 _				1		/	$\overline{}$	7	7	77	77	77	77	
Project Name: FRANKLIN PARK - ARJENIC CONF. Project Location:								Qu	ote No	:			,	//	//	/	/	//		//	///	/ \		
Sampler(s):										L					/,	//	//	/		//	///	//	///	/
Report To: Bill (EA). Com			Di							1				-/	/	//	//	/	/	//	///	//,	//	i
			Phone:							1			/	//	/	//	//	//	/	//	///	//,	/	I
QC Level: 1 2 3	1		Fax:										//	//	/	//	//	/	/	//			Tum Ard	and:
	1		e-mail:	-	_	-	_			ĺ	1	216	//	//	/	//	//	/	/	//	// /	<u>/ S7</u>	$\mathcal{D}_{\mathcal{L}}$	
Client Sample Number/Description:	Date T	aken	Time Taken	Matrix	Comp.	gag Pag	Preserv.	No.					//	//	/	//	//	//	//	//	//`	<u></u>	Results Nee	rded:
1-N	10/3				<u>°</u>	6	£	Conta	iners			//	//	//		//	//	/	/	//				n/pm
1-E	1///	<u> </u>	1200	5	+-	X				×		\perp			7	-	/ 1	\leftarrow	4		Rema	rks		
1-5	1-1		1910 1920	-+	+	\vdash	Щ.			4		$oldsymbol{\mathbb{L}}$				1	†	ᅱ	-+				Land Control	
1-ω			1230	 	+-	H	-			Н-	$\vdash \downarrow$	4	L				1-1	7	\neg	 			477	
1-F			1240	- 	+-	Н				Н-	$\vdash \downarrow$	4_	_					寸	\dashv	+				
2-N			1250		╁╾	Н				Η.	$\vdash \vdash$	1	_					\neg	_	_			្រ្តទំប Dangerong	
J-F			1300	-	+	Н				Щ.	—							_	\neg	+				a d
<u> </u>			1310	+	+-	+-		}		Ц.,		<u> </u>	_			T		7	7	+-			Table Table	11/2
J-W			1320		+-	H				4	-							7	_	1-			100 mm	
a-F	Γ 1		/330	→	┼	\forall	-		$\overline{}$		<u>-</u>		↓						_	_				
					1	7			-	Y		+-	<u> </u>							†			in the second	
									-	-		┿	 	-										
	<u> </u>									-		┽—	-	\vdash										
	╀						_		\dashv	_		+-		\vdash				\perp					ALC:	
	 						\neg		\neg	\neg		+-			-	4								
	 -						\neg		7		-	+-	┞─┤	-			-	_					17 T	
	├	\dashv								\neg	_	┿	\vdash		- -			4	4					
	├				\vdash							T	t	-+	+	+-	╀	+	- -					
	├				\sqcup	_						1	\vdash	-+		+-	┝╌┼	+						
delinquished by: (Signature)												1	М	+	╁	+-	┝╼┼	+	+	+				32.61
deceived by: (Signature)				Date/	Time:	10/	1/1	3 12	YY .	Com	nents:									ļ.,			712	
delinquished by: (Signature)	4			Date/	Time:	10	الكا	18	13	. س	7					18	101	0	33	Section.	1.17	Section 1	Year	
eceived by: (Signature)				Date/	Time:			10	***	د،	1													ŕ
elinquished by: (Signature)				Date/	lime:				\neg											Mark	i eft. Castena i			
				Date/	lime:				7	Da										, D.	The partie	7		
Date/Ti-							Preservation Code: A = None B = HNO ₃ C = NaOH D = H ₂ SO ₄ E = HCl F = 5035/EnCore G = Other																	

Sample Receipt Checklist

Client Name EGSL		Date and Tim	e Received:	10/31/2018 1:57:00 PM
Work Order Number 18101083		Received by:	EAA	
Checklist completed by: 40 / Signature Date	131/18	Reviewed by:	A. J.	///ot// Ø
Matrix: Carrier name	Client Delivered			
Shipping container/cooler in good condition?	Yes 🗹	No 🗆	Not Present	
Custody seals intact on shippping container/cooler?	Yes 🗌	No 🗌	Not Present	
Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗆		
Chain of custody agrees with sample labels/containers?	Yes 🗹	No 🗆		
Samples in proper container/bottle?	Yes 🗹	No 🗆		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗆		
All samples received within holding time?	Yes 🗹	No 🗆		
Container or Temp Blank temperature in compliance?	Yes 🗹	No 🗆	Temperatur	e 4.8 °C
Water - VOA vials have zero headspace? No VOA vials subm	nitted 🛍	Yes 🖪	No 🖭	
Water - Samples pH checked?	Yes 🖺	No 🕮	Checked by:	
Water - Samples properly preserved?	Yes 🕮	No 🚇	pH Adjusted?	i i
Any No response must be detailed in the comments section below.	=====			
Comments:		·		
	·	·		
Client / Person Date contacted:	:	Contac	cted by:	
Response:				

Justice Kwateng

From: Bill Lennon [Bill@egsl.com]

Sent: Wednesday, November 07, 2018 3:04 PM

To: Justice Kwateng; Mary Cappellini

Subject: RE: Franklin Park - Arsenic Conf. STAT 18101083

Thank you, please re-run Sample 2-N, standard TAT

Bill Lennon
EGSL
557 West Polk Street Suite
201
Chicago, IL 60607
t. 312.447.1200 x315
f. 312.447.0922
bill@egsl.com
www.egsl.com

From: Justice Kwateng < JKwateng@STATAnalysis.com>

Sent: Wednesday, November 7, 2018 3:02 PM

To: Bill Lennon <Bill@egsl.com>; Mary Cappellini <Mary@egsl.com>

Subject: Franklin Park - Arsenic Conf. STAT 18101083

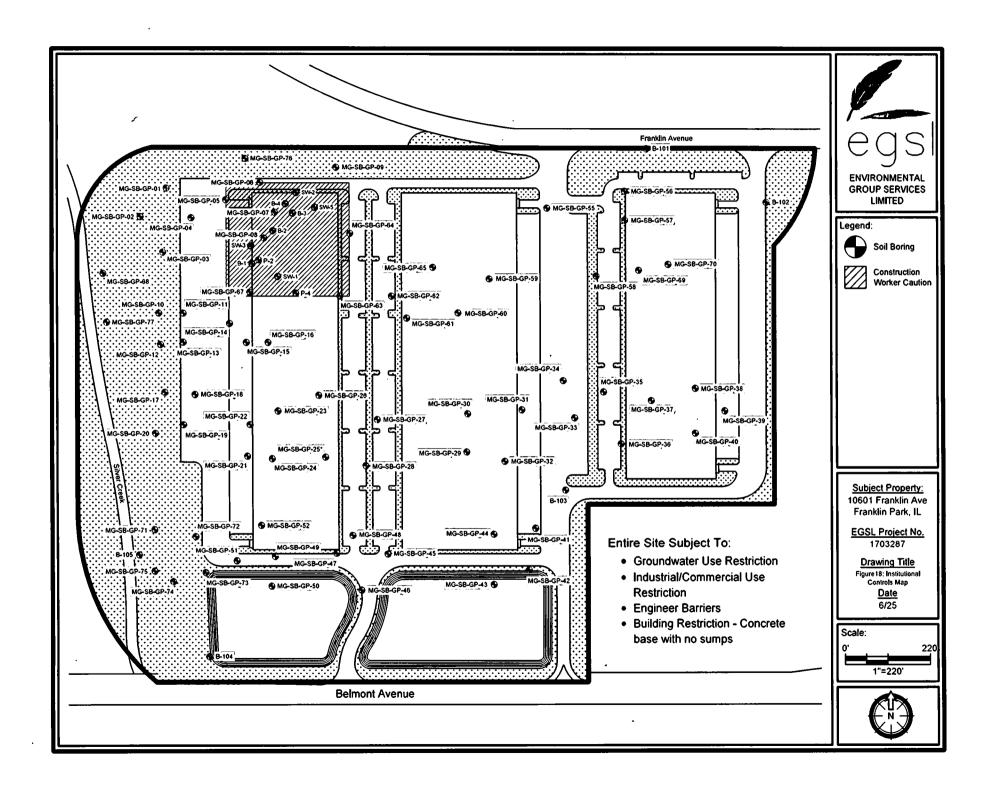
Please find the attached report and invoice for your Franklin Park - Arsenic Conf. project. STAT 18101083

Thank you for choosing STAT for your testing needs.

In an effort to increase efficiency and conserve resources, STAT Analysis has adopted paperless reporting. The attached pdf files can be printed as the final copy. You will not receive a hardcopy in the mail.

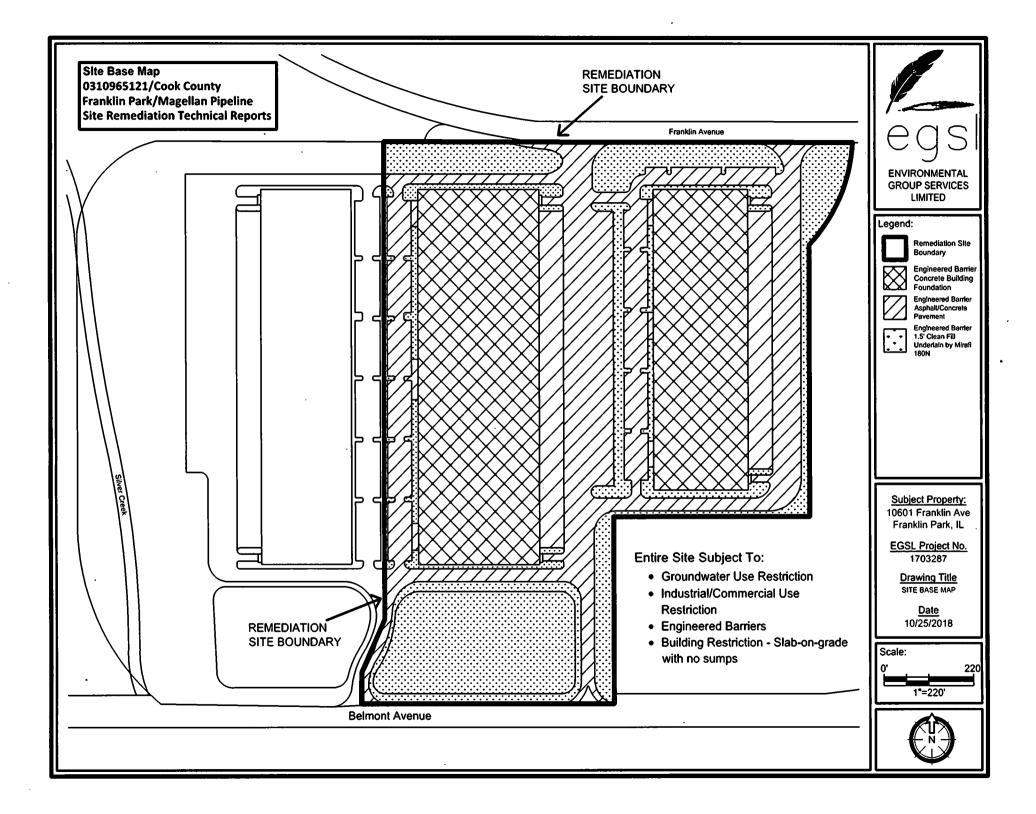
Best Regards,

Justice Kwateng STAT Analysis Corporation (312)733-0551


The information contained in this e-mail message and any attachments is confidential information intended only for the use of the individual or entities named above. If the reader of this message is not the intended recipient you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by e-mail at the originating address.

<<18101083(EGSL)Rev0.pdf>> <<18101083(EGSL)Rev0.xls>> <<18101083(EGSL)Rev0_Invoice.pdf>> <<18101083(EGSL)Rev0_TACOind.xls>> <<18101083(EGSL)Rev0_TACOres.xls>>

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.


APPENDIX F – Institutional Controls Documentation

APPENDIX G – Final Site Base Map, PIN & Legal Description

LOT 1 – BRIDGE POINT FRANKLIN PARK SUBDIVISION LEGAL DESCRIPTION

LOT 1 IN BRIDGE POINT FRANKLIN PARK SUBDIVISION, BEING A SUBDIVISION OF PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JULY 25, 2018 AS DOCUMENT 1820619201, IN COOK COUNTY, ILLINOIS.

ALSO DESCRIBED AS FOLLOWS:

THAT PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT THE NORTHWEST CORNER OF LOT 1 IN LAPHROP STAR SUBDIVISION ACCORDING TO THE PLAT THEREOF RECORDED OCTOBER 24, 1997 AS DOCUMENT 9779220 BEING ALSO A POINT ON THE SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE AS DEDICATED PER DOCUMENT 17808231; THENCE ALONG THE WESTERLY LINE OF LOT 1 AND LOT 2 IN SAID LAPHROP STAR SUBDIVISION FOR THE FOLLOWING 3 COURSES: 1) THENCE SOUTH 16 DEGREES 15 MINUTES 39 SECONDS WEST, A DISTANCE OF 105.15 FEET; 2) THENCE SOUTH 36 DEGREES 51 MINUTES 19 SECONDS WEST, A DISTANCE OF 635.66 FEET TO THE NORTH LINE OF THE SOUTH 13 ACRES OF THE SOUTHEAST QUARTER OF SAID SOUTHEAST QUARTER AS MONUMENTED AND OCCUPIED; THENCE SOUTH 88 DEGREES 27 MINUTES 38 SECONDS WEST ALONG SAID NORTH LINE, A DISTANCE OF 490.09 FEET; THENCE NORTH 00 DEGREES 00 MINUTES 07 SECONDS EAST, A DISTANCE OF 860.53 FEET TO THE SOUTH RIGHT-OF-WAY OF SAID FRANKLIN AVENUE; THENCE NORTH 88 DEGREES 29 MINUTES 01 SECONDS EAST, A DISTANCE OF 590.53 FEET TO THE POINT OF BEGINNING, IN COOK COUNTY, ILLINOIS.

CONTAINING 425,370 SQUARE FEET OR 9.765 ACRES MORE OR LESS.

The PIN for the entire site is 12-20-401-020.

LOT 2 – BRIDGE POINT FRANKLIN PARK SUBDIVISION LEGAL DESCRIPTION

LOT 2 IN BRIDGE POINT FRANKLIN PARK SUBDIVISION, BEING A SUBDIVISION OF PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JULY 25, 2018 AS DOCUMENT 1820619201, IN COOK COUNTY, ILLINOIS.

ALSO DESCRIBED AS FOLLOWS:

THAT PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHWEST CORNER OF LOT 1 IN LAPHROP STAR SUBDIVISION ACCORDING TO THE PLAT THEREOF RECORDED OCTOBER 24, 1997 AS DOCUMENT 9779220 BEING ALSO A POINT ON THE SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE AS DEDICATED PER DOCUMENT 17808231; THENCE SOUTH 88 DEGREES 29 MINUTES 01 SECONDS WEST ALONG SAID SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE, A DISTANCE OF 590.53 FEET TO THE POINT OF BEGINNING: THENCE SOUTH 00 DEGREES 00 MINUTES 07 SECONDS WEST, A DISTANCE OF 860.53 FEET TO THE NORTH LINE OF THE SOUTH 13 ACRES OF THE SOUTHEAST QUARTER OF SAID SOUTHEAST QUARTER AS MONUMENTED AND OCCUPIED; THENCE SOUTH 88 DEGREES 27 MINUTES 38 SECONDS WEST ALONG SAID NORTH LINE, A DISTANCE OF 27.35 FEET TO THE WEST LINE OF THE SOUTHEAST QUARTER OF SAID SOUTHEAST QUARTER AS MONUMENTED AND OCCUPIED; THENCE SOUTH 02 DEGREES 03 MINUTES 52 SECONDS EAST ALONG SAID WEST LINE, A DISTANCE OF 428.55 FEET TO SOUTH LINE OF SAID SOUTHEAST QUARTER BEING ALSO THE NORTH RIGHT-OF-WAY OF BELMONT AVENUE AS MONUMENTED AND OCCUPIED; THENCE SOUTH 88 DEGREES 30 MINUTES 32 SECONDS WEST ALONG SAID SOUTH LINE, A DISTANCE OF 634.11 FEET; THENCE NORTH 00 DEGREES 31 MINUTES 23 SECONDS WEST, A DISTANCE OF 45.45 FEET TO A TANGENT CURVE; THENCE NORTHERLY ALONG SAID TANGENT CURVE CONCAVE TO THE SOUTHEAST HAVING A RADIUS OF 67.50 FEET SUBTENDING A CHORD BEARING NORTH 05 DEGREES 57 MINUTES 57 SECONDS WEST, AN ARC DISTANCE OF 15.29 FEET TO A RADIAL CURVE; THENCE NORTHERLY ALONG SAID RADIAL CURVE CONCAVE TO THE SOUTHEAST HAVING A RADIUS OF 169.00 FEET SUBTENDING A CHORD BEARING NORTH 22 DEGREES 07 MINUTES 47 SECONDS EAST, AN ARC DISTANCE OF 57.07 FEET TO A POINT OF REVERSE CURVATURE: THENCE NORTHERLY ALONG SAID REVERSE CURVE CONCAVE TO THE NORTHWEST HAVING A RADIUS OF 243.00 FEET SUBTENDING A CHORD BEARING NORTH 15 DEGREES 54 MINUTES 09 SECONDS EAST, AN ARC DISTANCE OF 134.89 FEET TO A TANGENT LINE; THENCE NORTH 00 DEGREES 00 MINUTES 02 SECONDS EAST, A DISTANCE OF 1066.47 FEET; THENCE NORTH 89 DEGREES 09 MINUTES 32 SECONDS EAST, A DISTANCE OF 365.93 FEET TO SAID SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE BEING A POINT ON A CURVE; THENCE EASTERLY ALONG SAID CURVE CONCAVE TO THE NORTHEAST HAVING A RADIUS OF 1519.41 FEET SUBTENDING A CHORD BEARING SOUTH 87 DEGREES 46 MINUTES 27 SECONDS EAST, AN ARC DISTANCE OF 198.49 FEET TO A TANGENT LINE; THENCE NORTH 88 DEGREES 29 MINUTES 01 SECONDS EAST ALONG SAID TANGENT LINE BEING ALSO SAID SOUTHERLY RIGHT-OF-WAY LINE OF FRANKLIN AVENUE, A DISTANCE OF 22.67 FEET TO THE POINT OF BEGINNING, IN COOK COUNTY, ILLINOIS.

CONTAINING 761,961 SQUARE FEET OR 17.492 ACRES MORE OR LESS.

The PIN for the entire site is 12-20-401-020.

APPENDIX H – Landscaping TCL Analytical Data

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 19010565-003 19010565-004 19010565-005

Client Sample ID: A-1 A-2 A-3 A-4 A-5

Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45 01/22/2019 07:00

			loute Specific	•	ic Values for	Groundwat	_					
CACNI	Amelia	Values			oil	Exposure R			/			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	0.000				
67-64-1	Acetone	70,000	100,000		100,000	25	25	< 0.078	< 0.082	< 0.090	< 0.087	< 0.071
	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.010	< 0.011	< 0.012	< 0.012	< 0.0095
78-93-3	2-Butanone							< 0.078	< 0.082	< 0.090	< 0.087	< 0.071
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.052	< 0.054	< 0.060	< 0.058	< 0.047
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	. 1	6.5	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
75-00-3	Chloroethane							< 0.010	< 0.011	< 0.012	< 0.012	< 0.0095
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
74-87-3	Chloromethane							< 0.010	< 0.011	< 0.012	< 0.012	< 0.0095
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0020	< 0.0021	< 0.0024	< 0.0023	< 0.0019
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0020	< 0.0021	< 0.0024	< 0.0023	< 0.0019
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
591-78-6	2-Hexanone			Ï				< 0.020	< 0.021	< 0.024	< 0.023	< 0.019
108-10-1	4-Methyl-2-pentanone							< 0.020	< 0.021	< 0.024	< 0.023	< 0.019
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.010	< 0.011	< 0.012	< 0.012	< 0.0095
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0052	< 0.0054	< 0.0060	< 0.0058	< 0.0047
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.016	< 0.016	< 0.017	< 0.018	< 0.014

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-006 19010565-007 19010565-008 19010565-009 19010565-010

Client Sample ID : A-6 A-7 A-8 A-9 A-10

Date Collected: 01/22/2019 07:15 01/22/2019 07:30 01/22/2019 07:45 01/22/2019 08:00 01/22/2019 08:15

			loute Specific	Constructi Route Specif	ic Values for	Groundwat	ponent of ter Ingestion					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II					
67-64-1	Acetone	70,000	100,000		100,000	25	25	< 0.079	< 0.093	< 0.10	< 0.079	0.17
	Benzene	12	0.8	2,300	2,2	0.03	0.17	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
75-27-4	Bromodichloromethane	10	3,000	2,000	3.000	0.6	0.6	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.011	< 0.012	< 0.014	< 0.011	< 0.014
78-93-3	2-Butanone							< 0.079	< 0.093	< 0.10	< 0.079	< 0.11
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.052	< 0.062	< 0.068	< 0.053	< 0.071
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
75-00-3	Chloroethane							< 0.011	< 0.012	< 0.014	< 0.011	< 0.014
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
74-87-3	Chloromethane							< 0.011	< 0.012	< 0.014	< 0.011	< 0.014
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0022	< 0.0025	< 0.0028	< 0.0022	< 0.0028
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0022	< 0.0025	< 0.0028	< 0.0022	< 0.0028
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
591-78-6	2-Hexanone							< 0.022	< 0.025	< 0.028	< 0.022	< 0.028
108-10-1	4-Methyl-2-pentanone							< 0.022	< 0.025	< 0.028	< 0.022	< 0.028
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.011	< 0.012	< 0.014	< 0.011	< 0.014
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
127-18-4	Tetrachloroethene	12	- 11	2,400	28	0.06	0.3	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
71-55-6	1,1,1-Trichloroethane	•••	1,200		1,200	2	9.6	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0052	< 0.0062	< 0.0068	< 0.0053	< 0.0071
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.015	< 0.018	< 0.020	< 0.016	< 0.021

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-011 19010565-012 19010565-013 19010565-014 19010565-015

Client Sample ID : A-11 A-12 A-13 A-14 A-15

Date Collected: 01/22/2019 08:30 01/22/2019 08:45 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:30

		Residential R Values	•	•	on Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II					
67-64-1	Acetone	70,000	100,000		100,000	25	25	0.15	< 0.085	< 0.076	< 0.078	0.084
	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.012	< 0.011	< 0.010	< 0.011	< 0.011
78-93-3	2-Butanone							< 0.092	< 0.085	< 0.076	. < 0.078	< 0.083
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.062	< 0.058	< 0.050	< 0.052	< 0.055
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
75-00-3	Chloroethane							< 0.012	< 0.011	< 0.010	< 0.011	< 0.011
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
74-87-3	Chloromethane							< 0.012	< 0.011	< 0.010	< 0.011	< 0.011
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0024	< 0.0023	< 0.0020	< 0.0021	< 0.0022
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0024	< 0.0023	< 0.0020	< 0.0021	< 0.0022
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
591-78-6	2-Hexanone							< 0.024	< 0.023	< 0.020	< 0.021	< 0.022
108-10-1	4-Methyl-2-pentanone							< 0.024	< 0.023	< 0.020	< 0.021	< 0.022
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.012	< 0.011	< 0.010	< 0.011	< 0.011
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	. < 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0062	< 0.0058	< 0.0050	< 0.0052	< 0.0055
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.018	< 0.018	< 0.015	< 0.016	< 0.017

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-016 19010565-017 Client Sample ID: A-16 A-17

Date Collected: 01/22/2019 09:45 01/22/2019 10:00

					on Worker	Soil Com			
			loute Specific	•	ic Values for	Groundwat			
CAS No.	Amelida		for Soil Inhalation		oil Inhalation		oute Values		
	Analyte	Ingestion		Ingestion		Class I	Class II	. 0 000	10.056
67-64-1	Acetone	70,000	100,000	2.200	100,000	25	25	< 0.082	< 0.076
71-43-2	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0054	< 0.0051
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0054	< 0.0051
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0054	< 0.0051
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.011	< 0.010
78-93-3	2-Butanone							< 0.082	< 0.076
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.054	< 0.051
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0054	< 0.0051
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0054	< 0.0051
75-00-3	Chloroethane							< 0.011	< 0.010
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0054	< 0.0051
74-87-3	Chloromethane							< 0.011	< 0.010
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0054	< 0.0051
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0054	< 0.0051
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0054	< 0.0051
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0054	< 0.0051
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0054	< 0.0051
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0054	< 0.0051
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0054	< 0.0051
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0022	< 0.0020
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0022	< 0.0020
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0054	< 0.0051
591-78-6	2-Hexanone							< 0.022	< 0.020
108-10-1	4-Methyl-2-pentanone							< 0.022	< 0.020
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.011	< 0.010
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0054	< 0.0051
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0054	< 0.0051
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0054	< 0.0051
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0054	< 0.0051
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0054	< 0.0051
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0054	< 0.0051
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0054	< 0.0051
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0054	< 0.0051
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0054	< 0.0051
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.017	< 0.015

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 19010565-003 19010565-004

Client Sample ID: A-1 A-2 A-3 A-4

Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45

		1	toute Specific for Soil	Route Specif	on Worker ic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II			•	
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.040	< 0.041	< 0.041	< 0.041
208-96-8	Acenaphthylene							< 0.040	< 0.041	< 0.041	< 0.041
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.040	< 0.041	< 0.041	< 0.041
56-55-3	Benz(a)anthracene	0.9	***	170		2	8	< 0.040	< 0.041	< 0.041	< 0.041
50-32-8	Benzo(a)pyrene	0.09	•••	17		8	82	< 0.040	< 0.041	< 0.041	< 0.041
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	< 0.040	< 0.041	< 0.041	< 0.041
191-24-2	Benzo(g,h,i)perylene					·		< 0.040	< 0.041	< 0.041	< 0.041
207-08-9	Benzo(k)fluoranthene	9	•••	1,700		49	250	< 0.040	< 0.041	< 0.041	< 0.041
218-01-9	Chrysene	88		17,000		160	800	< 0.040	< 0.041	< 0.041	< 0.041
53-70-3	Dibenz(a,h)anthracene	0.09	•••	17		2	7.6	< 0.040	< 0.041	< 0.041	< 0.041
206-44-0	Fluoranthene	3,100		82,000	***	4,300	21,000	< 0.040	< 0.041	< 0.041	< 0.041
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.040	< 0.041	< 0.041	< 0.041
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170	•••	14	69	< 0.040	< 0.041	< 0.041	< 0.041
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.040	< 0.041	< 0.041	< 0.041
85-01-8	Phenanthrene							< 0.040	< 0.041	< 0.041	< 0.041
129-00-0	Pyrene	2,300	•••	61,000		4,200	21,000	< 0.040	< 0.041	< 0.041	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-005 19010565-006 19010565-007 19010565-008

Client Sample ID: A-5 A-6 A-7 A-8

Date Collected: 01/22/2019 07:00 01/22/2019 07:15 01/22/2019 07:30 01/22/2019 07:45

				1	on Worker		ponent of				
		Residential R	Route Specific	Route Specif	lic Values for		er Ingestion				
		Values	for Soil	S	oil	Exposure R	oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
83-32-9	Acenaphthene	4,700		120,000	_	570	2,900	< 0.041	< 0.042	< 0.042	
208-96-8	Acenaphthylene							< 0.041	< 0.042	< 0.042	
120-12-7	Anthracene	23,000	-	610,000	_	12,000	59,000	< 0.041	< 0.042	< 0.042	
56-55-3	Benz(a)anthracene	0.9		170		2	8	< 0.041	< 0.042	< 0.042	
50-32-8	Benzo(a)pyrene	0.09		17		8	82	< 0.041	< 0.042	< 0.042	
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	< 0.041	< 0.042	< 0.042	
191-24-2	Benzo(g,h,i)perylene							< 0.041	< 0.042	< 0.042	
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	< 0.041	< 0.042	< 0.042	
218-01-9	Chrysene	88		17,000		160	800	< 0.041	< 0.042	< 0.042	
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.041	< 0.042	< 0.042	
206-44-0	Fluoranthene	3,100		82,000		4,300	21,000	< 0.041	< 0.042	< 0.042	
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.041	< 0.042	< 0.042	
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.041	< 0.042	< 0.042	
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.041	< 0.042	< 0.042	
85-01-8	Phenanthrene							< 0.041	< 0.042	< 0.042	
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.041	< 0.042	< 0.042	

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-009 19010565-010 19010565-011 19010565-012

Client Sample ID: A-9 A-10 A-11 A-12

Date Collected: 01/22/2019 08:00 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45

			-	Constructi	on Worker	Soil Com	ponent of				
		Residential R	toute Specific	Route Specif	ic Values for	Groundwat					
		Values	for Soil	Se	oil	Exposure R	oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.039	< 0.041	< 0.042	< 0.041
208-96-8	Acenaphthylene							< 0.039	< 0.041	< 0.042	< 0.041
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.039	< 0.041	< 0.042	< 0.041
56-55-3	Benz(a)anthracene	0.9		170		2	8	< 0.039	< 0.041	< 0.042	< 0.041
50-32-8	Benzo(a)pyrene	0.09	•••	17		8	82	< 0.039	< 0.041	< 0.042	< 0.041
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	< 0.039	< 0.041	< 0.042	< 0.041
191-24-2	Benzo(g,h,i)perylene							< 0.039	< 0.041	< 0.042	< 0.041
207-08-9	Benzo(k)fluoranthene	9	•••	1,700	•••	49	250	< 0.039	< 0.041	< 0.042	< 0.041
218-01-9	Chrysene	88		17,000		160	800	< 0.039	< 0.041	< 0.042	< 0.041
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.039	< 0.041	< 0.042	< 0.041
206-44-0	Fluoranthene	3,100		82,000		4,300	21,000	< 0.039	< 0.041	< 0.042	< 0.041
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.039	< 0.041	< 0.042	< 0.041
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.039	< 0.041	< 0.042	< 0.041
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.039	< 0.041	< 0.042	< 0.041
85-01-8	Phenanthrene							< 0.039	< 0.041	< 0.042	< 0.041
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.039	< 0.041	< 0.042	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 19010565-015 19010565-016

Client Sample ID : A-13 A-14 A-15 A-16

Date Collected: 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:30 01/22/2019 09:45

		Decidential D	toute Specific		on Worker lic Values for	÷	ponent of				
			for Soil	_	oil	i e	er Ingestion				
CAS No.	Analyte		Inhalation				oute Values				
	Analyte Acenaphthene	Ingestion 4,700		Ingestion	Inhalation	Class I	Class II	z 0 040	< 0.042	< 0.042	- 0
		4,700		120,000		570	2,900	< 0.040	< 0.043	< 0.043	< 0.0
	Acenaphthylene							< 0.040	< 0.043	< 0.043	< 0.0
	Anthracene	23,000		610,000		12,000	59,000	< 0.040	< 0.043	< 0.043	< 0.0
56-55-3	Benz(a)anthracene	0.9		170		2	8	< 0.040	< 0.043	< 0.043	< 0.0
50-32-8	Benzo(a)pyrene	0.09		17	***	8	82	< 0.040	< 0.043	< 0.043	< 0.0
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	< 0.040	< 0.043	< 0.043	< 0.0
191-24-2	Benzo(g,h,i)perylene							< 0.040	< 0.043	< 0.043	< 0.0
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	< 0.040	< 0.043	< 0.043	< 0.0
218-01-9	Chrysene	88		17,000	_	160	800	< 0.040	< 0.043	< 0.043	< 0.0
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.040	< 0.043	< 0.043	< 0.0
206-44-0	Fluoranthene	3,100		82,000		4,300	21,000	< 0.040	< 0.043	< 0.043	< 0.0
86-73-7	Fluorene	3,100	•	82,000		560	2,800	< 0.040	< 0.043	< 0.043	< 0.0
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.040	< 0.043	< 0.043	< 0.0
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.040	< 0.043	< 0.043	< 0.0
85-01-8	Phenanthrene							< 0.040	< 0.043	< 0.043	< 0.0
129-00-0	Pyrene	2,300		61,000	_	4,200	21,000	< 0.040	< 0.043	< 0.043	< 0.0

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-017
Client Sample ID: A-17
Date Collected: 01/22/2019 10:00

				Constructi	on Worker	Soil Com	ponent of	
		Residential R	loute Specific	Route Specif	ic Values for	Groundwat	er Ingestion	
		Values	for Soil	S	oil	Exposure R	oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.041
208-96-8	Acenaphthylene							< 0.041
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.041
56-55-3	Benz(a)anthracene	0.9		170		2	8	< 0.041
50-32-8	Benzo(a)pyrene	0.09		17		8	82	< 0.041
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	< 0.041
191-24-2	Benzo(g,h,i)perylene							< 0.041
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	< 0.041
218-01-9	Chrysene	88		17,000	_	160	800	< 0.041
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.041
206-44-0	Fluoranthene	3,100	•••	82,000		4,300	21,000	< 0.041
86-73-7	Fluorene	3,100	***	82,000		560	2,800	< 0.041
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.041
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.041
85-01-8	Phenanthrene							< 0.041
129-00-0	Pyrene	2,300	***	61,000	_	4,200	21,000	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 Client Sample ID: A-1 A-2

Date Collected: 01/22/2019 06:00 01/22/2019 06:15

				Comotanio	on Worker	Soil Com	nonent of		
		Desidential D	anta Cassifia		ic Values for	Soil Com Groundwat			
		1	loute Specific	•	oil	Exposure R			
CAS No.	Amoludo		for Soil Inhalation	Ingestion	Inhalation	Class I	Class II		
120-82-1	Analyte 1,2,4-Trichlorobenzene	Ingestion 780	3,200	2,000	920	5	53	< 0.20	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20	< 0.21
	1,3-Dichlorobenzene	7,000	300	18,000	310		73	< 0.20	< 0.21
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.20	< 0.21
	2, 2'-oxybis(1-Chloropropane)		11,000		340		- 11	< 0.20	< 0.21
	2,4,5-Trichlorophenol	7,800	•••	200,000		270	1,400	< 0.20	< 0.21
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.20	< 0.21
	2,4-Dichlorophenol	230		610		1	1	< 0.20	< 0.21
	2,4-Dimethylphenol	1,600		41,000	•••	9	9	< 0.20	< 0.21
	2,4-Dinitrophenol	160		410		0.2	0.2	< 0.99	< 1.0
	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.040	< 0.041
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.040	< 0.041
	2-Chloronaphthalene	V.,		100		0.0007	0.000.	< 0.20	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20	< 0.21
	2-Methylnaphthalene		00,000	,	00,000		-	< 0.20	< 0.21
	2-Methylphenol	3,900	•••	100,000		15	15	< 0.20	< 0.21
* * * * * * * * * * * * * * * * * * * *	2-Nitroaniline	1						< 0.20	< 0.21
	2-Nitrophenol							< 0.20	< 0.21
	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.20	< 0.21
	3-Nitroaniline							< 0.20	< 0.21
	4,6-Dinitro-2-methylphenol							< 0.40	< 0.41
	4-Bromophenyl phenyl ether							< 0.20	< 0.21
	4-Chloro-3-methylphenol					,		< 0.40	< 0.41
	4-Chloroaniline	310		820		0.7	0.7	< 0.20	< 0.21
7005-72-3	4-Chlorophenyl phenyl ether							< 0.20	< 0.21
	4-Methylphenol							< 0.20	< 0.21
100-01-6	4-Nitroaniline							< 0.20	< 0.21
100-02-7	4-Nitrophenol							< 0.40	< 0.41
62-53-3	Aniline							< 0.40	< 0.41
92-87-5	Benzidine					-		< 0.40	< 0.41
65-85-0	Benzoic acid	310,000		820,000		400	400	< 0.99	< 1.0
100-51-6	Benzyl alcohol						•	< 0.20	< 0.21
111-91-1	Bis(2-chloroethoxy)methane						•	< 0.20	< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 0.99	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20	< 0.21
	Carbazole	32		6,200	•••	0.6	2.8	< 0.20	< 0.21
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.20	< 0.21
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20	< 0.21
$\overline{}$	Dibenzofuran							< 0.20	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20	< 0.21
	Dimethyl phthalate							< 0.20	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.20	< 0.21
	Hexachlorobutadiene					10.5		< 0.20	< 0.21
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20	< 0.21
	Hexachloroethane	78		2,000		0.5	2.6	< 0.20	< 0.21
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20	< 0.21
	N-Nitrosodi-n-propylamine	0.09	•••	18	***	0.00005	0.00005	< 0.040	< 0.041
	N-Nitrosodimethylamine	46.7		•				< 0.20	< 0.21
	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.20	< 0.21
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040	< 0.041
	Pentachlorophenol	3		520		0.03	0.14	< 0.080	< 0.083
108-95-2		23,000		61,000		100	100	< 0.20	< 0.21
110-86-1	Pyridine							< 0.92	< 0.96

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-003 19010565-004

Client Sample ID: A-3 A-4
Date Collected: 01/22/2019 06:30 01/22/2019 06:45

CAS No.			Residential R	toute Specific	Route Specif	on Worker ic Values for oil	Soil Com Groundwat ZExposure R	ponent of er Ingestion oute Values		
120-82-1 12,4-Trichlorobenzene 780 3,200 2,000 920 5 53 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 < 0,21 <	CAS No.	Analyte								
95-50-1 12-Dichtorobenzene									< 0.21	< 0.21
106-69-1 2-0-9-0-9-0-9-0-9-0-9-0-9-0-9-0-9-0-9-0-						310	17	43	< 0.21	< 0.21
		1.3-Dichlorobenzene							< 0.21	< 0.21
95-95-4 24.5-Trichtorophenol		1.4-Dichlorobenzene		11,000	•	340	2	11	< 0.21	< 0.21
93-95-4 24,5-Trischrophenol 7,800 200,000 270 1,400 < 0.21 < 0.21 < 0.21	108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21	< 0.21
120-83-2 2.4-Dischlorophenol 230			7,800		200,000	••-	270	1,400	< 0.21	< 0.21
105-7-79 2.4-Dimethylphenol 1,600 41,000 9 9 < 0.21 < 0.21	88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21	< 0.21
Size 2.4 Dimitrophenol 160	120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.21	< 0.21
1211-42 2.4 Dimitrotoluene	105-67-9	2,4-Dimethylphenol	1,600		41,000		9		< 0.21	< 0.21
100-20-2 2.6-Dinitrooluene			160		410		0.2		< 1.0	
91-55-7 2-Chloropaphalhelee 390 53,000 10,000 53,000 4 4 4 < 0.21 < 0.21 91-57-6 2-Methylnaphthalene 3,900 100,000 15 15 < 0.21 < 0.21 < 0.21 91-57-6 2-Methylnaphthalene 3,900 100,000 15 15 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.2	121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.041	< 0.041
95-57-8 2-Chlorophenol 390 53,000 10,000 53,000 4 4 Co.21 Co.21 97-48-7 2-Methyhaphathaee Co.21 Co.21 97-48-7 2-Methyhaphathaee Co.21 Co.21 97-48-7 2-Methyhaphanol 3,900 Co.21 Co.21 98-7-4 2-Mirophenol Co.21 Co.21 97-48-7 2-Methyhaphanol Co.21 Co.21 97-48-7 2-Methyhaphanol Co.21 Co.21 97-49-1 3,3-Dichlorobazidine 1 Co.21 Co.21 97-49-1 3,3-Dichlorobazidine 1 Co.21 Co.21 97-49-1 3,3-Dichlorobazidine 1 Co.21 Co.21 97-59-7 4-Chloro-3-methylphenol Co.21 Co.21	606-20-2		0.9		180		0.0007	0.0007		
191-57-6 2-Methylphenol 3,900										
15			390	53,000	10,000	53,000	4	4		
183-74-4 2-Nitroaniline										
S8-75-5 2-Nitrophenol			3,900		100,000		15	15		
191-94-1 33 - Dichlorobenzidine 1										
199-09-2 3-Nitronaline									_	_
			1	•••	280		0.007	0.033		
101-55-3 4-Bromophenyl phenyl ether										
39-50-7 4-Chloro-3-methylphenol 310 820 0.7 0.7 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 <										
106-47-8 4-Chlorophenyl phenyl ether										
Tools-72-3 4-Chlorophenyl phenyl ether Co.21 C										
106-44-5			310		820		0.7	0.7		
100-01-6 4-Nitroaniline										
100-02-7 4-Nitrophenol										
C2-53-3 Aniline C2-53-3 Aniline C2-53-3 Aniline C2-53-3 C2-53-3 C3-54 C3-5										
Section Sect										
Section Sect										
100-51-6 Benzyl alcohol			210.000		000.000		400	400		_
111-91-1 Bis(2-chloroethoxy)methane 0.6 0.2 75 0.66 0.0004 0.0004 < 0.21 < 0.21			310,000		820,000		400	400		
111-44-4 Bis(2-chloroethyl)ether 0.6 0.2 75 0.66 0.0004 0.0004 < 0.21 < 0.21										
117-81-7 Bis(2-ethylhexyl)phthalate			0.6	0.2	7.5	0.66	0.0004	0.0004		
85-68-7 Butyl benzyl phthalate 16,000 930 410,000 930 930 930 930 < 0.21 < 0.21 86-74-8 Carbazole 32 6,200 0.6 2.8 < 0.21 < 0.21 84-74-2 Din-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 2,300 < 0.21 < 0.21 117-84-0 Din-octyl phthalate 1,600 10,000 4,100 10,000 10,000 10,000 < 0.21 < 0.21 132-64-9 Dibenzofuran 84-66-2 Diethyl phthalate 63,000 2,000 1,000,000 2,000 470 470 < 0.21 < 0.21 131-11-3 Dimethyl phthalate 131-74-1 Hexachlorobenzene 0.4 1 78 2.6 2 11 < 0.21 < 0.21 87-68-3 Hexachlorobutadiene 17-47-4 Hexachlorocyclopentadiene 550 10 14,000 1.1 400 2,200 < 0.21 < 0.21 77-47-4 Hexachlorocyclopentadiene 550 10 14,000 1.1 400 2,200 < 0.21 < 0.21 78-59-1 Isophorone 15,600 4,600 410,000 4,600 8 8 < 0.21 < 0.21 86-74-7 N-Nitrosodin-propylamine 0.09 18 0.00005 0.00005 < 0.041 < 0.041 62-75-9 N-Nitrosodiphenylamine 130 25,000 1 5.6 < 0.21 < 0.21 87-86-5 Pentachlorophenol 3 520 0.03 0.14 < 0.083 < 0.083 108-95-2 Phenol 23,000 61,000 100 100 < 0.21 < 0.21										
86-74-8 Carbazole 32		<u> </u>								
R4-74-2 Di-n-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 0.21 0.21										
117-84-0 Di-n-octyl phthalate 1,600 10,000 4,100 10,000 10,000 10,000 < 0.21 < 0.21 132-64-9 Dibenzofuran										
132-64-9 Dibenzofuran				_				·		
84-66-2 Diethyl phthalate 63,000 2,000 1,000,000 2,000 470 470 <0.21 <0.21 131-11-3 Dimethyl phthalate 0.4 1 78 2.6 2 11 <0.21			1,000	10,000	7,100	10,000	10,000	10,000		
131-11-3 Dimethyl phthalate			63 000	2,000	1,000,000	2,000	470	470		
118-74-1 Hexachlorobenzene 0.4 1 78 2.6 2 11 <0.21			05,000	2,000	1,000,000	2,000				
87-68-3 Hexachlorobutadiene < 0.21	118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11		
77-47-4 Hexachlorocyclopentadiene 550 10 14,000 1.1 400 2,200 < 0.21			<u> </u>		,,,	2.0				
67-72-1 Hexachloroethane 78 2,000 0.5 2.6 <0.21			550	10	14,000	1.1	400	2,200		
78-59-1 Isophorone 15,600 4,600 410,000 4,600 8 8 < 0.21										
621-64-7 N-Nitrosodi-n-propylamine 0.09 18 0.00005 <0.041										
62-75-9 N-Nitrosodimethylamine										
86-30-6 N-Nitrosodiphenylamine 130 25,000 1 5.6 < 0.21			1.00							
98-95-3 Nitrobenzene 39 92 1,000 9.4 0.1 0.1 < 0.041			130		25,000		1	5.6		
87-86-5 Pentachlorophenol 3 520 0.03 0.14 < 0.083 < 0.083 108-95-2 Phenol 23,000 61,000 100 100 < 0.21 < 0.21										
108-95-2 Phenol 23,000 61,000 100 100 < 0.21 < 0.21										
									< 0.21	< 0.21
110-86-1 Pyridine < 0.96 < 0.95									< 0.96	< 0.95

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-005 19010565-006 Client Sample ID: A-5 A-6

Date Collected: 01/22/2019 07:00 01/22/2019 07:15

				Comstant	on Worker	Soil Com	ponent of		
		Decidential B	loute Specific		ic Values for	Groundwat			
			for Soil	•	oil		oute Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21	< 0.21
	1.2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21	< 0.21
	1,3-Dichlorobenzene	7,000	300	10,000	310	• • • • • • • • • • • • • • • • • • • •		< 0.21	< 0.21
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21	< 0.21
	2, 2'-oxybis(1-Chloropropane)		11,000		3.0			< 0.21	< 0.21
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21	< 0.21
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21	< 0.21
	2,4-Dichlorophenol	230		610		1	1	< 0.21	< 0.21
	2,4-Dimethylphenol	1,600		41,000	•••	9	9	< 0.21	< 0.21
	2,4-Dinitrophenol	160	•••	410		0.2	0.2	< 1.0	< 1.0
	2,4-Dinitrotoluene	0.9		180	•••	0.0008	0.0008	< 0.041	< 0.042
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.041	< 0.042
	2-Chloronaphthalene		.,					< 0.21	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21	< 0.21
	2-Methylnaphthalene							< 0.21	< 0.21
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.21	< 0.21
	2-Nitroaniline						-	< 0.21	< 0.21
88-75-5	2-Nitrophenol			-				< 0.21	< 0.21
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21	< 0.21
99-09-2	3-Nitroaniline							< 0.21	< 0.21
534-52-1	4,6-Dinitro-2-methylphenol							< 0.41	< 0.42
101-55-3	4-Bromophenyl phenyl ether			<u> </u>				< 0.21	< 0.21
59-50-7	4-Chloro-3-methylphenol							< 0.41	< 0.42
	4-Chloroaniline	310		820		0.7	0.7	< 0.21	< 0.21
	4-Chlorophenyl phenyl ether							< 0.21	< 0.21
	4-Methylphenol							< 0.21	< 0.21
	4-Nitroaniline			_				< 0.21	< 0.21
_	4-Nitrophenol							< 0.41	< 0.42
62-53-3	Aniline							< 0.41	< 0.42
92-87-5	Benzidine						100	< 0.41	< 0.42
	Benzoic acid	310,000		820,000		400	400	< 1.0	< 1.0
	Benzyl alcohol							< 0.21	< 0.21 < 0.21
	Bis(2-chloroethoxy)methane	2	0.0	7.5	0.00	0.0004	0.0004	< 0.21 < 0.21	< 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 1.0	< 1.0
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000 930	3,600 930	31,000 930	< 0.21	< 0.21
	Butyl benzyl phthalate	16,000 32	930	410,000 6,200	930	0.6	2.8	< 0.21	< 0.21
	Carbazole			200,000		2,300	2,300	< 0.21	< 0.21
	Di-n-butyl phthalate Di-n-octyl phthalate	7,800 1,600	2,300 10,000	4,100	2,300 10,000	10,000	10,000	< 0.21	< 0.21
	Dibenzofuran	1,000	10,000	7,100	10,000	10,000	10,000	< 0.21	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21	< 0.21
	Dimethyl phthalate	03,000	2,000	1,000,000	2,000	7/0	770	< 0.21	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21	< 0.21
	Hexachlorobutadiene	 		,,,	2.0		• • •	< 0.21	< 0.21
	Hexachlorocyclopentadiene	550	10	14,000	1.1	· 400	2,200	< 0.21	< 0.21
	Hexachloroethane	78		2,000	1.1	0.5	2.6	< 0.21	< 0.21
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.041	< 0.042
	N-Nitrosodimethylamine	 ••••				-		< 0.21	< 0.21
	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041	< 0.042
	Pentachlorophenol	3		520		0.03	0.14	< 0.083	< 0.084
108-95-2		23,000	•••	61,000		100	100	< 0.21	< 0.21
110-86-1		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				< 0.95	< 0.97

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-007 19010565-008 Client Sample ID: A-7 A-8

Date Collected: 01/22/2019 07:30 01/22/2019 07:45

				Comptens	on Worker	Soil Com			
		Decidential E	loute Specific		ic Values for	Groundwat			
			for Soil	-	oil		oute Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.22	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.22	< 0.21
	1,3-Dichlorobenzene	7,000	300	18,000	310	17	43	< 0.22	< 0.21
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.22	< 0.21
_	2, 2'-oxybis(1-Chloropropane)	 	11,000	•••	340		- 11	< 0.22	< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.22	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.22	< 0.21
	2,4-Dichlorophenol	230		610		1	1	< 0.22	< 0.21
	2,4-Diemorophenol	1,600	•••	41,000		9	9	< 0.22	< 0.21
	2,4-Dinitrophenol	160		410	•••	0.2	0.2	< 1.1	< 1.0
	2,4-Dinitrotoluene	0.9	***	180		0.0008	0.0008	< 0.042	< 0.041
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.042	< 0.041
91-58-7	2-Chloronaphthalene	0.7		100		0.0007	0.0007	< 0.22	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.22	< 0.21
	2-Methylnaphthalene	370	55,555	10,000				< 0.22	< 0.21
	2-Methylphenol	3,900		100,000		15	15	< 0.22	< 0.21
	2-Nitroaniline	5,500	-	100,000				< 0.22	< 0.21
	2-Nitrophenol							< 0.22	< 0.21
	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.22	< 0.21
99-09-2	3-Nitroaniline				-	0,000		< 0.22	< 0.21
	4,6-Dinitro-2-methylphenol							< 0.42	< 0.41
	4-Bromophenyl phenyl ether							< 0.22	< 0.21
	4-Chloro-3-methylphenol							< 0.42	< 0.41
	4-Chloroaniline	310		820	•••	0.7	0.7	< 0.22	< 0.21
	4-Chlorophenyl phenyl ether	111						< 0.22	< 0.21
	4-Methylphenol				-			< 0.22	< 0.21
	4-Nitroaniline							< 0.22	< 0.21
	4-Nitrophenol						•	< 0.42	< 0.41
62-53-3	Aniline							< 0.43	< 0.42
92-87-5	Benzidine							< 0.42	< 0.41
	Benzoic acid	310,000		820,000		400	400	< 1.1	< 1.0
100-51-6	Benzyl alcohol		•					< 0.22	< 0.21
	Bis(2-chloroethoxy)methane							< 0.22	< 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.22	< 0.21
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.1	< 1.0
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.22	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.22	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.22	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.22	< 0.21
132-64-9	Dibenzofuran							< 0.22	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.22	< 0.21
	Dimethyl phthalate							< 0.22	< 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.22	< 0.21
87-68-3	Hexachlorobutadiene							< 0.22	< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.22	< 0.21
67-72-1	Hexachloroethane	78	*** *	2,000		0.5	2.6	< 0.22	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	- 8	< 0.22	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.042	< 0.041
	N-Nitrosodimethylamine							< 0.22	< 0.21
	N-Nitrosodiphenylamine	130	•••	25,000		_1	5.6	< 0.22	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.042	< 0.041
	Pentachlorophenol	3		520		0.03	0.14	< 0.086	< 0.084
108-95-2		23,000		61,000		100	100	< 0.22	< 0.21
110-86-1	Pyridine							< 0.99	< 0.96

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-009 19010565-010 Client Sample ID: A-9 A-10

Date Collected: 01/22/2019 08:00 01/22/2019 08:15

		Γ'			on Worker	Soil Com			
		Residential F	loute Specific	Route Specif	ic Values for	Groundwat			
		Values	for Soil		oil	Exposure R	oute Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.20	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20	< 0.21
541-73-1	1,3-Dichlorobenzene							< 0.20	< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.20	< 0.21
	2, 2'-oxybis(1-Chloropropane)							< 0.20	< 0.21
	2,4,5-Trichlorophenol	7,800		200,000	•••	270	1,400	< 0.20	< 0.21
	2,4,6-Trichlorophenol	. 58	200	11,000	540	0.2	0.77	< 0.20	< 0.21
	2,4-Dichlorophenol	230		610		1	1	< 0.20	< 0.21
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.20	< 0.21
	2,4-Dinitrophenol	160	•••	410		0.2	0.2	< 0.98	< 1.0
	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.039	< 0.041
	2,6-Dinitrotoluene	0.9		180	•••	0.0007	0.0007	< 0.039	< 0.041
	2-Chloronaphthalene	1						< 0.20	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20	< 0.21
	2-Methylnaphthalene							< 0.20	< 0.21
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.20	< 0.21
	2-Nitroaniline							< 0.20	< 0.21
	2-Nitrophenol							< 0.20	< 0.21
91-94-1	3,3'-Dichlorobenzidine	1	•••	280		0.007	0.033	< 0.20	< 0.21
99-09-2	3-Nitroaniline							< 0.20	< 0.21
	4,6-Dinitro-2-methylphenol							< 0.39	< 0.41
	4-Bromophenyl phenyl ether							< 0.20	< 0.21
	4-Chloro-3-methylphenol							< 0.39	< 0.41
	4-Chloroaniline	310		820	***	0.7	0.7	< 0.20	< 0.21
	4-Chlorophenyl phenyl ether							< 0.20	< 0.21
	4-Methylphenol							< 0.20	< 0.21
	4-Nitroaniline							< 0.20	< 0.21
	4-Nitrophenol							< 0.39	< 0.41
62-53-3	Aniline							< 0.39	< 0.41
92-87-5	Benzidine							< 0.39	< 0.41
65-85-0	Benzoic acid	310,000		820,000	•••	400	400	< 0.98	< 1.0
	Benzyl alcohol							< 0.20	< 0.21
	Bis(2-chloroethoxy)methane							< 0.20	< 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 0.98	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.20	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.20	< 0.21
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20	< 0.21
132-64-9	Dibenzofuran							< 0.20	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20	< 0.21
	Dimethyl phthalate							< 0.20	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.20	< 0.21
	Hexachlorobutadiene		<u>.</u> .	_				< 0.20	< 0.21
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20	< 0.21
67-72-1	Hexachloroethane	78	•••	2,000		0.5	2.6	< 0.20	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18	•••	0.00005	0.00005	< 0.039	< 0.041
	N-Nitrosodimethylamine							< 0.20	< 0.21
86-30-6	N-Nitrosodiphenylamine	130	***	25,000	•••	11	5.6	< 0.20	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.039	< 0.041
	Pentachlorophenol	3		520	•••	0.03	0.14	< 0.079	< 0.083
	Phenol	23,000		61,000		100	100	< 0.20	< 0.21
110-86-1	Pyridine							< 0.91	< 0.96

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-011 19010565-012
Client Sample ID: A-11 A-12
Date Collected: 01/22/2019 08:30 01/22/2019 08:45

				Constructi	on Worker	Soil Com	nonent of		
		Residential B	loute Specific		ic Values for	Groundwat			
			for Soil	•	oil	Exposure R			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.22	< 0.21
95-50-1	1.2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.22	< 0.21
	1,3-Dichlorobenzene	,,						< 0.22	< 0.21
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.22	< 0.21
	2, 2'-oxybis(1-Chloropropane)		,					< 0.22	< 0.21
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.22	< 0.21
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.22	< 0.21
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.22	< 0.21
105-67-9	2,4-Dimethylphenol	1,600	•••	41,000	•••	9	9	< 0.22	< 0.21
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.1	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.042	< 0.041
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.042	< 0.041
91-58-7	2-Chloronaphthalene	·						< 0.22	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.22	< 0.21
	2-Methylnaphthalene							< 0.22	< 0.21
95-48-7_	2-Methylphenol	3,900		100,000		15	15	< 0.22	< 0.21
	2-Nitroaniline							< 0.22	< 0.21
	2-Nitrophenol				·			< 0.22	< 0.21
	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.22	< 0.21
	3-Nitroaniline							< 0.22	< 0.21
	4,6-Dinitro-2-methylphenol							< 0.42	< 0.41
	4-Bromophenyl phenyl ether							< 0.22	< 0.21
	4-Chloro-3-methylphenol							< 0.42	< 0.41
	4-Chloroaniline	310		820	•••	0.7	0.7	< 0.22	< 0.21
	4-Chlorophenyl phenyl ether		_					< 0.22	< 0.21
	4-Methylphenol							< 0.22	< 0.21
	4-Nitroaniline							< 0.22	< 0.21
	4-Nitrophenol							< 0.42	< 0.41
62-53-3	Aniline							< 0.43	< 0.42
	Benzidine	212.000		000 000		400	400	< 0.42 < 1.1	< 0.41
	Benzoic acid	310,000	•••	820,000		400	400		< 0.21
	Benzyl alcohol							< 0.22 < 0.22	< 0.21
	Bis(2-chloroethoxy)methane	0.6	0.2	75	0.66	0.0004	0.0004	< 0.22	< 0.21
	Bis(2-chloroethyl)ether	0.6		4,100	31,000	3,600	31,000	< 1.1	< 1.0
	Bis(2-ethylhexyl)phthalate	16,000	31,000 930	410,000	930	930	930	< 0.22	< 0.21
	Butyl benzyl phthalate Carbazole	16,000 32	930	6,200	930	0.6	2.8	< 0.22	< 0.21
	Caroazoie Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.22	< 0.21
$\overline{}$	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.22	< 0.21
	Dibenzofuran	1,000	10,000	4,100	10,000	10,000	10,000	< 0.22	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.22	< 0.21
	Dimethyl phthalate	03,000	2,000	1,000,000	2,000	170	170	< 0.22	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.22	< 0.21
87-68-3	Hexachlorobutadiene	0.4	•	70				< 0.22	< 0.21
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.22	< 0.21
	Hexachloroethane	78		2,000		0.5	2.6	< 0.22	< 0.21
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.22	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.042	< 0.041
	N-Nitrosodimethylamine	<u> </u>				2.23000		< 0.22	< 0.21
	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.22	< 0.21
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.042	< 0.041
	Pentachlorophenol	3		520		0.03	0.14	< 0.086	< 0.084
108-95-2		23,000		61,000		100	100	< 0.22	< 0.21
110-86-1		==,,,,,,		,				< 0.99	< 0.96

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 Client Sample ID: A-13 A-14

Date Collected: 01/22/2019 09:00 01/22/2019 09:15

		·		Constructi	on Worker	Soil Com	nonent of	1	
		Residential R	loute Specific		ic Values for	Groundwat			
			for Soil	•	oil	Exposure R			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21	< 0.22
	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21	< 0.22
	1,3-Dichlorobenzene	· ·		,				< 0.21	< 0.22
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21	< 0.22
	2, 2'-oxybis(1-Chloropropane)							< 0.21	< 0.22
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21	< 0.22
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21	< 0.22
	2,4-Dichlorophenol	230	•••	610		1	1	< 0.21	< 0.22
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21	< 0.22
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.0	< 1.1
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.040	< 0.043
606-20-2	2,6-Dinitrotoluene	0.9		180	***	0.0007	0.0007	< 0.040	< 0.043
91-58-7	2-Chloronaphthalene							< 0.21	< 0.22
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21	< 0.22
91-57-6	2-Methylnaphthalene							< 0.21	< 0.22
95-48-7	2-Methylphenol	3,900	•••	100,000		15	15	< 0.21	< 0.22
88-74-4	2-Nitroaniline							< 0.21	< 0.22
88-75-5	2-Nitrophenol							< 0.21	< 0.22
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21	< 0.22
99-09-2	3-Nitroaniline							< 0.21	< 0.22
534-52-1	4,6-Dinitro-2-methylphenol							< 0.40	< 0.43
101-55-3	4-Bromophenyl phenyl ether		·		_			< 0.21	< 0.22
	4-Chloro-3-methylphenol							< 0.40	< 0.43
	4-Chloroaniline	310		820	•••	0.7	0.7	< 0.21	< 0.22
7005-72-3	4-Chlorophenyl phenyl ether							< 0.21	< 0.22
	4-Methylphenol							< 0.21	< 0.22
100-01-6	4-Nitroaniline							< 0.21	< 0.22
	4-Nitrophenol							< 0.40	< 0.43
62-53-3	Aniline							< 0.41	< 0.43
	Benzidine							< 0.40	< 0.43
	Benzoic acid	310,000		820,000		400	400	< 1.0	< 1.1
	Benzyl alcohol							< 0.21	< 0.22
	Bis(2-chloroethoxy)methane							< 0.21	< 0.22
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21	< 0.22
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0	< 1.1
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21	< 0.22
86-74-8	Carbazole	32		6,200	,	0.6	2.8	< 0.21	< 0.22
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21	< 0.22
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21	< 0.22
	Dibenzofuran	(2.22	2.000	1 000 000	2.000	- 450	450	< 0.21	< 0.22
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21	< 0.22
	Dimethyl phthalate						<u> </u>	< 0.21	< 0.22
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21	< 0.22
	Hexachlorobutadiene	550	10	14.000		400	2 200	< 0.21	< 0.22
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21	< 0.22
-	Hexachloroethane	78	4.600	2,000	4.600	0.5	2.6	< 0.21	< 0.22
	Isophorone	15,600	4,600	410,000	4,600	8	0.00005	< 0.21	< 0.22
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.040	< 0.043
	N-Nitrosodimethylamine	120		35,000			5.4	< 0.21 < 0.21	< 0.22 < 0.22
	N-Nitrosodiphenylamine	130		25,000		1	5.6		< 0.043
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040	< 0.043
	Pentachlorophenol	3		520		0.03	0.14	< 0.082	< 0.086
108-95-2		23,000		61,000		100	100	< 0.21	< 0.99
110-86-1	Pyridine							< 0.94	<u> </u>

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-015 19010565-016 Client Sample ID: A-15 A-16

Date Collected: 01/22/2019 09:30 01/22/2019 09:45

				Constructi	on Worker	Soil Com	ponent of		
		Pacidential B	Route Specific		ic Values for		er Ingestion		
		4	for Soil	-	oil		oute Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.22	< 0.22
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.22	< 0.22
7 0 0 0	1.3-Dichlorobenzene	7,000	300	10,000	310		73	< 0.22	< 0.22
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.22	< 0.22
	2, 2'-oxybis(1-Chloropropane)		11,000		340			< 0.22	< 0.22
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.22	< 0.22
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.22	< 0.22
	2,4-Dichlorophenol	230		610		1	1	< 0.22	< 0.22
	2,4-Dimethylphenol	1,600		41,000	•••	9	9	< 0.22	< 0.22
	2.4-Dinitrophenol	160		410	•••	0.2	0.2	< 1.1	< 1.1
	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.043	< 0.043
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.043	< 0.043
	2-Chloronaphthalene	- 412					0.0007	< 0.22	< 0.22
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.22	< 0.22
	2-Methylnaphthalene			,				< 0.22	< 0.22
	2-Methylphenol	3,900		100,000	***	15	15	< 0.22	< 0.22
	2-Nitroaniline							< 0.22	< 0.22
	2-Nitrophenol							< 0.22	< 0.22
	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.22	< 0.22
	3-Nitroaniline							< 0.22	< 0.22
	4,6-Dinitro-2-methylphenol							< 0.43	< 0.43
	4-Bromophenyl phenyl ether							< 0.22	< 0.22
	4-Chloro-3-methylphenol							< 0.43	< 0.43
	4-Chloroaniline	310		820	•••	0.7	0.7	< 0.22	< 0.22
7005-72-3	4-Chlorophenyl phenyl ether							< 0.22	< 0.22
	4-Methylphenol							< 0.22	< 0.22
	4-Nitroaniline	1						< 0.22	< 0.22
100-02-7	4-Nitrophenol		-					< 0.43	< 0.43
62-53-3	Aniline	•						< 0.44	< 0.43
92-87-5	Benzidine							< 0.43	< 0.43
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.1	< 1.1
100-51-6	Benzyl alcohol							< 0.22	< 0.22
	Bis(2-chloroethoxy)methane					•		< 0.22	< 0.22
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.22	< 0.22
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.1	< 1.1
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.22	< 0.22
86-74-8	Carbazole	32	•••	6,200		0.6	2.8	< 0.22	< 0.22
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.22	< 0.22
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000_	< 0.22	< 0.22
132-64-9	Dibenzofuran							< 0.22	< 0.22
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.22	< 0.22
	Dimethyl phthalate							< 0.22	< 0.22
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.22	< 0.22
	Hexachlorobutadiene							< 0.22	< 0.22
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.22	< 0.22
	Hexachloroethane	78		2,000	•••	0.5	2.6	< 0.22	< 0.22
	Isophorone	15,600	4,600	410,000	4,600	- 8	8	< 0.22	< 0.22
	N-Nitrosodi-n-propylamine	0.09	•••	18		0.00005	0.00005	< 0.043	< 0.043
	N-Nitrosodimethylamine						_	< 0.22	< 0.22
	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.22	< 0.22
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.043	< 0.043
	Pentachlorophenol	3		520		0.03	0.14	< 0.088	< 0.086
108-95-2		23,000	***	61,000		100	100	< 0.22	< 0.22
110-86-1	Pyridine							< 1.0	< 0.99

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-017 Client Sample ID: A-17 Date Collected: 01/22/2019 10:00

				G	31/	S-11 C		1
		D	6		on Worker		ponent of	
			loute Specific	•	ic Values for		er Ingestion	
CACN-	A S		for Soil		oil Labolation	Class I	oute Values Class II	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation 920	Class I	53	< 0.21
	1,2,4-Trichlorobenzene	780	3,200	2,000				< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
	1,3-Dichlorobenzene		11.000		240		1,	< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
	2, 2'-oxybis(1-Chloropropane)	7.000	t	200.000	-	270	1 400	< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800	200	200,000	640	0.2	1,400 0.77	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	1	0.77	< 0.21
	2,4-Dichlorophenol	230		610		9	9	< 0.21
	2,4-Dimethylphenol	1,600		41,000	 	0.2	0.2	< 1.0
51-28-5	2,4-Dinitrophenol	160		410			0.0008	< 0.041
121-14-2	2,4-Dinitrotoluene	0.9	•••	180		0.0008	0.0008	< 0.041
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.041
91-58-7	2-Chloronaphthalene	200	62.000	10.000	63,000		4	
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21 < 0.21
91-57-6	2-Methylnaphthalene	2 000		100.000		16	16	< 0.21
95-48-7 88-74-4	2-Methylphenol	3,900		100,000		15	15	< 0.21
	2-Nitroaniline							< 0.21
88-75-5	2-Nitrophenol	ļ <u>,</u>		200		0.007	0.022	< 0.21
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline							< 0.41
	4,6-Dinitro-2-methylphenol							< 0.41
	4-Bromophenyl phenyl ether				ļ			< 0.21
59-50-7	4-Chloro-3-methylphenol	212		000		0.7	0.2	< 0.41
	4-Chloroaniline	310	•••	820		0.7	0.7	
	4-Chlorophenyl phenyl ether							< 0.21 < 0.21
	4-Methylphenol							
	4-Nitroaniline							< 0.21
	4-Nitrophenol							< 0.41
62-53-3	Aniline							
92-87-5	Benzidine	210.000		000 000	_	400	400	< 0.41
65-85-0	Benzoic acid	310,000	•••	820,000		400	400	< 1.0
	Benzyl alcohol							< 0.21
	Bis(2-chloroethoxy)methane				0.66	0.0004	0.0004	< 0.21 < 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32	2.200	6,200	2 200	0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
	Dibenzofuran		2 6 6 6	1 000 000	0.000	450	420	< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
131-11-3	Dimethyl phthalate	 					<u> </u>	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene					400	2 2 2 2	< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78	•••	2,000	4.600	0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18	•••	0.00005	0.00005	< 0.041
62-75-9	N-Nitrosodimethylamine				ļ			< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	_92	1,000	9.4	0.1	0.1	< 0.041
87-86-5	Pentachlorophenol	3	*	520		0.03	0.14	< 0.083
108-95-2		23,000		61,000		100	100	< 0.21
110-86-1	Pyridine							< 0.95

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 19010565-003 19010565-004

Client Sample ID: A-1 A-2 A-3 A-4

Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45

			Route Specific for Soil	Route Specif	on Worker fic Values for oil	Groundwat	ponent of ter Ingestion loute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2	Aroclor 1016	1	•••	1	_			< 0.095	< 0.10	< 0.098	< 0.099
11104-28-2	Aroclor 1221	1	***	1				< 0.095	< 0.10	< 0.098	< 0.099
11141-16-5	Aroclor 1232	1	***	1				< 0.095	< 0.10	< 0.098	< 0.099
53469-21-9	Aroclor 1242	1		1				< 0.095	< 0.10	< 0.098	< 0.099
12672-29-6	Aroclor 1248	1		1			_	< 0.095	< 0.10	< 0.098	< 0.099
11097-69-1	Aroclor 1254	1		1				< 0.095	< 0.10	< 0.098	< 0.099
11096-82-5	Aroclor 1260	1		1	_			< 0.095	< 0.10	< 0.098	< 0.099

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-005 19010565-006 19010565-007 19010565-008

Client Sample ID: A-5 A-6 A-7 A-8

Date Collected: 01/22/2019 07:00 01/22/2019 07:15 01/22/2019 07:30 01/22/2019 07:45

			Route Specific for Soil	Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2	Aroclor 1016	1		1				< 0.099	< 0.10	< 0.10	< 0.099
11104-28-2	Aroclor 1221	1	_	1				< 0.099	< 0.10	< 0.10	< 0.099
11141-16-5	Aroclor 1232	1		1	***	***		< 0.099	< 0.10	< 0.10	< 0.099
53469-21-9	Aroclor 1242	1	***	1		•••		< 0.099	< 0.10	< 0.10	< 0.099
12672-29-6	Aroclor 1248	1		1				< 0.099	< 0.10	< 0.10	< 0.099
11097-69-1	Aroclor 1254	1		1				< 0.099	< 0.10	< 0.10	< 0.099
11096-82-5	Aroclor 1260	1		1		_	-	< 0.099	< 0.10	< 0.10	< 0.099

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-009 19010565-010 19010565-011 19010565-012

Client Sample ID: A-9 A-10 A-11 A-12
Date Collected: 01/22/2019 08:00 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45

		Residential R Values	Route Specific for Soil	Route Specia	on Worker lic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2	Aroclor 1016	1		1			***	< 0.095	< 0.10	< 0.10	< 0.099
11104-28-2	Aroclor 1221	i		1				< 0.095	< 0.10	< 0.10	< 0.099
11141-16-5	Aroclor 1232	1		1		•••	•••	< 0.095	< 0.10	< 0.10	< 0.099
53469-21-9	Aroclor 1242	1		1				< 0.095	< 0.10	< 0.10	< 0.099
12672-29-6	Aroclor 1248	i		1				< 0.095	< 0.10	< 0.10	< 0.099
11097-69-1	Aroclor 1254	1		1				< 0.095	< 0.10	< 0.10	< 0.099
11096-82-5	Aroclor 1260	1		1				< 0.095	< 0.10	< 0.10	< 0.099

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 19010565-015 19010565-016

Client Sample ID: A-13 A-14 A-15 A-16

Date Collected: 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:30 01/22/2019 09:45

			toute Specific for Soil	Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2 Arc	oclor 1016	1		1				< 0.098	< 0.10	< 0.10	< 0.10
11104-28-2 Arc	oclor 1221	1		1	_		-	< 0.098	< 0.10	< 0.10	< 0.10
11141-16-5 Arc	oclor 1232	1		1		•••		< 0.098	< 0.10	< 0.10	< 0.10
53469-21-9 Arc	oclor 1242	1		1				< 0.098	< 0.10	< 0.10	< 0.10
12672-29-6 Arc	oclor 1248	1		1				< 0.098	< 0.10	< 0.10	< 0.10
11097-69-1 Arc	oclor 1254	1		1				< 0.098	< 0.10	< 0.10	< 0.10
11096-82-5 Arc	oclor 1260	1		1				< 0.098	< 0.10	< 0.10	< 0.10

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-017

Client Sample ID:

A-17

Date Collected: 01/22/2019 10:00

		i i	Route Specific for Soil	Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion loute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
12674-11-2	Aroclor 1016	1		1		***		< 0.098
11104-28-2	Aroclor 1221	1		1				< 0.098
11141-16-5	Aroclor 1232	1		1				< 0.098
53469-21-9	Aroclor 1242	1		1				< 0.098
12672-29-6	Aroclor 1248	1		1				< 0.098
11097-69-1	Aroclor 1254	1		1				< 0.098
11096-82-5	Aroclor 1260	1		1				< 0.098

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 19010565-003 19010565-004 Client Sample ID: A-1 A-2 A-3 A-4

Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45

				Constructi	on Worker	Soil Com	ponent of				
		Residential F	Route Specific	Route Specia	fic Values for	Groundwat	er Ingestion				
		Values	for Soil	S	oil	Exposure R	oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	ı.	_		
72-54-8	4,4´-DDD	3	•••	520		16	80	< 0.0019	< 0.0020	< 0.0020	
72-55-9	4,4'-DDE	2	•••	370	_	54	270	< 0.0019	< 0.0020	< 0.0020	
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0019	< 0.0020	< 0.0020	
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0019	< 0.0020	< 0.0020	
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0019	< 0.0020	< 0.0020	
5103-71-9	alpha-Chlordane				, -			< 0.0019	< 0.0020	< 0.0020	
319-85-7	beta-BHC				_			< 0.0019	< 0.0020	< 0.0020	
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.019	< 0.020	< 0.020	
319-86-8	delta-BHC							< 0.0019	< 0.0020	< 0.0020	
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0019	< 0.0020	< 0.0020	Π
959-98-8	Endosulfan I	470		1,200	-	18	90	< 0.0019	< 0.0020	< 0.0020	
33213-65-9	Endosulfan II	470		1,200		18	90	< 0.0019	< 0.0020	< 0.0020	
1031-07-8	Endosulfan sulfate							< 0.0019	< 0.0020	< 0.0020	
72-20-8	Endrin	23		61	_	1	5	< 0.0019	< 0.0020	< 0.0020	
7421-93-4	Endrin aldehyde							< 0.0019	< 0.0020	< 0.0020	
53494-70-5	Endrin ketone							< 0.0019	< 0.0020	< 0.0020	
58-89-9	gamma-BHC `	0.5		96		0.009	0.047	< 0.0019	< 0.0020	< 0.0020	
5566-34-7	gamma-Chlordane							< 0.0019	< 0.0020	< 0.0020	Г
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0019	< 0.0020	< 0.0020	
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0019	< 0.0020	< 0.0020	
72-43-5	Methoxychlor	390		1,000		160	780	< 0.0019	< 0.0020	< 0.0020	
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.039	< 0.041	< 0.040	Γ

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-005 19010565-006 19010565-007 19010565-008

Client Sample ID: A-5 A-6 A-7 A-8

Date Collected: 01/22/2019 07:00 01/22/2019 07:15 01/22/2019 07:30 01/22/2019 07:45

		B			on Worker		ponent of				
		Residential R Values	•	Route Specif		Groundwat	-				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	oute Values Class II				
	4,4'-DDD	3		520		16	80	< 0.0020	< 0.0020	< 0.0021	< 0.0020
	4,4'-DDE	2		370	•••	54	270	< 0.0020	< 0.0020	< 0.0021	< 0.0020
	4,4'-DDT	2		100	2,100	32	160	< 0.0020	< 0.0020	< 0.0021	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020	< 0.0020	< 0.0021	< 0.0020
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0020	< 0.0020	< 0.0021	< 0.0020
	alpha-Chlordane							< 0.0020	< 0.0020	< 0.0021	< 0.0020
319-85-7	beta-BHC							< 0.0020	< 0.0020	< 0.0021	< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.020	< 0.020	< 0.021	< 0.020
319-86-8	delta-BHC							< 0.0020	< 0.0020	< 0.0021	< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020	< 0.0020	< 0.0021	< 0.0020
959-98-8	Endosulfan I	470		1,200		18	90	< 0.0020	< 0.0020	< 0.0021	< 0.0020
33213-65-9	Endosulfan II	470	-	1,200		18	90	< 0.0020	< 0.0020	< 0.0021	< 0.0020
1031-07-8	Endosulfan sulfate				·			< 0.0020	< 0.0020	< 0.0021	< 0.0020
72-20-8	Endrin	23		61		1	5	< 0.0020	< 0.0020	< 0.0021	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0020	< 0.0020	< 0.0021	< 0.0020
53494-70-5	Endrin ketone							< 0.0020	< 0.0020	< 0.0021	< 0.0020
58-89-9	gamma-BHC	0.5		96	-	0.009	0.047	< 0.0020	< 0.0020	< 0.0021	< 0.0020
5566-34-7	gamma-Chlordane							< 0.0020	< 0.0020	< 0.0021	< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0020	< 0.0020	< 0.0021	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020	< 0.0020	< 0.0021	< 0.0020
72-43-5	Methoxychlor	390		1,000		160	780	< 0.0020	< 0.0020	< 0.0021	< 0.0020
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.041	< 0.042	< 0.043	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-009 19010565-010 19010565-011 19010565-012

Client Sample ID : A-9 A-10 A-11 A-12

Date Collected: 01/22/2019 08:00 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45

		Residential R Values	-	Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
72-54-8	4,4'-DDD	3		520		16	80	< 0.0019	< 0.0020	< 0.0020	< 0.0020
72-55-9	4,4'-DDE	2		370		54	270	< 0.0019	< 0.0020	< 0.0020	< 0.0020
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0019	< 0.0020	< 0.0020	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0019	< 0.0020	< 0.0020	< 0.0020
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0019	< 0.0020	< 0.0020	< 0.0020
5103-71-9	alpha-Chlordane							< 0.0019	< 0.0020	< 0.0020	< 0.0020
319-85-7	beta-BHC						_	< 0.0019	< 0.0020	< 0.0020	< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.019	< 0.020	< 0.020	< 0.020
319-86-8	delta-BHC							< 0.0019	< 0.0020	< 0.0020	< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0019	< 0.0020	< 0.0020	< 0.0020
959-98-8	Endosulfan I	470		1,200		18	90	< 0.0019	< 0.0020	< 0.0020	< 0.0020
33213-65-9	Endosulfan II	470	_	1,200		18	90	< 0.0019	< 0.0020	< 0.0020	< 0.0020
1031-07-8	Endosulfan sulfate							< 0.0019	< 0.0020	< 0.0020	< 0.0020
72-20-8	Endrin	23	-	61		1	5	< 0.0019	< 0.0020	< 0.0020	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0019	< 0.0020	< 0.0020	< 0.0020
53494-70-5	Endrin ketone							< 0.0019	< 0.0020	< 0.0020	< 0.0020
58-89-9	gamma-BHC	0.5		96		0.009	0.047	< 0.0019	< 0.0020	< 0.0020	< 0.0020
5566-34-7	gamma-Chlordane							< 0.0019	< 0.0020	< 0.0020	< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0019	< 0.0020	< 0.0020	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0019	< 0.0020	< 0.0020	< 0.0020
72-43-5	Methoxychlor	390	***	1,000		160	780	< 0.0019	< 0.0020	< 0.0020	< 0.0020
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.039	< 0.041	< 0.042	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 19010565-015 19010565-016

Client Sample ID: A-13 A-14 A-15 A-16

Date Collected: 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:30 01/22/2019 09:45

		ľ	Route Specific for Soil	Route Specis	ion Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II			= : -	
	4,4'-DDD	3		520		16	80	< 0.0020	< 0.0020	< 0.0021	< 0.0021
72-55-9	4,4'-DDE	2		370		54	270	< 0.0020	< 0.0020	< 0.0021	< 0.0021
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0020	< 0.0020	< 0.0021	< 0.0021
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020	< 0.0020	< 0.0021	< 0.0021
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0020	< 0.0020	< 0.0021	< 0.0021
5103-71-9	alpha-Chlordane							< 0.0020	< 0.0020	< 0.0021	< 0.0021
319-85-7	beta-BHC							< 0.0020	< 0.0020	< 0.0021	< 0.0021
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.020	< 0.020	< 0.021	< 0.021
319-86-8	delta-BHC							< 0.0020	< 0.0020	< 0.0021	< 0.0021
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020	< 0.0020	< 0.0021	< 0.0021
959-98-8	Endosulfan I	470	_	1,200		18	90	< 0.0020	< 0.0020	< 0.0021	< 0.0021
33213-65-9	Endosulfan II	470		1,200		18	90	< 0.0020	< 0.0020	< 0.0021	< 0.0021
1031-07-8	Endosulfan sulfate							< 0.0020	< 0.0020	< 0.0021	< 0.0021
72-20-8	Endrin	23		61		1	5	< 0.0020	< 0.0020	< 0.0021	< 0.0021
7421-93-4	Endrin aldehyde							< 0.0020	< 0.0020	< 0.0021	< 0.0021
	Endrin ketone					-		< 0.0020	< 0.0020	< 0.0021	< 0.0021
58-89-9	gamma-BHC	0.5		96		0.009	0.047	< 0.0020	< 0.0020	< 0.0021	< 0.0021
5566-34-7	gamma-Chlordane		1					< 0.0020	< 0.0020	< 0.0021	< 0.0021
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0020	< 0.0020	< 0.0021	< 0.0021
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020	< 0.0020	< 0.0021	< 0.0021
	Methoxychlor	390	_	1,000		160	780	< 0.0020	< 0.0020	< 0.0021	< 0.002
	Toxaphene	0.6	89	110	240	31	150	< 0.041	< 0.042	< 0.043	< 0.043

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-017
Client Sample ID: A-17
Date Collected: 01/22/2019 10:00

			toute Specific for Soil	Constructi Route Specif Sc	ic Values for	Groundwat	ponent of er Ingestion oute Values	•
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
72-54-8	4,4´-DDD	3	***	520		16	80	< 0.0020
72-55-9	4,4'-DDE	2		370	_	54	270	< 0.0020
50-29-3	4,4'-DDT	. 2		100	2,100	32	160	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0020
5103-71-9	alpha-Chlordane							< 0.0020
319-85-7	beta-BHC							< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.020
319-86-8	delta-BHC							< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020
959-98-8	Endosulfan I	470		1,200		18	90	< 0.0020
33213-65-9	Endosulfan II	470	-	1,200		18	90	< 0.0020
1031-07-8	Endosulfan sulfate							< 0.0020
72-20-8	Endrin	23		61		1 .	5	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0020
53494-70-5	Endrin ketone							< 0.0020
58-89-9	gamma-BHC	0.5		96		0.009	0.047	< 0.0020
5566-34-7	gamma-Chlordane							< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020
72-43-5	Methoxychlor	390	***	1,000		160	780	< 0.0020
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.040

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 19010565-003

Client Sample ID: A-1 A-2 A-3 A-4

Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45

			Constructi	on Worker	Soil Compo	nent of				
	Residential R	oute Specific	Route Specif	ic Values for	Groundwater					
	Values	for Soil	S	oil	Exposure Rou					
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation		Class II				
7429-90-5 Aluminum					Ľ,		13000	14000	15000	13000
7440-36-0 Antimony	31		82				< 2.1	< 2.3	< 2.2	< 2.2
7440-38-2 Arsenic	13.0/11.3	750	61	25,000			4.0	13	- 5.3	4.9
7440-39-3 Barium	5,500	690,000	14,000	870,000			30	48	120	78
7440-41-7 Beryllium	160	1,300	410	44,000			0.80	0.91	1.0	0.84
7440-43-9 Cadmium	78	1,800	200	59,000			< 0.52	< 0.57	< 0.56	< 0.55
7440-70-2 Calcium				-			69000	64000	68000	66000
7440-47-3 Chromium	230	270	4,100	690			24	28	30	26
7440-48-4 Cobalt	4,700		12,000				11	20	14	12
7440-50-8 Copper	2,900		8,200				26	29	31	23
57-12-5 Cyanide	1,600		4,100	-			< 0.30	< 0.32	< 0.31	< 0.31
7439-89-6 Iron		•••		-			23000	25000	30000	24000
7439-92-1 Lead	400	1	700				14	19	15	12
7439-95-4 Magnesium	325,000	-	730,000			1	34000	33000	35000	32000
7439-96-5 Manganese	1,600	69,000	4,100	8,700			420	480	540	480
7439-97-6 Mercury	23	10	61	0.1			0.023	0.026	0.022	0.026
7440-02-0 Nickel	1,600	13,000	4,100	440,000			31	53	42	36
7440-09-7 Potassium		-					2900	3700	3600	3400
7782-49-2 Selenium	390	-	1,000				1.0	1.1	< 1.1	1.3
7440-22-4 Silver	390	•••	1,000				< 1.0	< 1.1	< 1.1	< 1.1
7440-23-5 Sodium	***			_			810	210	210	190
7440-28-0 Thallium	6.3		160	***			< 1.0	< 1.1	< 1.1	< 1.1
7440-62-2 Vanadium	550	•••	1,400				29	30	30	26
7440-66-6 Zinc	23,000	***	61,000				51	58	57	50

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

19010565-004

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-005 19010565-006 19010565-007 19010565-008

Client Sample ID: A-5 A-6 A-7 A-8

Date Collected: 01/22/2019 07:00 01/22/2019 07:15 01/22/2019 07:30 01/22/2019 07:45

				Constructi	on Worker	Soil Comp	onent of				
		Residential R	oute Specific	Route Specif	ic Values for	Groundwate					
		Values	for Soil	So	oil	Exposure Ro	ute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7429-90-5	Aluminum							15000	16000	17000	14000
7440-36-0	Antimony	31		82	_			< 2.1	< 2.1	< 2.2	< 2.2
7440-38-2	Arsenic	13.0/11.3	750	61	25,000			6.4	5.5	5.1	8.1
7440-39-3	Barium	5,500	690,000	14,000	870,000			91	100	110	59
7440-41-7	Beryllium	160	1,300	410	44,000			1.0	0.97	1.1	0.83
7440-43-9	Cadmium	78	1,800	200	59,000			< 0.52	< 0.53	< 0.55	< 0.56
7440-70-2	Calcium							63000	74000	67000	60000
7440-47-3	Chromium	230	270	4,100	690			30	32	35	28
7440-48-4		4,700		12,000				12	15	16	18
7440-50-8	Соррег	2,900		8,200				29	29	32	29
57-12-5	Cyanide	1,600		4,100				< 0.31	< 0.32	< 0.32	< 0.31
7439-89-6	Iron							33000	27000	34000	24000
7439-92-1	Lead	400	-	700				14	15	15	16
7439-95-4	Magnesium	325,000	1	730,000	-			31000	37000	33000	31000
7439-96-5	Manganese	1,600	69,000	4,100	8,700			500	540	540	470
7439-97-6	Mercury	23	10	61	0.1			0.026	0.028	< 0.024	0.028
7440-02-0	Nickel	1,600	13,000	4,100	440,000			38	41	47	46
7440-09-7	Potassium	-	1	-	•••			4000	4100	4100	3700
7782-49-2	Selenium	390	***	1,000				1.1	1.4	1.3	1.4
7440-22-4	Silver	390		1,000	***			< 1.0	< 1.1	< 1.1	< 1.1
7440-23-5	Sodium		-					210	220	230	190
7440-28-0	Thallium	6.3		160				< 1.0	< 1.1	< 1.1	< 1.1
7440-62-2	Vanadium	550	-	1,400				31	33	34	28
7440-66-6	Zinc	23,000		61,000				55	59	62	56

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-009 19010565-010 19010565-011 19010565-012 Client Sample ID: A-9 A-10 A-11 A-12

Date Collected: 01/22/2019 08:00 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45

	Residential R Values	toute Specific	Route Specif	on Worker fic Values for oil	Soil Com Groundwate Exposure R	er Ingestion				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7429-90-5 Aluminum							16000	13000	13000	15000
7440-36-0 Antimony	31	ŀ	82				< 2.2	< 2.3	< 2.3	< 2.2
7440-38-2 Arsenic	13.0/11.3	750	61	25,000			6.9	3.9	7.2	9.1
7440-39-3 Barium	5,500	690,000	14,000	870,000			95	71	60	100
7440-41-7 Beryllium	160	1,300	410	44,000			0.97	0.81	0.81	0.91
7440-43-9 Cadmium	78	1,800	200	59,000			< 0.54	< 0.57	< 0.56	< 0.56
7440-70-2 Calcium				_			76000	61000	64000	81000
7440-47-3 Chromium	230	270	4,100	690			30	26	26	30
7440-48-4 Cobalt	4,700		12,000				16	10	14	15
7440-50-8 Соррег	2,900		8,200				31	25	28	29
57-12-5 Cyanide	1,600	_	4,100	-			< 0.30	< 0.32	< 0.32	< 0.31
7439-89-6 Iron							27000	24000	26000	30000
7439-92-1 Lead	400		700				15	12	16	15
7439-95-4 Magnesium	325,000	_	730,000				38000	31000	32000	39000
7439-96-5 Manganese	1,600	69,000	4,100	8,700			540	390	450	560
7439-97-6 Mercury	23	10	61	0.1			< 0.021	< 0.023	0.025	< 0.020
7440-02-0 Nickel	1,600	13,000	4,100	440,000			42	31	39	41
7440-09-7 Potassium	***						4100	3300	- 3100	3600
7782-49-2 Selenium	390		1,000				1.3	1.4	1.3	1.4
7440-22-4 Silver	390		1,000				< 1.1	< 1.1	< 1.1	< 1.1
7440-23-5 Sodium		_					230	190	190	210
7440-28-0 Thallium	6.3	===	160				< 1.1	< 1.1	< 1.1	< 1.1
7440-62-2 Vanadium	550	_	1,400				33	29	28	31
7440-66-6 Zinc	23,000		61,000		-	-	58	53	54	58

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 19010565-015 19010565-016

Client Sample ID : A-13 A-14 A-15 A-16

Date Collected: 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:30 01/22/2019 09:45

	Desidential D			on Worker	Soil Compo					
	Residential R	for Soil	_	ic Values for	Groundwater					
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Exposure Ros	Class II				
7429-90-5 Aluminum	Ingestion	Initiatation	Ingestion	innaiation	Class I	Class II	14000	12000	14000	12000
7440-36-0 Antimony	31		82			-	< 2.1	< 2.2	< 2.4	< 2.3
7440-38-2 Arsenic	13.0/11.3	750	61	25,000			12	6.3	4.4	7.0
7440-39-3 Barium	5,500	690,000	14,000	870,000			120	33	51	31
7440-41-7 Beryllium	160	1,300	410	44,000			0.94	0.70	0.79	0.73
7440-43-9 Cadmium	78	1,800	200	59,000			< 0.54	< 0.56	< 0.60	< 0.57
7440-70-2 Calcium				-			76000	61000	56000	71000
7440-47-3 Chromium	230	270	4,100	690			29	23	27	24
7440-48-4 Cobalt	4,700		12,000				16	9.6	16	9.9
7440-50-8 Copper	2,900		8,200				39	27	21	30
57-12-5 Cyanide	1,600	***	4,100				< 0.31	< 0.32	< 0.33	0.59
7439-89-6 Iron				-			33000	27000	23000	26000
7439-92-1 Lead	400		700				18	14	13	16
7439-95-4 Magnesium	325,000		730,000	•••			40000	31000	26000	39000
7439-96-5 Manganese	1,600	69,000	4,100	8,700			580	420	400	450
7439-97-6 Mercury	23	10	61	0.1			0.025	0.027	0.025	0.030
7440-02-0 Nickel	1,600	13,000	4,100	440,000			45	30	41	31
7440-09-7 Potassium		•••					3800	2800	3400	2700
7782-49-2 Selenium	390	•••	1,000				1.6	1.7	1.5	1.4
7440-22-4 Silver	390		1,000				< 1.1	< 1.1	< 1.2	< 1.1
7440-23-5 Sodium	***	•••	***				200	170	170	180
7440-28-0 Thallium	6.3	•••	160				< 1.1	< 1.1	< 1.2	< 1.1
7440-62-2 Vanadium	550	•••	1,400				31	29	27	29
7440-66-6 Zinc	23,000		61,000				63	53	55	55

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-017 Client Sample ID: A-17

Date Collected: 01/22/2019 10:00

		Values		Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
7429-90-5	Aluminum							13000
7440-36-0	Antimony	31	•	82				< 2.1
7440-38-2	Arsenic	13.0/11.3	750	61	25,000		_	5.0
7440-39-3		5,500	690,000	14,000	870,000			60
7440-41-7	Beryllium	160	1,300	410	44,000			0.82
7440-43-9	Cadmium	78	1,800	200	59,000			< 0.53
7440-70-2	Calcium		-					65000
7440-47-3	Chromium	230	270	4,100	690			26
7440-48-4	Cobalt	4,700		12,000				12
7440-50-8	Copper	2,900	-	8,200				30
57-12-5	Cyanide	1,600		4,100				1.1
7439-89-6	Iron							27000
7439-92-1	Lead	400		700				14
7439-95-4	Magnesium	325,000		730,000				34000
	Manganese	1,600	69,000	4,100	8,700			470
7439-97-6	Mercury	23	10	61	0.1			0.022
7440-02-0	Nickel	1,600	13,000	4,100	440,000			36
7440-09-7	Potassium						i i	3100
7782-49-2	Selenium	390		1,000				1.4
7440-22-4	Silver	390		1,000			1	< 1.1
7440-23-5	Sodium							180
7440-28-0	Thallium	6.3		160				< 1.1
7440-62-2	Vanadium	550		1,400				28
7440-66-6		23,000		61,000			,	58

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002

19010565-003

19010565-004

Client Sample ID:

A-1

A-3

A-4

A-2 Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45

		-	Constructi	on Worker	Soil Com	ponent of				
	Residential I	Route Specific	Route Specif	fic Values for	Groundwat	er Ingestion				
	Values	for Soil	S	oil	Exposure R	oute Values				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0 Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic		<u> </u>			0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium			ł		2.0	2.0	0.071	0.72	0.63	0.82
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium				† <u>-</u>	0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt					1.0	1.0	0.011	0.031	0.061	0.027
7440-50-8 Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6 Iron					5.0	5.0	< 0.25	< 0.25	< 0.25	< 0.25
7439-92-1 Lead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7439-96-5 Manganese					0.15	10.0	2!5	3.4	2:2	317
7439-97-6 Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 Nickel					0.1	2.0	0.025	0.062	0:15	0.059
7782-49-2 Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver					0.05	***	< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	< 0.050	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-005 19010565-006 19010565-007 19010565-008 Client Sample ID: A-5 A-6 A-7 A-8

Date Collected: 01/22/2019 07:00 01/22/2019 07:15 01/22/2019 07:30 01/22/2019 07:45

	1	Route Specific	Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0 Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium					2.0	2.0	0.62	0.82	1.0	1.0
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt					1.0	1.0	0.033	. 0.014	0.029	0.028
7440-50-8 Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6 Iron					5.0	5.0	< 0.25	< 0.25	< 0.25	< 0.25
7439-92-1 Lead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7439-96-5 Manganese					0.15	10.0	3:5	3:0	4:0	3.4
7439-97-6 Mercury				•	0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 Nickel					0.1	2.0	0.071	0.032	0.066	0.057
7782-49-2 Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver					0.05	***	< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	< 0.050	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (TCLP)

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-009 19010565-010 19010565-011 19010565-012 Client Sample ID: A-9 A-10 A-11 A-12

Date Collected: 01/22/2019 08:00 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45

		Residential Route Specific Values for Soil		Construction Worker Route Specific Values for Soil		Soil Component of Groundwater Ingestion Exposure Route Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0	Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2	Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3	Barium					2.0	2.0	0.91	1.1	0.92	0.98
7440-41-7	Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9	Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3	Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4						1.0	1.0	0.042	0.047	0.085	0.021
7440-50-8	Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6	Iron					5.0	5.0	0.78	0.25	< 0.25	0.31
7439-92-1	Lead					0.0075	0.1	0.010	< 0.0050	0.014	< 0.0050
7439-96-5	Manganese	ļ				0.15	10.0	7.0	2.9	5.5	3.5
7439-97-6	Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0						0.1	2.0	0.065	0.10	0.12	0.052
7782-49-2	Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4	Silver					0.05		< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0	Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2	Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6	Zinc	•				5.0	10	< 0.050	< 0.050	0.054	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (TCLP)

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 19010565-015 19010565-016 Client Sample ID: A-13 A-14 A-15 A-16

Date Collected: 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:30 01/22/2019 09:45

			Values for Soil		Construction Worker Route Specific Values for Soil		Soil Component of Groundwater Ingestion Exposure Route Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0 A	Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 A	Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 B	Barium				_	2.0	2.0	0.89	0.058	0.65	0.20
7440-41-7 B	Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 C	Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 C	Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 C	Cobalt					1.0	1.0	0.026	< 0.010	0.046	0.010
7440-50-8 C	Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6 Ir	ron					5.0	5.0	< 0.25	< 0.25	< 0.25	< 0.25
7439-92-1 L	.ead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7439-96-5 N	/langanese					0.15	10.0	3:6	2!3	2:7	2:3
7439-97-6 M	/lercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 N	lickel					0.1	2.0	0.058	< 0.020	0.090	0.024
7782-49-2 S	elenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 S	ilver					0.05	_	< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 T	hallium	l				0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 V	/anadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Z	line					5.0	10	< 0.050	< 0.050	< 0.050	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (TCLP)

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-017 Client Sample ID: A-17 Date Collected: 01/22/2019 10:00

			oute Specific for:Soil	Route Specif	on Worker te Values for off		ponent of er/Ingestion oute/Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
7440-36-0	Antimony					0.006	0.024	< 0.015
7440-38-2	Arsenic					0.05	0.2	< 0.010
7440-39-3						2.0	2.0	0.90
7440-41-7	Beryllium					0.004	0.5	< 0.0050
7440-43-9	Cadmium			•		0.005	0.05	< 0.0050
7440-47-3	Chromium					0.1	1.0	< 0.010
7440-48-4						1.0	1.0	0.015
7440-50-8	Соррег					0.65	0.65	< 0.10
7439-89-6	Iron					5.0	5.0	< 0.25
7439-92-1	Lead					0.0075	0.1	< 0.0050
7439-96-5	Manganese					0.15	10.0	3:3
7439-97-6	Мегсигу		,			0.002	0.01	< 0.00020
7440-02-0	Nickel		ı			0.1	2.0	0.032
7782-49-2	Selenium					0.05	0.05	< 0.010
7440-22-4	Silver					0.05		< 0.010
7440-28-0	Thallium					0.002	0.02	< 0.0050
7440-62-2	Vanadium					0.049	0.1	< 0.010
7440-66-6	Zinc					5.0	10	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-009 Client Sample ID: A-1 A-9

Date Collected: 01/22/2019 06:00 01/22/2019 08:00

pH = 7.6 pH = 7.74

		Route Specific for Soil		l Component of stion Route Values		
	Ingestion	Inhalation	Class I age 7.25 to 7.74	Class II		*
G Ánalyte						
Aluminum					13000	16000
Antimony	31		5	20	< 2.1	< 2.2
Arsenic	13.0/11.3	750	30	120	4.0	6.9
Barium	5,500	690,000	1,800	1,800	30	95
Beryllium	160	1,300	1,000	130,000	0.80	0.97
Cadmium	78	1,800	59	590	< 0.52	< 0.54
Calcium					69000	76000
Chromium	230	270	32	No Data	24	30
Cobalt	4,700		See TCLP/SPLP	See TCLP/SPLP	< 11	16
Соррег	2,900		330,000	330,000	26	31
Cyanide	1,600		40	120	< 0.30	< 0.30
Iron			See TCLP/SPLP	See TCLP/SPLP	23000	27000
Lead	400	•••	107	1,420	14	15
Magnesium	325,000				34000	38000
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	420	540
Mercury	23	10 / 0.1*	6.4	32	0.023	< 0.02
Nickel	1,600	13,000	700	14,000	31	42
Potassium	•••				2900	4100
Selenium	390		3.3	3.3	1.0	1.3
Silver	390		39		< 1.0	< 1.1
Sodium	•••			İ	810	230
Thallium	6.3		3.4	34	< 1.0	< 1.1
Vanadium	550		980	See TCLP/SPLP	29	33
Zinc	23,000		16,000	32,000	51	58

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 LAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective:

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

TACO Tier I pH Specific Soil Remediation Objectives - Supplemental Residential Report

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-002 19010565-003 19010565-004 19010565-005 19010565-006 Client Sample ID: A-2 A-3 A-4 A-5 A-6

Date Collected: 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45 01/22/2019 07:00 01/22/2019 07:15

pH = 7.82 pH = 7.98 pH = 8.03 pH = 8.03 pH = 7.85

		Route Specific for Soil	• •	l Component of stion Route Values					
	Ingestion	Inhalation	Class I	Class II					
Analyte		pH Ran	ge 7.75 to 8.24						
Aluminum					14000	15000	13000	15000	160
Antimony	31		5	20	< 2.3	< 2.2	< 2.2	< 2.1	<2
Arsenic	13.0/11.3	750	31	120	13	5.3	4.9	6.4	5.
Barium	5,500	690,000	2,100	2,100	48	120	78	91	10
Beryllium	160	1,300	8,000	1,000,000	0.91	1.0	0.84	1.0	0.9
Cadmium	78	1,800	430	4,300	< 0.57	< 0.56	< 0.55	< 0.52	< 0
Calcium	•••				64000	68000	66000	63000	740
Chromium	230	270	28	No Data	28	30	26	30	3
Cobalt	4,700		See TCLP/SPLP	See TCLP/SPLP	20	14	12	12	1.
Copper	2,900	•••	330,000	330,000	29	31	23	29	2:
Cyanide	1,600		40	120	< 0.32	< 0.31	< 0.31	< 0.31	< 0
Iron		•••	See TCLP/SPLP	See TCLP/SPLP	25000	30000	24000	33000	270
Lead	400		107	1,420	19	15	12	14	1
Magnesium	325,000	•••			33000	35000	32000	31000	370
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	480	540	480	500	54
Mercury	23	10 / 0.1*	8.0	40	0.026	0.022	0.026	0.026	0.0
Nickel	1.600	13.000	3,800	76,000	53	42	36	38	4
Potassium		•••			3700	3600	3400	4000	41
Selenium	390		2.4	2.4	1.1	< 1.1	1.3	1.1	1.
Silver	390		110		< 1.1	< 1.1	< 1.1	< 1.0	< 1
Sodium	•••				210	210	190	210	22
Thallium	6.3		3.8	38	< 1.1	< 1.1	< 1.1	< 1.0	< 1
Vanadium	550		980	See TCLP/SPLP	30	30	26	31	3
Zinc	23,000		53.000	110,000	58	57	50	55	5

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 LAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-007 19010565-008 19010565-010 19010565-011 19010565-012 Client Sample ID: A-7 A-8 A-10 A-11 A-12

Date Collected: 01/22/2019 07:30 01/22/2019 07:45 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45

pH = 7.84 pH = 7.78 pH = 7.93 pH = 7.96 pH = 7.99

		Route Specific for Soil	• •	l Component of stion Route Values	-				
	Ingestion	Inhalation	Class I	Class II					
Analyte		pH Ran	ge 7.75 to 8.24						
Aluminum				_	17000	14000	13000	13000	150
Antimony	31		5	20	< 2.2	< 2.2	< 2.3	< 2.3	< 2
Arsenic	13.0/11.3	750	31	120	5.1	8.1	3.9	7.2	9.
Barium	5,500	690.000	2,100	2,100	110	59	71	60	10
Beryllium	160	1,300	8,000	1,000,000	1.1	0.83	0.81	0.81	0.9
Cadmium	78	1,800	430	4,300	< 0.55	< 0.56	< 0.57	< 0.56	< 0
Calcium	•••				67000	60000	61000	64000	810
Chromium	230	270	28	No Data	35	28	26	26	3
Cobalt	4,700	•••	See TCLP/SPLP	See TCLP/SPLP	16	18	10	14	1:
Copper	2,900		330,000	330,000	32	29	25	28	2:
Cyanide	1,600	•••	40	120	< 0.32	< 0.31	< 0.32	< 0.32	< 0.
Iron		•••	See TCLP/SPLP	See TCLP/SPLP	34000	24000	24000	26000	300
Lead	400		107	1,420	15	16	12	16	1.
Magnesium	325,000				33000	31000	31000	32000	390
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	540	470	390	450	56
Mercury	23	10 / 0.1*	8.0	40	< 0.024	0.028	< 0.023	0.025	< 0.
Nickel	1,600	13,000	3,800	76,000	47	46	31	39	4
Potassium		÷			4100	3700	3300	3100	36
Selenium	390	•••	2.4	2.4	1.3	1.4	1.4	1.3	1.
Silver	390	•••	110		< 1.1	< 1.1	< 1.1	< 1.1	< 1
Sodium	•••				230	190	190	190	21
Thallium	6.3		3.8	38	< 1.1	< 1.1	< 1.1	< 1.1	< 1
Vanadium	550		980	See TCLP/SPLP	34	28	29	28	3
Zinç	23,000	•••	53,000	110,000	62	56	53	54	58

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 19010565-016 19010565-017 Client Sample ID: A-13 A-14 A-16 A-17

Date Collected: 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:45 01/22/2019 10:00

pH = 7.95 pH = 7.85 pH = 8.12 pH = 8.13

		Route Specific for Soil		l Component of stion Route Values				
	Ingestion	Inhalation	Class I	Class II				
Analyte		pH Ran	ge 7.75 to 8.24					
Aluminum				-	14000	12000	12000	1300
Antimony	31		5	20 ·	< 2.1	< 2.2	< 2.3	< 2.1
Arsenic	13.0/11.3	750	31	120	12	6.3	7.0	5.0
Barium	5,500	690,000	2,100	2,100	120	33	31	60
Beryllium	160	1,300	8,000	1,000,000	0.94	0.70	0.73	0.82
Cadmium	78	1,800	430	4,300	< 0.54	< 0.56	< 0.57	< 0.5
Calcium	•••				76000	61000	71000	6500
Chromium	230	270	28	No Data	29	23	24	26
Cobalt	4,700		See TCLP/SPLP	See TCLP/SPLP	16	9.6	9.9	12
Copper	2,900		330,000	330,000	39	27	30	30
Cyanide	1,600	***	40	120	< 0.31	< 0.32	0.59	1.1
Iron			See TCLP/SPLP	See TCLP/SPLP	33000	27000	26000	2700
Lead	400		107	1,420	18	14	16	14
Magnesium	325,000	•••			40000	31000	39000	3400
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	580	420	450	470
Mercury	23	10 / 0.1*	8.0	40	0.025	0.027	0.030	0.02
Nickel	1,600	13,000	3,800	76,000	45	30	31	36
Potassium		•••			3800	2800	2700	3100
Selenium	390	•••	2.4	2.4	1.6	1.7	1.4	1.4
Silver	390	•••	110		< 1.1	< 1.1	< 1.1	< 1.
Sodium	***				200	170	180	180
Thallium	6.3	•••	3.8	38	< 1.1	< 1.1	< 1.1	< 1.
Vanadium	550		980	See TCLP/SPLP	31	29	29	28
Zinc	23,000	•	53,000	110,000	63	53	55	58

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

^{.* -} Construction Worker Inhalation Objective from Appendix B, Table B.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-015

Client Sample ID: A-15

Date Collected: 01/22/2019 09:30

pH = 8.26

•		Route Specific for Soil		l Component of stion Route Values	
	Ingestion	Inhalation	Class I	Class II	
G Analyte		pH Ran	ge 8.25 to 8.74		
Aluminum			1		14000
Antimony	31		5	20	< 2.4
Arsenic	13.0/11.3	750	32	130	4.4
Barium	5,500	690,000	NDA	NDA	51
Beryllium	160	1,300	NDA	NDA	0.79
Cadmium	78	1,800	NDA	NDA	< 0.60
Calcium		•••			56000
Chromium	230	270	24	No Data	27/
Cobalt	4,700	•••	See TCLP/SPLP	See TCLP/SPLP	16
Copper	2,900		NDA	NDA	21
Cyanide	1,600	•••	40	120	< 0.33
Iron			See TCLP/SPLP	See TCLP/SPLP	23000
Lead	400		107	1,420	13
Magnesium	325,000	•••			26000
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	400
Мегсигу	23	10 / 0.1*	NDA	NDA	0.025
Nickel	1,600	13,000	NDA	NDA	41
Potassium	•••	•			3400
Selenium	390	***	1.8	1.8	1.5
Silver	390		NDA		< 1.2
Sodium	•••	· ,			170
Thallium	6.3		4.4	44	< 1.2
Vanadium	550	•••	980	See TCLP/SPLP	27
Zinc	23,000		NDA	NDA	55

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 19010565-003 19010565-004 19010565-005 19010565-006 19010565-007

Client Sample ID : A-1 A-2 A-3 A-4 A-5 A-6 A-7

Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30 01/22/2019 06:45 01/22/2019 07:00 01/22/2019 07:15 01/22/2019 07:30

		I	ntration of Che Background Se								
	Analyte	City of Chicago		Outside MSA							
PNA	Acenaphthene	0.09	0.13	0.04	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Acenaphthylene	0.03	0.07	0.04	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Anthracene	0.25	0.40	0.14	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Benz(a)anthracene	1.1	1.8	0.72	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Benzo(a)pyrene	1.3	2.1	0.98	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Benzo(k)fluoranthene	0.99	1.7	0.63	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Chrysene	1.2	2.7	1.1	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Fluoranthene	2.7	4.1	1.8	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Fluorene	0.10	0.18	0.04	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Naphthalene	0.04	0.20	0.17	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Phenanthrene	1.3	2.5	0.99	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
	Pyrene	1.9	3.0	1.2	< 0.040	< 0.041	< 0.041	< 0.041	< 0.041	< 0.042	< 0.042
INORG	Aluminum		9,500	9,200	13000	14000	15000	13000	15000	16000	17000
	Antimony		4.0	3.3	< 2.1	< 2.3	< 2.2	< 2.2	< 2.1	< 2.1	< 2.2
	Arsenic		13.0	11.3	4.0	13	5.3	4.9	6.4	5.5	5.1
	Barium		110	122	30	48	120	78	91	100	110
	Beryllium		0.59	0.56	0.80	0.91	1:0	0.84	1:0	0.97	1:1
	Cadmium		0.6	0.50	< 0.52	< 0.57	< 0.56	< 0.55	< 0.52	< 0.53	< 0.55
	Calcium		9,300	5,525	69000	64000	68000	66000	63000	74000	67000
	Chromium		16.2	13.0	24	28	30	26	30	32	35
	Cobalt		8.9	8.9	11	20	4	12	12	15	16
	Соррег		19.6	12.0	26	29		23	29	29	32
	Cyanide		0.51	0.50	< 0.30	< 0.32	< 0.31	< 0.31	< 0.31	< 0.32	< 0.32
	Iron		15,900	15,000	23000	25000	30000	24000	33000	27000	34000
	Lead		36.0	20.9	14	19	15	12	14	15	15
	Magnesium		4,820	2,700	34000	33000	35000	32000	31000	37000	33000
	Manganese		636	630	420	480	540	480	500	540	540
	Mercury		0.06	0.05	0.023	0.026	0.022	0.026	0.026	0.028	< 0.024
	Nickel		18.0	13.0	31	53	12	36	38	41	47
	Potassium		1,268	1,100	2900	3700	3600	3400	4000	4100	4100
	Selenium		0.48	0.37	1:0	1!1	< 1.1	1!3	1:1	1:4	1!3
	Silver		0.55	0.50	< 1.0	< 1.1	< 1.1	< 1.1	< 1.0	< 1.1	< 1.1
	Sodium		130	130.0	810	210	210	190	210	220	230
	Thallium		0.32	0.42	< 1.0	< 1.1	< 1.1	< 1.1	< 1.0	< 1.1	< 1.1
	Vanadium		25.2	25.0	29	30	30	26	31	33	34
	Zinc	<u> </u>	95.0	60.2	51	58	57	50	55	59	62

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-008 19010565-009 19010565-010 19010565-011 19010565-012 19010565-013 19010565-014 Client Sample ID: A-8 A-9 A-10 A-11 A-12 A-13 A-14

Date Collected: 01/22/2019 07:45 01/22/2019 08:00 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45 01/22/2019 09:00 01/22/2019 09:15

			itration of Che								
	Analyte	Cityof	Background So Within MSA	Outside MSA							
PNA	Acenaphthene	0.09	0.13	0.04	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Acenaphthylene	0.03	0.07	0.04	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Anthracene	0.25	0.40	0.14	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Benz(a)anthracene	1.1	1.8	0.72	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Benzo(a)pyrene	1.3	2.1	0.98	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Benzo(k)fluoranthene	0.99	1.7	0.63	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Chrysene	1.2	2.7	1.1	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Fluoranthene	2.7	4.1	1.8	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Fluorene	0.10	0.18	0.04	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Naphthalene	0.04	0.20	0.17	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Phenanthrene	1.3	2.5	0.99	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
	Pyrene	1.9	3.0	1.2	< 0.041	< 0.039	< 0.041	< 0.042	< 0.041	< 0.040	< 0.043
INORG	Aluminum		9,500	9,200	14000	16000	13000	13000	15000	14000	12000
	Antimony		4.0	3.3	< 2.2	< 2.2	< 2.3	< 2.3	< 2.2	< 2.1	< 2.2
	Arsenic		13.0	11.3	8.1	6.9	3.9	7.2	9.1	12	6.3
	Barium		110	122	59	95	71	60	100	1201	33
	Beryllium		0.59	0.56	0.83	0.97	0.81	0.81	0.91	0.94	0.70
	Cadmium		0.6	0.50	< 0.56	< 0.54	< 0.57	< 0.56	< 0.56	< 0.54	< 0.56
	Calcium		9,300	5,525	60000	76000	61000	64000	81000	76000	61000
	Chromium		16.2	13.0	28	30	26	26	30	29	23
	Cobalt		8.9	8.9	18 (4.00)	16	10	145	15	16	9.6
	Copper	J	19.6	12.0	29	31	25	28	29	39	27
	Cyanide		0.51	0.50	< 0.31	< 0.30	< 0.32	< 0.32	< 0.31	< 0.31	< 0.32
	Iron		15,900	15,000	24000	27000	24000	26000	30000	33000	27000
	Lead		36.0	20.9	16	15	12	16	15	18	14
	Magnesium		4,820	2,700	31000	38000	31000	32000	39000	40000	31000
	Manganese		636	630	470	540	390	450	560	580	420
	Mercury		0.06	0.05	0.028	< 0.021	< 0.023	0.025	< 0.020	0.025	0.027
	Nickel	1.	18.0	13.0	46	42	31	39	41	45	30
	Potassium		1,268	1,100	3700	4100	3300	3100	3600	3800	2800
	Selenium		0.48	0.37	1:41	1!3	1:41	1!3	1:4	1!61	157
	Silver		0.55	0.50	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
	Sodium		130	130.0	190	230	190	190	210	200	170
	Thallium		0.32	0.42	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
	Vanadium	<u> </u>	25.2	25.0	28	33	29	28	31	31	29
	Zinc		95.0	60.2	56	58	53	54	58	63	53

MSA - Metropolitan Statistical Area All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table G and Table H. Bolded/Shaded values exceed the within MSA background level.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-015 19010565-016 19010565-017
Client Sample ID: A-15 A-16 A-17
Date Collected: 01/22/2019 09:30 01/22/2019 09:45 01/22/2019 10:00

		Conce	ntration of Che Background Se				
	Analyte	City of Chicago	1	Outside MSA			
PNA	Acenaphthene	0.09	0.13	0.04	< 0.043	< 0.043	< 0.041
	Acenaphthylene	0.03	0.07	0.04	< 0.043	< 0.043	< 0.041
	Anthracene	0.25	0.40	0.14	< 0.043	< 0.043	< 0.041
	Benz(a)anthracene	1.1 .	1.8	0.72	< 0.043	< 0.043	< 0.041
	Benzo(a)pyrene	1.3	2.1	0.98	< 0.043	< 0.043	< 0.041
	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.043	< 0.043	< 0.041
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.043	< 0.043	< 0.041
	Benzo(k)fluoranthene	0.99	1.7	0.63	< 0.043	< 0.043	< 0.041
	Chrysene	1.2	2.7	1.1	< 0.043	< 0.043	< 0.041
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.043	< 0.043	< 0.041
	Fluoranthene	2.7	4.1	1.8	< 0.043	< 0.043	< 0.041
	Fluorene	0.10	0.18	0.04	< 0.043	< 0.043	< 0.041
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.043	< 0.043	< 0.041
	Naphthalene	0.04	0.20	0.17	< 0.043	< 0.043	< 0.041
	Phenanthrene	1.3	2.5	0.99	< 0.043	< 0.043	< 0.041
	Pyrene	1.9	3.0	1.2	< 0.043	< 0.043	< 0.041
INORG	Aluminum		9,500	9,200	14000	12000	13000
	Antimony		4.0	3.3	< 2.4	< 2.3	< 2.1
	Arsenic		13.0	11.3	4.4	7.0	5.0
	Barium		110	122	· 51	31	60
	Beryllium		0.59	0.56	0.79	0.73	0.82
	Cadmium		0.6	0.50	< 0.60	< 0.57	< 0.53
	Calcium		9,300	5,525	56000	71000	65000
	Chromium		16.2	13.0	27	24	26
	Cobalt		8.9	8.9	16	9.9	12
	Copper		19.6	12.0	21	30	30
	Cyanide		0.51	0.50	< 0.33	0.59	1.1
	Iron		15,900	15,000	23000	26000	27000
	Lead		36.0	20.9	13	16	14
	Magnesium		4,820	2,700	26000	39000	34000
	Manganese		636	630	400	450	470
	Mercury		0.06	0.05	0.025	0.030	0.022
	Nickel		18.0	13.0	41	31	36
	Potassium		1,268	1,100	3400	2700	3100
	Selenium		0.48	0.37	1.5	1.4	1.4
	Silver		0.55	0.50	< 1.2	< 1.1	< 1.1
	Sodium		130	130.0	170	180	180
	Thallium		0.32	0.42	< 1.2	< 1.1	< 1.1
	Vanadium		25.2	25.0	27	29	28
	Zinc	l	95.0	60.2	55	55	58

MSA - Metropolitan Statistical Area
All units are mg/Kg unless otherwise noted.
Based on 35 IAC Part 742, Appendix A Table G and Table H.
Bolded/Shaded values exceed the within MSA background level.

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-001 19010565-002 19010565-003 Client Sample ID: A-1 A-2 A-3

Date Collected: 01/22/2019 06:00 01/22/2019 06:15 01/22/2019 06:30

				ts for Chemicals With Dint < 30°C			
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			
VOC	67-64-1	Acetone	100,000	200,000	< 0.078	< 0.082	< 0.090
	71-43-2	Benzene	800	580	< 0.0052	< 0.0054	< 0.0060
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0052	< 0.0054	< 0.0060
	75-25-2	Bromoform	2,000	1,200	< 0.0052	< 0.0054	< 0.0060
	74-83-9	Bromomethane	3,100	3,600	< 0.010	< 0.011	< 0.012
	78-93-3	2-Butanone	25,000	45,000	< 0.078	< 0.082	< 0.090
	75-15-0	Carbon disulfide	850	520	< 0.052	< 0.054	< 0.060
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0052	< 0.0054	< 0.0060
	108-90-7	Chlorobenzene	620	290	< 0.0052	< 0.0054	< 0.0060
	67-66-3	Chloroform	3,400	2,500	< 0.0052	< 0.0054	< 0.0060
	124-48-1	Dibromochloromethane	1,400	890	< 0.0052	< 0.0054	< 0.0060
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0052	< 0.0054	< 0.0060
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0052	< 0.0054	< 0.0060
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0052	< 0.0054	< 0.0060
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0052	< 0.0054	< 0.0060
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0052	< 0.0054	< 0.0060
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0052	< 0.0054	< 0.0060
		cis-1,3-Dichloropropene	1,000	850	< 0.0020	< 0.0021	< 0.0024
		trans-1,3-Dichloropropene	1,000	850	< 0.0020	< 0.0021	< 0.0024 < 0.0060
	100-41-4	Ethylbenzene	350	150	< 0.0052	< 0.0054	
	75-09-2	Methylene chloride	2,500	3,000	< 0.010 < 0.0052	< 0.011 < 0.0054	< 0.012 < 0.0060
		Methyl tert-butyl ether	8,400	11,000 260	< 0.0052	< 0.0054	< 0.0060
	100-42-5	Styrene	630	310	< 0.0052	< 0.0054	< 0.0060
	127-18-4	Tetrachloroethene	800 580	290	< 0.0052	< 0.0054	< 0.0060
	108-88-3	Toluene	1,300	670	< 0.0052	< 0.0054	< 0.0060
	71-55-6 79-00-5	1,1,1-Trichloroethane 1,1,2-Trichloroethane	1,800	1,300	< 0.0052	< 0.0054	< 0.0060
	79-00-3	Trichloroethene	1,200	650	< 0.0052	< 0.0054	< 0.0060
	75-01-0	Vinyl chloride	2,600	2,900	< 0.0052	< 0.0054	< 0.0060
	1330-20-7	Xylenes, Total	2,000	110	< 0.016	< 0.016	< 0.017
SVOC	120-82-1	1.2.4-Trichlorobenzene	340	120	< 0.20	< 0.21	< 0.21
3,000	95-50-1	1,2-Dichlorobenzene	560	210	< 0.20	< 0.21	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.20	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.20	< 0.21	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.20	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 0.99	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.20	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.20	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.20	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.20	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.20	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.20	< 0.21	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.040	< 0.041	< 0.041
	98-95-3	Nitrobenzene	710	590	< 0.040	< 0.041	< 0.041
INORG	7439-97-6		3.1	N/A	0.023	0.026	0.022
11010	7.57-77-9	in in it is	J.,	1771		<u> </u>	

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-004 19010565-005 19010565-006 Client Sample ID: A-4 A-5 A-6 Date Collected: 01/22/2019 06:45 01/22/2019 07:00 01/22/2019 07:15

				ts for Chemicals With bint < 30°C			
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		<u>.</u>	
VOC	67-64-1	Acetone	100,000	200,000	< 0.087	< 0.071	< 0.079
	71-43-2	Benzene	800	580	< 0.0058	< 0.0047	< 0.0052
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0058	< 0.0047	< 0.0052
	75-25-2	Bromoform	2,000	1,200	< 0.0058	< 0.0047	< 0.0052
	74-83-9	Bromomethane	3,100	3,600	< 0.012	< 0.0095	< 0.011
	78-93-3	2-Butanone	25,000	45,000	< 0.087	< 0.071	< 0.079
	75-15-0	Carbon disulfide	850	520	< 0.058	< 0.047	< 0.052
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0058	< 0.0047	< 0.0052
	108-90-7	Chlorobenzene	620	290	< 0.0058	< 0.0047	< 0.0052
	67-66-3	Chloroform	3,400	2,500	< 0.0058	< 0.0047	< 0.0052
	124-48-1	Dibromochloromethane	1,400	890	< 0.0058	< 0.0047	< 0.0052
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0058	< 0.0047	< 0.0052
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0058	< 0.0047	< 0.0052
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0058	< 0.0047	< 0.0052
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0058	< 0.0047	< 0.0052
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0058	< 0.0047	< 0.0052
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0058	< 0.0047	< 0.0052
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0023	< 0.0019	< 0.0022
		trans-1,3-Dichloropropene	1,000	850	< 0.0023	< 0.0019	< 0.0022
	100-41-4	Ethylbenzene	350	150	< 0.0058	< 0.0047	< 0.0052
	75-09-2	Methylene chloride	2,500	3,000	< 0.012	< 0.0095	< 0.011
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0058	< 0.0047	< 0.0052
	100-42-5	Styrene	630	260	< 0.0058	< 0.0047	< 0.0052
	127-18-4	Tetrachloroethene	800	310	< 0.0058	< 0.0047	< 0.0052
	108-88-3	Toluene	580	290	< 0.0058	< 0.0047	< 0.0052
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0058	< 0.0047	< 0.0052
		1,1,2-Trichloroethane	1,800	1,300	< 0.0058	< 0.0047	< 0.0052
	79-01-6	Trichloroethene	1,200	650	< 0.0058	< 0.0047	< 0.0052
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0058	< 0.0047	< 0.0052
	1330-20-7	Xylenes, Total	280	110	< 0.018	< 0.014	< 0.015
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21	< 0.21
		2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21	< 0.21
		Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21	< 0.21
		N-Nitrosodi-n-propylamine	1,900	2,300	< 0.041	< 0.041	< 0.042
		Nitrobenzene	710	590	< 0.041	< 0.041	< 0.042
INORG	7439-97-6	Мегсигу	3.1	N/A	0.026	0.026	0.028

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-007 19010565-008 19010565-009 Client Sample ID: A-7 A-8 A-9

Date Collected: 01/22/2019 07:30 01/22/2019 07:45 01/22/2019 08:00

			l ·	ts for Chemicals With bint < 30°C		•	
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			
VOC	67-64-1	Acetone	100,000	200,000	< 0.093	< 0.10	< 0.079
	71-43-2	Benzene	800	580	< 0.0062	< 0.0068	< 0.0053
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0062	< 0.0068	< 0.0053
	75-25-2	Bromoform	2,000	1,200	< 0.0062	< 0.0068	< 0.0053
	74-83-9	Bromomethane	3,100	3,600	< 0.012	< 0.014	< 0.011
	78-93-3	2-Butanone	25,000	45,000	< 0.093	< 0.10	< 0.079
	75-15-0	Carbon disulfide	850	520	< 0.062	< 0.068	< 0.053
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0062	< 0.0068	< 0.0053
	108-90-7	Chlorobenzene	620	290	< 0.0062	< 0.0068	< 0.0053
	67-66-3	Chloroform	3,400	2,500	< 0.0062	< 0.0068	< 0.0053
	124-48-1	Dibromochloromethane	1,400	890	< 0.0062	< 0.0068	< 0.0053
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0062	< 0.0068	< 0.0053
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0062	< 0.0068	< 0.0053
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0062	< 0.0068	< 0.0053
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0062	< 0.0068	< 0.0053
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0062	< 0.0068	< 0.0053
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0062	< 0.0068	< 0.0053
		cis-1,3-Dichloropropene	1,000	850	< 0.0025	< 0.0028	< 0.0022
		trans-1,3-Dichloropropene	1,000	850	< 0.0025	< 0.0028	< 0.0022
	100-41-4	Ethylbenzene	350	150	< 0.0062	< 0.0068	< 0.0053
	75-09-2	Methylene chloride	2,500	3,000	< 0.012	< 0.014	< 0.011
		Methyl tert-butyl ether	8,400	11,000	< 0.0062	< 0.0068	< 0.0053
	100-42-5	Styrene	630	260	< 0.0062	< 0.0068	< 0.0053
	127-18-4	Tetrachloroethene	800	310	< 0.0062	< 0.0068	< 0.0053
	108-88-3	Toluene	580	290	< 0.0062	< 0.0068	< 0.0053
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0062	< 0.0068	< 0.0053
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0062	< 0.0068	< 0.0053
	79-01-6	Trichloroethene	1,200	650	< 0.0062	< 0.0068	< 0.0053
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0062	< 0.0068	< 0.0053
	1330-20-7	Xylenes, Total	280	110	< 0.018	< 0.020	< 0.016
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.22	< 0.21	< 0.20
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.22	< 0.21	< 0.20
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.22	< 0.21	< 0.20
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.22	< 0.21	< 0.20
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.22	< 0.21	< 0.20
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.1	< 1.0	< 0.98
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.22	< 0.21	< 0.20
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.22	< 0.21	< 0.20
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.22	< 0.21	< 0.20
	84-66-2	Diethyl phthalate	2,200	920	< 0.22	< 0.21	< 0.20
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.22	< 0.21	< 0.20
	78-59-1	Isophorone	3,000	3,000	< 0.22	< 0.21	< 0.20
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.042	< 0.041	< 0.039
	98-95-3	Nitrobenzene	710	590	< 0.042	< 0.041	< 0.039
INORG	7439-97-6	Mercury	3.1	N/A	< 0.024	0.028	< 0.021

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-010 19010565-011 19010565-012 Client Sample ID: A-10 A-11 A-12 Date Collected: 01/22/2019 08:15 01/22/2019 08:30 01/22/2019 08:45

				ts for Chemicals With oint < 30°C			
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			
VOC	67-64-1	Acetone	100,000	200,000	0.17	0.15	< 0.085
	71-43-2	Benzene	800	580	< 0.0071	< 0.0062	< 0.0058
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0071	< 0.0062	< 0.0058
	75-25-2	Bromoform	2,000	1,200	< 0.0071	< 0.0062	< 0.0058
	74-83-9	Bromomethane	3,100	3,600	< 0.014	< 0.012	< 0.011
	78-93-3	2-Butanone	25,000	45,000	< 0.11	< 0.092	< 0.085
	75-15-0	Carbon disulfide	850	520	< 0.071	< 0.062	< 0.058
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0071	< 0.0062	< 0.0058
	108-90-7	Chlorobenzene	620	290	< 0.0071	< 0.0062	< 0.0058
	67-66-3	Chloroform	3,400	2,500	< 0.0071	< 0.0062	< 0.0058
	124-48-1	Dibromochloromethane	1,400	890	< 0.0071	< 0.0062	< 0.0058
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0071	< 0.0062	< 0.0058
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0071	< 0.0062	< 0.0058
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0071	< 0.0062	< 0.0058
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0071	< 0.0062	< 0.0058
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0071	< 0.0062	< 0.0058
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0071	< 0.0062	< 0.0058
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0028	< 0.0024	< 0.0023
		trans-1,3-Dichloropropene	1,000	850	< 0.0028	< 0.0024	< 0.0023
	100-41-4	Ethylbenzene	350	150	< 0.0071	< 0.0062	< 0.0058
	75-09-2	Methylene chloride	2,500	3,000	< 0.014	< 0.012	< 0.011
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0071	< 0.0062	< 0.0058
	100-42-5	Styrene	630	260	< 0.0071	< 0.0062	< 0.0058
	127-18-4	Tetrachloroethene	800	310	< 0.0071	< 0.0062	< 0.0058
	108-88-3	Toluene	580	290	< 0.0071	< 0.0062	< 0.0058
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0071	< 0.0062	< 0.0058
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0071	< 0.0062	< 0.0058
	79-01-6	Trichloroethene	1,200	650	< 0.0071	< 0.0062	< 0.0058
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0071	< 0.0062	< 0.0058
		Xylenes, Total	280	110	< 0.021	< 0.018	< 0.018
svoc	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.22	< 0.21
0.00	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.22	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.22	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.22	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.22	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.1	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.22	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.22	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.22	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.22	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.22	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.22	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.041	< 0.042	< 0.041
	98-95-3	Nitrobenzene	710	590	< 0.041	< 0.042	< 0.041
NODC	7439-97-6		3.1	N/A	< 0.023	0.025	< 0.020
DAORII	17370710	Ivicious y	J.1	IVA	~ U.UZJ	0.023	7 0.020

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-013 19010565-014 19010565-015
Client Sample ID: A-13 A-14 A-15
Date Collected: 01/22/2019 09:00 01/22/2019 09:15 01/22/2019 09:30

				ts for Chemicals With pint < 30°C			
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			•
VOC	67-64-1	Acetone	100,000	200,000	< 0.076	< 0.078	0.084
	71-43-2	Benzene	800	580	< 0.0050	< 0.0052	< 0.0055
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0050	< 0.0052	< 0.0055
	75-25-2	Bromoform	2,000	1,200	< 0.0050	< 0.0052	< 0.0055
	74-83-9	Bromomethane	3,100	3,600	< 0.010	< 0.011	< 0.011
	78-93-3	2-Butanone	25,000	45,000	< 0.076	< 0.078	< 0.083
	75-15-0	Carbon disulfide	850	520	< 0.050	< 0.052	< 0.055
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0050	< 0.0052	< 0.0055
	108-90-7	Chlorobenzene	620	290	< 0.0050	< 0.0052	< 0.0055
	67-66-3	Chloroform	3,400	2,500	< 0.0050	< 0.0052	< 0.0055
	124-48-1	Dibromochloromethane	1,400	890	< 0.0050	< 0.0052	< 0.0055
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0050	< 0.0052	< 0.0055
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0050	< 0.0052	< 0.0055
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0050	< 0.0052	< 0.0055
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0050	< 0.0052	< 0.0055
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0050	< 0.0052	< 0.0055
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0050	< 0.0052	< 0.0055
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0020	< 0.0021	< 0.0022
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0020	< 0.0021	< 0.0022
	100-41-4	Ethylbenzene	350	150	< 0.0050	< 0.0052	< 0.0055
	75-09-2	Methylene chloride	2,500	3,000	< 0.010	< 0.011	< 0.011
		Methyl tert-butyl ether	8,400	11,000	< 0.0050	< 0.0052	< 0.0055
	100-42-5	Styrene	630	260	< 0.0050	< 0.0052	< 0.0055
	127-18-4	Tetrachloroethene	800	310	< 0.0050	< 0.0052	< 0.0055
	108-88-3	Toluene	580	290	< 0.0050	< 0.0052	< 0.0055
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0050	< 0.0052	< 0.0055
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0050	< 0.0052	< 0.0055
	79-01-6	Trichloroethene	1,200	650	< 0.0050	< 0.0052	< 0.0055
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0050	< 0.0052	< 0.0055
		Xylenes, Total	280	110	< 0.015	< 0.016	< 0.017
svoc	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.22	< 0.22
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.22	< 0.22
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.22	< 0.22
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.22	< 0.22
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.22	< 0.22
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.1	< 1.1
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.22	< 0.22
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.22	< 0.22
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.22	< 0.22
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.22	< 0.22
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.22	< 0.22
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.22	< 0.22
		N-Nitrosodi-n-propylamine	1,900	2,300	< 0.040	< 0.043	< 0.043
	98-95-3	Nitrobenzene	710	590	< 0.040	< 0.043	< 0.043
INORG	7439-97-6	Mercury	3.1	N/A	0.025	0.027	0.025

Project: Franklin-EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010565-016 19010565-017
Client Sample ID: A-16 A-17
Date Collected: 01/22/2019 09:45 01/22/2019 10:00

				ts for Chemicals With bint < 30°C		
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route		
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
VOC	67-64-1	Acetone	100,000	200,000	< 0.082	< 0.076
	71-43-2	Benzene	800	580	< 0.0054	< 0.0051
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0054	< 0.0051
	75-25-2	Bromoform	2,000	1,200	< 0.0054	< 0.0051
	74-83-9	Bromomethane	3,100	3,600	< 0.011	< 0.010
	78-93-3	2-Butanone	25,000	45,000	< 0.082	< 0.076
	75-15-0	Carbon disulfide	850	520	< 0.054	< 0.051
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0054	< 0.0051
	108-90-7	Chlorobenzene	620	290	< 0.0054	< 0.0051
	67-66-3	Chloroform	3,400	2,500	< 0.0054	< 0.0051
	124-48-1	Dibromochloromethane	1,400	890	< 0.0054	< 0.0051
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0054	< 0.0051
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0054	< 0.0051
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0054	< 0.0051
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0054	< 0.0051
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0054	< 0.0051
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0054	< 0.0051
		cis-1,3-Dichloropropene	1,000	850	< 0.0022	< 0.0020
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0022	< 0.0020
	100-41-4	Ethylbenzene	350	150	< 0.0054	< 0.0051
	75-09-2	Methylene chloride	2,500	3,000	< 0.011	< 0.010
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0054	< 0.0051
	100-42-5	Styrene	630	260	< 0.0054	< 0.0051
	127-18-4	Tetrachloroethene	800	310	< 0.0054	< 0.0051
	108-88-3	Toluene	580	290	< 0.0054	< 0.0051
*	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0054	< 0.0051
_	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0054	< 0.0051
	79-01-6	Trichloroethene	1,200	650	< 0.0054	< 0.0051
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0054	< 0.0051
			280	110	< 0.017	< 0.015
svoc		1,2,4-Trichlorobenzene	340	120	< 0.22	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.22	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.22	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.22	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.22	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.1	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.22	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.22	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.22	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.22	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.22	< 0.21
	78-59-1	lsophorone	3,000	3,000	< 0.22	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.043	< 0.041
	98-95-3	Nitrobenzene	710	590	< 0.043	< 0.041
INORG	7439-97-6	Mercury	3.1	N/A	0.030	0.022

Project: Franklin-EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		A-1	13000	9,500	Within MSA Background
		A-10	13000	9,200	Outside MSA Background
		A-11	13000		
		A-12	15000		
		A-13	14000		
		A-14	12000	i	
	İ	A-15	14000	!	
		A-16	12000		
INORG	Aluminum	A-17	13000	1	
		A-2	14000	1	
		A-3	15000	1	
		A-4	13000		
		A-5	15000		
		A-6	16000	1	
		A-7	17000		
		A-8	14000		
		A-9	16000	ļ	
INORG	Arsenic	A-13 A-2	12 13	11.3	Outside MSA Background
—		A-13	120	110	Within MSA Background
INORG	Barium	A-3	120		Within Mort Duong.com
	-	A-1	0.80	0.59	Within MSA Background
		A-10	0.81	0.56	Outside MSA Background
		A-11	0.81	""	Cultural Parings and
		A-12	0.91		
		A-13	0.94	1	
		A-14	0.70	1	
		A-15	0.79		
		A-16	0.73		
INORG	Beryllium	A-17	0.82	1	
1	,	A-2	0.91	1	
		A-3	1.0	1	
		A-4	0.84	1	
		A-5	1.0	1	
		A-6	0.97		
		A-7	1.1	i i	
		A-8	0.83	1	
		A-9	0.97	1	
		A-1	69000	9,300	Within MSA Background
		A-10	61000	5,525	Outside MSA Background
		A-11	64000		.
		A-12	81000		
		A-13	76000		
		A-14	61000		
		A-15	56000		
		A-16	71000		
INORG	Calcium	A-17	65000		İ
		A-2	64000	ļ l	
		A-3	68000	<u> </u>	
		A-4	66000		
		A-5	63000		
		A-6	74000		
		A-7	67000		
		A-8	60000		
		A-9	76000		
		Λ-2	/0000	<u> </u>	

Project: Franklin-EB

	<u> </u>		Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		A-1	24	24	pH Specific SCGIR Class I
		A-10	26	28	pH Specific SCGIR Class I
		A-11	26	16.2	Within MSA Background
		A-12	30	13.0	Outside MSA Background
		A-13	29		
		A-14	23		
		A-15	27		
		A-16	24		
INORG	Chromium	A-17	26		
		A-2	28		
		A-3	30		
		A-4	26		
		A-5	30		
		A-6	32		
		A-7	35		
		A-8	28		
		A-9	30	l	
		A-1	11	8.9	Within MSA Background
		A-10	10	8.9	Outside MSA Background
	1	A-11	14		~
		A-12	15		
		A-13	16		
		A-14	9.6		
		A-15	16		
		A-16	9.9		
INORG	Cobalt	A-17	12		
		A-2	20		
		A-3	14		
		A-4	12		
		A-5	12		
		A-6	15		
		A-7	16		
		A-8	18]	
		A-9	16		
		A-1	26	19.6	Within MSA Background
		A-10	25	12.0	Outside MSA Background
		A-11	28		
		A-12	29		
		A-13	39		
		A-14	27	ļ	
		A-15	21		
		A-16	30		
INORG	Copper	A-10 A-17	30		
11.01.0	Соррсі	A-17 A-2	29		
		A-3	31		
		A-4	23		
		A-5	29		
		A-5 A-6	29		
		A-0 A-7	32		
		A-7 A-8	32 29		
		A-8 A-9	31		
	-	A-16	0.59	0.51	Within MSA Background
INORG	Cyanide				Outside MSA Background
	L	A-17	1.1	0.50	Outside MISA Dackground

Project: Franklin-EB

			Concentration	TACO Tier 1	• • • •
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
Test	Chemicai	A-1	23000	15,900	Within MSA Background
		A-10	24000	15,000	Outside MSA Background
		A-10 A-11	26000	13,000	Outside MISA Dackground
			30000		
		A-12	33000		
		A-13			,
		A-14	27000	1	
		A-15	23000		
DIODG	.	A-16	26000		
INORG	Iron	A-17	27000		
		A-2	25000		
		A-3	30000		
		A-4	24000		
		A-5	33000		•
		A-6	27000		
		A-7	34000		
		A-8	24000		
		A-9	27000		
		A-1	34000	4,820	Within MSA Background
		A-10	31000	2,700	Outside MSA Background
		A-11	32000		
		A-12	39000		
		A-13	40000		
		A-14	31000		
		A-15	26000		,
		A-16	39000	1	
INORG	Magnesium	A-17	34000		
	-	A-2	33000		
		A-3	35000		
		A-4	32000		
		A-5	31000		
		A-6	37000		
		A-7	33000		
•		A-8	31000		
		A-9	38000		
		A-1	31	18.0	Within MSA Background
		A-10	31	13.0	Outside MSA Background
		A-11	39		Ĭ
		A-12	41		,
		A-13	45		
	l ⁻	A-14	30	1	
		A-15	41	1	
		A-16	31		
INORG	Nickel	A-17	36	1	
		A-2	53]	
		A-3	42		
		A-4	36		
		A-5	38		
		A-6	41		
		A-0 A-7	47		
		A-7 A-8	46		
			40		
	L	A-9	44	I	

Project: Franklin-EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		A-1	2900	1,268	Within MSA Background
		A-10	3300	1,100	Outside MSA Background
		A-11	3100		-
		A-12	3600	1	
		A-13	3800	1	
	1	A-14	2800		
	j	A-15	3400		
		A-16	2700		
INORG	Potassium	A-17	3100		
		A-2	3700		
		A-3	3600		
		A-4	3400		
		A-5	4000		
		A-6	4100		•
		A-7	4100		
		A-8	3700		
		A-9	4100	<u> </u>	
		A-10	1.4	0.48	Within MSA Background
ľ		A-11	1.3	0.37	Outside MSA Background
		A-12	1.4		
		A-13	1.6		
		A-14	1.7		
		A-15	1.5		
nione	6-1	A-16	1.4		
INORG	Selenium	A-17	1.4		
		A-4	1.3		
		A-5	1.1		
		A-6	1.4		
		A-7	1.3		
		A-8	1.4		
		A-9	1.3		
		A-1	810	130	Within MSA Background
		A-10	190	130.0	Outside MSA Background
		A-11	190		
		A-12	210		
		A-13	200		
		A-14	170		
		A-15	170		
		A-16	180]	
INORG	Sodium	A-17	180		
		A-2	210] [
		A-3	210		
		A-4	190	j	
		A-5	210		
		A-6	220		
		A-7	230		
		A-8	190		
		A-9	230	<u> </u>	

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		A-1	29	25.2	Within MSA Background
		A-10	29	25.0	Outside MSA Background
		A-11	28		
ŀ		A-12	31		
		A-13	31		
		A-14	29		
Ì		A-15	27		
		A-16	29		
INORG	Vanadium	A-17	28		
		A-2	30		
		A-3	30		
		A-4	26		
		A-5	31		
		A-6	33		
		A-7	34		
		A-8	28		
		A-9	33		
DIODG		A-13	63	60.2	Outside MSA Background
INORG	Zinc	A-7	62	i	_
TCLP	T 4	A-11	0.014 *	0.0075	SCGIR Class I
ICLP	Lead	A-9	0.010 *		
		A-1	2.5 *	0.15	SCGIR Class I
	1	A-10	2.9 *		
		A-11	5.5 *		
		A-12	3.5 *		
		A-13	3.6 *		
		A-14	2.3 *		
		A-15	2.7 *		
	l i	A-16	2.3 *		
TCLP	Manganese	A-17	3.3 *		
		A-2	3.4 *	1 .	
		A-3	2.2 *		
		A-4	3.7 *		
		A-5	3.5 *]	
		A-6	3.0 *		
		A-7	4.0 *		
		A-8	3.4 *		
]]	A-9	7.0 *		
TOLD	NI:-11	A-11	0.12 *	0.1	SCGIR Class I
TCLP	Nickel	A-3	0.15 *		

Project: Franklin-EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
TCLP	Manganese	Sample Number A-1	2.5 *	0.15	SCGIR Class I
TCLP	Manganese	A-2	3.4 *	0.15	SCGIR Class I
TCLP	Manganese	A-3	2.2 *	0.15	SCGIR Class I
TCLP	Nickel	A-3	0.15 *	0.13	SCGIR Class I
TCLP	Manganese	A-4	3.7 *	0.15	SCGIR Class I
TCLP	Manganese	A-5	3.5 *	0.15	SCGIR Class I
TCLP	Manganese	A-6	3.0 *	0.15	SCGIR Class I
TCLP	Manganese	A-7	4.0 *	0.15	SCGIR Class I
TCLP	Manganese	A-8	3.4 *	0.15	SCGIR Class I
TCLP	Lead	A-9	0.010 *	0.0075	SCGIR Class I
TCLP	Manganese	A-9	7.0 *	0.15	SCGIR Class I
TCLP	Manganese	A-10	2.9 *	0.15	SCGIR Class I
TCLP	Lead	A-11	0.014 *	0.0075	SCGIR Class I
TCLP	Manganese	A-11	5.5 *	0.15	SCGIR Class I
TCLP	Nickel	A-11	0.12 *	0.1	SCGIR Class I
TCLP	Manganese	A-12	3.5 *	0.15	SCGIR Class I
TCLP	Manganese	A-13	3.6 *	0.15	SCGIR Class I
TCLP	Manganese	A-14	2.3 *	0.15	SCGIR Class I
TCLP	Manganese	A-15	2.7 *	0.15	SCGIR Class I
TCLP	Manganese	A-16	2.3 *	0.15	SCGIR Class I
TCLP	Manganese	A-17	3.3 *	0.15	SCGIR Class I
INORG	Chromium	A-3	30	28	pH Specific SCGIR Class I
INORG	Chromium	A-5	30	28	pH Specific SCGIR Class I
INORG	Chromium	A-6	32	28	pH Specific SCGIR Class I
INORG	Chromium	A-7	35	28	pH Specific SCGIR Class I
INORG	Chromium	A-12	30	28	pH Specific SCGIR Class I
INORG	Chromium	A-13	29	28	pH Specific SCGIR Class I
INORG	Chromium	A-15	27	24	pH Specific SCGIR Class I
INORG	Aluminum	A-1	13000	9,500	Within MSA Background
INORG	Beryllium	A-1	0.80	0.59	Within MSA Background
INORG	Calcium	A-1	69000	9,300	Within MSA Background
INORG	Chromium	A-1	24	16.2	Within MSA Background
INORG	Cobalt	A-1	11	8.9	Within MSA Background
INORG	Copper	A-1	26	19.6	Within MSA Background
INORG	Iron	A-1	23000	15,900	Within MSA Background
INORG	Magnesium	A-1	34000	4,820	Within MSA Background
INORG	Nickel	A-1	31	18.0	Within MSA Background
INORG	Potassium	A-1	2900	1,268	Within MSA Background
INORG	Sodium	A-1	810	130	Within MSA Background
INORG	Vanadium	A-1	29	25.2	Within MSA Background
INORG	Aluminum	A-2	14000	9,500	Within MSA Background
INORG	Beryllium	A-2	0.91	0.59	Within MSA Background
INORG	Calcium	A-2	64000	9,300	Within MSA Background
INORG	Chromium	A-2	28	16.2	Within MSA Background
INORG	Cobalt	A-2	20 29	8.9 19.6	Within MSA Background Within MSA Background
INORG	Copper	A-2	25000		Within MSA Background Within MSA Background
INORG INORG	Iron Magnesium	A-2 A-2	33000	15,900 4,820	Within MSA Background Within MSA Background
INORG	Magnesium Nickel		53	18.0	Within MSA Background Within MSA Background
INORG	Potassium	A-2 A-2	3700	1,268	Within MSA Background
INORG	Sodium	A-2 A-2	210	130	Within MSA Background Within MSA Background
INORG	Vanadium	A-2 A-2	30	25.2	Within MSA Background
INORG	Aluminum	A-2 A-3	15000	9,500	Within MSA Background
INORG	Barium	A-3	120	110	Within MSA Background
INORG	Beryllium	A-3	1.0	0.59	Within MSA Background
INORG	Calcium	A-3	68000	9,300	Within MSA Background
INORG	Chromium	A-3	30	16.2	Within MSA Background
INORG	Cobalt	A-3	14	8.9	Within MSA Background
			.		

^{* -} result and RO units are mg/L

Project: Franklin-EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Copper	A-3	31	19.6	Within MSA Background
INORG	Iron	A-3	30000	15,900	Within MSA Background
INORG	Magnesium	A-3	35000	4,820	Within MSA Background
INORG	Nickel	A-3	42	18.0	Within MSA Background
INORG	Potassium	A-3	3600	1,268	Within MSA Background
INORG	Sodium	A-3	210	130	Within MSA Background
INORG	Vanadium	A-3	30	25.2	Within MSA Background
INORG	Aluminum	A-4	13000	9,500	Within MSA Background
INORG	Beryllium	A-4	0.84	0.59	Within MSA Background
INORG	Calcium	A-4	66000	9,300	Within MSA Background
INORG	Chromium	A-4	26	16.2	Within MSA Background
INORG	Cobalt	A-4	12	8.9	Within MSA Background
INORG	Copper	A-4	23	19.6	Within MSA Background
INORG	lron	A-4	24000	15,900	Within MSA Background
INORG	Magnesium	A-4	32000	4,820	Within MSA Background
INORG	Nickel	A-4	36	18.0	Within MSA Background
INORG	Potassium	A-4	3400	1,268	Within MSA Background
INORG	Selenium	A-4	1.3	0.48	Within MSA Background
INORG	Sodium	A-4	190	130	Within MSA Background
INORG	Vanadium	A-4	26	25.2	Within MSA Background
INORG	Aluminum	A-5	15000	9,500	Within MSA Background
INORG	Beryllium	A-5	1.0	0.59	Within MSA Background
INORG	Calcium	A-5	63000	9,300	Within MSA Background
INORG	Chromium	A-5	30	16.2	Within MSA Background
INORG	Cobalt	A-5	12	8.9	Within MSA Background
INORG	Copper	A-5	29	19.6	Within MSA Background
INORG	Iron	A-5	33000	15,900	Within MSA Background
INORG	Magnesium	A-5	31000	4,820	Within MSA Background
INORG	Nickel	A-5	38	18.0	Within MSA Background
INORG	Potassium	A-5	4000	1,268	Within MSA Background
INORG	Selenium	A-5	1.1	0.48	Within MSA Background
INORG	Sodium	A-5	210	130	Within MSA Background
INORG	Vanadium	A-5	31	25.2	Within MSA Background
INORG	Aluminum	A-6	16000	9,500	Within MSA Background
INORG	Beryllium	A-6	0.97	0.59	Within MSA Background
INORG	Calcium	A-6	74000	9,300	Within MSA Background
INORG	Chromium	A-6	32	16.2	Within MSA Background
INORG	Cobalt	A-6	15	8.9	Within MSA Background
INORG	Copper	A-6	29	19.6	Within MSA Background
INORG	Iron	A-6	27000	15,900	Within MSA Background
INORG	Magnesium	A-6	37000	4,820	Within MSA Background Within MSA Background
INORG	Nickel	A-6	41	18.0	
INORG	Potassium	A-6	4100	1,268	Within MSA Background Within MSA Background
INORG	Selenium	A-6	1.4	0.48	
INORG	Sodium	A-6	220	25.2	Within MSA Background Within MSA Background
INORG	Vanadium	A-6	33 17000	9,500	Within MSA Background Within MSA Background
INORG	Aluminum Beryllium	A-7	1.1	0.59	Within MSA Background Within MSA Background
INORG		A-7	67000	9,300	Within MSA Background Within MSA Background
	Chromium	A-7	35	16.2	Within MSA Background Within MSA Background
INORG INORG	Chromium Cobalt	A-7 A-7	16	8.9	Within MSA Background Within MSA Background
INORG		A-7 A-7	32	19.6	Within MSA Background Within MSA Background
INORG	Copper Iron	A-7 A-7	34000	15,900	Within MSA Background Within MSA Background
				4,820	Within MSA Background Within MSA Background
INORG	Magnesium	A-7	33000 47		Within MSA Background Within MSA Background
INORG	Nickel	A-7		18.0	Within MSA Background Within MSA Background
INORG	Potassium_	A-7	4100	1,268	Within MSA Background Within MSA Background
INORG	Selenium	A-7	1.3	0.48	
INORG	Sodium	A-7	230	130	Within MSA Background

^{* -} result and RO units are mg/L

Project: Franklin-EB

_			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Vanadium	A-7	34	25.2	Within MSA Background
INORG	Aluminum	A-8	14000	9,500	Within MSA Background
INORG	Beryllium	A-8	0.83	0.59	Within MSA Background
INORG	Calcium	A-8	60000	9,300	Within MSA Background
INORG	Chromium	A-8	28	16.2	Within MSA Background
INORG	Cobalt	A-8	18	8.9	Within MSA Background
INORG	Copper	A-8	29	19.6	Within MSA Background
INORG	Iron	A-8	24000	15,900	Within MSA Background
INORG	Magnesium	A-8	31000	4,820	Within MSA Background
INORG	Nickel	A-8	46	18.0	Within MSA Background
INORG	Potassium	A-8	3700	1,268	Within MSA Background
INORG	Selenium	A-8	1.4	0.48	Within MSA Background
INORG	Sodium	A-8	190	130	Within MSA Background
INORG	Vanadium	A-8	28	25.2	Within MSA Background
INORG	Aluminum	A-9	16000	9,500	Within MSA Background
INORG	Beryllium	A-9	0.97	0.59	Within MSA Background
INORG	Calcium	A-9	76000	9,300	Within MSA Background
INORG	Chromium	A-9	30	16.2	Within MSA Background
INORG	Cobalt	A-9	16	8.9	Within MSA Background
INORG	Copper	A-9	31	19.6	Within MSA Background
INORG	Iron	A-9	27000	15,900	Within MSA Background
INORG	Magnesium	A-9	38000	4,820	Within MSA Background
INORG	Nickel	A-9	42	18.0	Within MSA Background
INORG	Potassium	A-9 A-9	4100	1,268	Within MSA Background Within MSA Background
					Within MSA Background Within MSA Background
INORG	Selenium	A-9	1.3	0.48	
INORG	Sodium	A-9	230	130	Within MSA Background
INORG	Vanadium	A-9	33	25.2	Within MSA Background
INORG	Aluminum	A-10	13000	9,500	Within MSA Background
INORG	Beryllium	A-10	0.81	0.59	Within MSA Background
INORG	Calcium	A-10	61000	9,300	Within MSA Background
INORG	Chromium	A-10	26	16.2	Within MSA Background
INORG	Cobalt	A-10	10	8.9	Within MSA Background
INORG	Copper	A-10	25	19.6	Within MSA Background
INORG	Iron	A-10	24000	15,900	Within MSA Background
INORG	Magnesium	A-10	31000	4,820	Within MSA Background
INORG	Nickel	A-10	31	18.0	Within MSA Background
INORG	Potassium	A-10	3300	1,268	Within MSA Background
INORG	Selenium	A-10	1.4	0.48	Within MSA Background
INORG	Sodium	A-10	190	130	Within MSA Background
INORG	Vanadium	A-10	29	25.2	Within MSA Background
INORG	Aluminum	A-11	13000	9,500	Within MSA Background
INORG	Beryllium	A-11	0.81	0.59	Within MSA Background
INORG	Calcium	A-11	64000	9,300	Within MSA Background
INORG	Chromium	A-11	26	16.2	Within MSA Background
INORG	Cobalt	A-11	14	8.9	Within MSA Background
INORG	Copper	A-11	28	19.6	Within MSA Background
INORG	Iron	A-11	26000	15,900	Within MSA Background
INORG	Magnesium	A-11	32000	4,820	Within MSA Background
INORG	Nickel	A-11	39	18.0	Within MSA Background
INORG	Potassium	A-11	3100	1,268	Within MSA Background
INORG	Selenium	A-11	1.3	0.48	Within MSA Background
INORG	Sodium	A-11 A-11	190	130	Within MSA Background
	-		28	25.2	Within MSA Background Within MSA Background
INORG	Vanadium	A-11			
INORG	Aluminum	A-12	15000	9,500	Within MSA Background
INORG	Beryllium	A-12	0.91	0.59	Within MSA Background
INORG	Calcium	A-12	81000	9,300	Within MSA Background
INORG	Chromium	A-12	30	16.2	Within MSA Background
INORG	Cobalt	A-12	15	8.9	Within MSA Background

^{* -} result and RO units are mg/L

Project: Franklin-EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Copper	A-12	29	19.6	Within MSA Background
INORG	Iron	A-12 A-12	30000	15,900	Within MSA Background
		A-12 A-12	39000	4,820	Within MSA Background
INORG	Magnesium				·
INORG	Nickel	A-12	41	18.0	Within MSA Background
INORG	Potassium	A-12	3600	1,268	Within MSA Background
INORG	Selenium	A-12	1.4	0.48	Within MSA Background
INORG	Sodium	A-12	210	130	Within MSA Background
INORG	Vanadium	A-12	31	25.2	Within MSA Background
INORG	Aluminum	A-13	14000	9,500	Within MSA Background
INORG	Barium	A-13	120	110	Within MSA Background
INORG	Beryllium	A-13	0.94	0.59	Within MSA Background
INORG	Calcium	A-13	76000	9,300	Within MSA Background
INORG	Chromium	A-13	29	16.2	Within MSA Background
INORG	Cobalt	A-13	16	8.9	Within MSA Background
INORG	Copper	A-13	39	19.6	Within MSA Background
INORG	Iron	A-13	33000	15,900	Within MSA Background
INORG	Magnesium	A-13	40000	4,820	Within MSA Background
INORG	Nickel	A-13	45	18.0	Within MSA Background
INORG	Potassium	A-13	3800	1,268	Within MSA Background
INORG	Selenium	A-13	1.6	0.48	Within MSA Background
INORG	Sodium	A-13	200	130	Within MSA Background
			31	25.2	Within MSA Background
INORG	Vanadium	A-13			
INORG	Aluminum	A-14	12000	9,500	Within MSA Background
INORG	Beryllium	A-14	0.70	0.59	Within MSA Background
INORG	Calcium	A-14	61000	9,300	Within MSA Background
INORG	Chromium	A-14	23	16.2	Within MSA Background
ÎNORG	Cobalt	A-14	9.6	8.9	Within MSA Background
INORG	Copper	A-14	27	19.6	Within MSA Background
INORG	lron	A-14	27000	15,900	Within MSA Background
INORG	Magnesium	A-14	31000	4,820	Within MSA Background
INORG	Nickel	A-14	30	18.0	Within MSA Background
INORG	Potassium	A-14	2800	1,268	Within MSA Background
INORG	Selenium	A-14	1.7	0.48	Within MSA Background
INORG	Sodium	A-14	170	130	Within MSA Background
INORG	Vanadium	A-14	29	25.2	Within MSA Background
INORG	Aluminum	A-15	14000	9,500	Within MSA Background
INORG	Beryllium	A-15	0.79	0.59	Within MSA Background
INORG	Calcium	A-15	56000	9,300	Within MSA Background
INORG		A-15	27	16.2	Within MSA Background
INORG	Cobalt	A-15	16	8.9	Within MSA Background
INORG	Copper	A-15	21	19.6	Within MSA Background
INORG	Iron	A-15	23000	15,900	Within MSA Background
INORG	Magnesium	A-15	26000	4,820	Within MSA Background
INORG	Nickel	A-15	41	18.0	Within MSA Background
INORG	Potassium	A-15	3400	1,268	Within MSA Background
INORG	Selenium	A-15	1.5	0.48	Within MSA Background
INORG	Sodium	A-15	170	130	Within MSA Background
INORG	Vanadium	A-15	27	25.2	Within MSA Background
INORG	Aluminum	A-16	12000	9,500	Within MSA Background
INORG	Beryllium	A-16	0.73	0.59	Within MSA Background
INORG	Calcium	A-16	71000	9,300	Within MSA Background
INORG	Chromium	A-16	24	16.2	Within MSA Background
INORG	Cobalt	A-16	9.9	8.9	Within MSA Background
INORG	Copper	A-16	30	19.6	Within MSA Background
INORG	Cyanide	A-16	0.59	0.51	Within MSA Background
INORG	Iron	A-16	26000	15,900	Within MSA Background
INORG	Magnesium	A-16	39000	4,820	Within MSA Background
					Within MSA Background Within MSA Background
INORG	Nickel	A-16	31	18.0	WILLIAM DACKGROUNG

^{* -} result and RO units are mg/L

Project: Franklin-EB

	<u></u>		Concentration	TACO Tier 1	F
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Potassium	A-16	2700	1,268	Within MSA Background
INORG	Selenium	A-16	1.4	0.48	Within MSA Background
INORG	Sodium	A-16	180	130	Within MSA Background
INORG	Vanadium	A-16	29	25.2	Within MSA Background
INORG	Aluminum	A-17	13000	9,500	Within MSA Background
INORG	Beryllium	A-17	0.82	0.59	Within MSA Background
INORG	Calcium	A-17	65000	9,300	Within MSA Background
INORG	Chromium	A-17	26	16.2	Within MSA Background
INORG	Cobalt	A-17	12	8.9	Within MSA Background
INORG	Copper	A-17	30	19.6	Within MSA Background
INORG	Cyanide	A-17	1.1	0.51	Within MSA Background
INORG	lron	A-17	27000	15,900	Within MSA Background
INORG	Magnesium	A-17	34000	4,820	Within MSA Background
INORG	Nickel	A-17	36	18.0	Within MSA Background
INORG	Potassium	A-17	3100	1,268	Within MSA Background
INORG	Selenium	A-17	1.4	0.48	Within MSA Background
INORG	Sodium		180	130	Within MSA Background
		A-17			
INORG	Vanadium	A-17	28	25.2	Within MSA Background
INORG	Aluminum	A-1	13000	9,200	Outside MSA Background
INORG	Beryllium	A-1	0.80	0.56	Outside MSA Background
INORG	Calcium	A-1	69000	5,525	Outside MSA Background
INORG	Chromium	A-1	24	13.0	Outside MSA Background
INORG	Cobalt	A-1	11	8.9	Outside MSA Background
INORG	Copper	A-1	26	12.0	Outside MSA Background
INORG	Iron	A-1	23000	15,000	Outside MSA Background
INORG	Magnesium	A-1	34000	2,700	Outside MSA Background
INORG	Nickel	A-1	31	13.0	Outside MSA Background
INORG	Potassium	A-1	2900	1,100	Outside MSA Background
INORG	Sodium	A-1	810	130.0	Outside MSA Background
INORG	Vanadium	A-1	29	25.0	Outside MSA Background
INORG	Aluminum	A-2	14000	9,200	Outside MSA Background
INORG	Arsenic	A-2	13	11.3	Outside MSA Background
INORG	Beryllium	A-2	0.91	0.56	Outside MSA Background
INORG	Calcium	A-2	64000	5,525	Outside MSA Background
INORG	Chromium	A-2	28	13.0	Outside MSA Background
INORG	Cobalt	A-2	20	8.9	Outside MSA Background
INORG			29	12.0	
	Copper	A-2			Outside MSA Background
INORG	Iron	A-2	25000	15,000	Outside MSA Background
	Magnesium	A-2	33000	2,700	Outside MSA Background
INORG	Nickel	A-2	53	13.0	Outside MSA Background
INORG	Potassium	A-2	3700	1,100	Outside MSA Background
INORG	Sodium	A-2	210	130.0	Outside MSA Background
INORG	Vanadium	A-2	30	25.0	Outside MSA Background
INORG	Aluminum	A-3	15000	9,200	Outside MSA Background
INORG	Beryllium	A-3	1.0	0.56	Outside MSA Background
INORG	Calcium	A-3	68000	5,525	Outside MSA Background
INORG	Chromium	A-3	30	13.0	Outside MSA Background
INORG	Cobalt	A-3	14	8.9	Outside MSA Background
INORG	Copper	A-3	31	12.0	Outside MSA Background
INORG	Iron	A-3	30000	15,000	Outside MSA Background
INORG	Magnesium	A-3	35000	2,700	Outside MSA Background
INORG	Nickel	A-3	42	13.0	Outside MSA Background
			3600		Outside MSA Background
INORG	Potassium	A-3		1,100	
INORG	Sodium	A-3	210	130.0	Outside MSA Background
INORG	Vanadium	A-3	30	25.0	Outside MSA Background
INORG	Aluminum	A-4	13000	9,200	Outside MSA Background
INORG	Beryllium	A-4	0.84	0.56	Outside MSA Background
INORG	Calcium	A-4	66000	5,525	Outside MSA Background

^{* -} result and RO units are mg/L

Project: Franklin-EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Chromium	A-4	26	13.0	Outside MSA Background
INORG	Cobalt	A-4	12	8.9	Outside MSA Background
INORG	Copper	A-4	23	12.0	Outside MSA Background
INORG	Iron	A-4	24000	15,000	Outside MSA Background
INORG	Magnesium	A-4	32000	2,700	Outside MSA Background
INORG	Nickel	A-4	36	13.0	Outside MSA Background
INORG	Potassium	A-4	3400	1,100	Outside MSA Background
INORG	Selenium	A-4	1.3	0.37	Outside MSA Background
INORG	Sodium	A-4	190	130.0	Outside MSA Background
INORG	Vanadium	A-4	26	25.0	Outside MSA Background
INORG	Aluminum	A-5	15000	9,200	Outside MSA Background
INORG	Beryllium	A-5	1.0	0.56	Outside MSA Background
INORG	Calcium	A-5	63000	5,525	Outside MSA Background
INORG	Chromium	A-5	30	13.0	Outside MSA Background
INORG	Cobalt	A-5	12	8.9	Outside MSA Background
INORG	Copper	A-5	29	12.0	Outside MSA Background
INORG	Iron	A-5	33000	15,000	Outside MSA Background
INORG	Magnesium	A-5	31000	2,700	Outside MSA Background
INORG	Nickel	A-5	38	13.0	Outside MSA Background
INORG	Potassium	A-5 A-5	4000	1,100	Outside MSA Background
INORG	Selenium		1.1	0.37	Outside MSA Background
		A-5			
INORG	Sodium	A-5	210	130.0	Outside MSA Background
INORG	Vanadium	A-5	31	25.0	Outside MSA Background
INORG	Aluminum	A-6	16000	9,200	Outside MSA Background
INORG	Beryllium	A-6	0.97	0.56	Outside MSA Background
INORG	Calcium	A-6	74000	5,525	Outside MSA Background
INORG	Chromium	A-6	32	13.0	Outside MSA Background
INORG	Cobalt	A-6	15	8.9	Outside MSA Background
INORG	Copper	A-6	29	12.0	Outside MSA Background
INORG	Iron	A-6	27000	15,000	Outside MSA Background
INORG	Magnesium	A-6	37000	2,700	Outside MSA Background
INORG	Nickel	A-6	41	13.0	Outside MSA Background
INORG	Potassium	A-6	4100	1,100	Outside MSA Background
INORG	Selenium	A-6	1.4	0.37	Outside MSA Background
INORG	Sodium	A-6	220	130.0	Outside MSA Background
INORG	Vanadium	A-6	33	25.0	Outside MSA Background
INORG	Aluminum	A-7	17000	9,200	Outside MSA Background
INORG	Beryllium	A-7	1.1	0.56	Outside MSA Background
INORG	Calcium	A-7	67000	5,525	Outside MSA Background
INORG	Chromium	A-7	35	13.0	Outside MSA Background
INORG	Cobalt	A-7	16	8.9	Outside MSA Background
INORG	Copper	A-7	32	12.0	Outside MSA Background
INORG	Iron	A-7	34000	15,000	Outside MSA Background
INORG	Magnesium	A-7	33000	2,700	Outside MSA Background
INORG	Nickel	A-7	47	13.0	Outside MSA Background
INORG	Potassium	A-7	4100	1,100	Outside MSA Background
INORG	Selenium	A-7	1.3	0.37	Outside MSA Background
INORG	Sodium	A-7	230	130.0	Outside MSA Background
INORG	Vanadium	A-7	34	25.0	Outside MSA Background
INORG	Zinc	A-7 A-7	62	60.2	Outside MSA Background
			14000	9,200	
INORG	Aluminum	A-8			Outside MSA Background
INORG	Beryllium	A-8	0.83	0.56	Outside MSA Background
INORG	Calcium	A-8	60000	5,525	Outside MSA Background
INORG	Chromium	A-8	28	13.0	Outside MSA Background
INORG	Cobalt	A-8	18	8.9	Outside MSA Background
INORG	Соррег	A-8	29	12.0	Outside MSA Background
INORG	Iron	A-8	24000	15,000	Outside MSA Background
INORG	Magnesium	A-8	31000	2,700	Outside MSA Background

^{* -} result and RO units are mg/L

Project: Franklin-EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Nickel	A-8	46	13.0	Outside MSA Background
INORG	Potassium	A-8	3700	1,100	Outside MSA Background
INORG	Selenium	A-8	1.4	0.37	Outside MSA Background
INORG	Sodium	A-8	190	130.0	Outside MSA Background
INORG	Vanadium	A-8	28	25.0	Outside MSA Background
INORG	Aluminum	A-9	16000	9,200	Outside MSA Background
INORG	Beryllium	A-9	0.97	0.56	Outside MSA Background
INORG	Calcium	A-9	76000	5,525	Outside MSA Background
INORG	Chromium	A-9	30	13.0	Outside MSA Background
INORG	Cobalt	A-9	16	8.9	Outside MSA Background
INORG	Copper	A-9	31	12.0	Outside MSA Background
INORG	Iron	A-9	27000	15,000	Outside MSA Background
INORG	Magnesium	A-9	38000	2,700	Outside MSA Background
INORG	Nickel	A-9	42	13.0	Outside MSA Background
INORG	Potassium	A-9	4100	1,100	Outside MSA Background
INORG	Selenium	A-9	1.3	0.37	Outside MSA Background
INORG	Sodium	A-9	230	130.0	Outside MSA Background
INORG	Vanadium	A-9	33	25.0	Outside MSA Background
INORG	Aluminum	A-10	13000	9,200	Outside MSA Background
INORG	Beryllium	A-10	0.81	0.56	Outside MSA Background
INORG	Calcium	A-10	61000	5,525	Outside MSA Background
INORG	Chromium	A-10	26	13.0	Outside MSA Background
INORG	Cobalt	A-10	10	8.9	Outside MSA Background
INORG	Copper	A-10	25	12.0	Outside MSA Background
INORG	Iron	A-10	24000	15,000	Outside MSA Background
INORG	Magnesium	A-10	31000	2,700	Outside MSA Background
INORG	Nickel	A-10	31	13.0	Outside MSA Background
INORG	Potassium	A-10	3300	1,100	Outside MSA Background
INORG	Selenium	A-10	1.4	0.37	Outside MSA Background
INORG	Sodium	A-10	190	130.0	Outside MSA Background
INORG	Vanadium	A-10	29	25.0	Outside MSA Background
INORG	Aluminum	A-11	13000	9,200	Outside MSA Background
INORG	Beryllium	A-11	0.81	0.56	Outside MSA Background
INORG	Calcium	A-11	64000	5,525	Outside MSA Background
INORG	Chromium	A-11	26	13.0	Outside MSA Background
INORG	Cobalt	A-11	14	8.9	Outside MSA Background
INORG	Copper	A-11	28	12.0	Outside MSA Background
INORG	Iron	A-11	26000	15,000	Outside MSA Background
INORG	Magnesium	A-11	32000	2,700	Outside MSA Background
INORG	Nickel	A-11	39	13.0	Outside MSA Background
INORG	Potassium	A-11	3100	1,100	Outside MSA Background
INORG	Selenium	A-11	1.3	0.37	Outside MSA Background
INORG	Sodium	A-11	190	130.0	Outside MSA Background
INORG	Vanadium	A-11	28	25.0	Outside MSA Background
INORG	Aluminum	A-12	15000	9,200	Outside MSA Background
INORG	Beryllium	A-12 A-12	0.91	0.56	Outside MSA Background
INORG	Calcium	A-12	81000	5,525	Outside MSA Background
INORG	Chromium	A-12 A-12	30	13.0	Outside MSA Background
INORG	Cobalt	A-12 A-12	15	8.9	Outside MSA Background
INORG	Copper	A-12 A-12	29	12.0	Outside MSA Background
INORG	Iron	A-12 A-12	30000	15,000	Outside MSA Background
INORG		A-12 A-12	39000	2,700	Outside MSA Background
	Magnesium		41	13.0	Outside MSA Background Outside MSA Background
INORG	Nickel	A-12	3600	1,100	Outside MSA Background
INORG	Potassium	A-12		0.37	Outside MSA Background
INORG	Selenium	A-12	1.4		Outside MSA Background
INORG	Sodium	A-12	210	130.0	
INORG	Vanadium	A-12	31	25.0	Outside MSA Background
INORG	Aluminum	A-13	14000	9,200	Outside MSA Background

^{* -} result and RO units are mg/L

Project: Franklin-EB

		·	Concentration	TACO Tier 1	
Test	Chemical	Samula Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Arsenic	Sample Number A-13	12	11.3	Outside MSA Background
INORG	Beryllium	A-13	0.94	0.56	Outside MSA Background
INORG	Calcium	A-13	76000	5,525	Outside MSA Background
INORG	Chromium	A-13	29	13.0	Outside MSA Background
INORG	Cobalt		16	8.9	Outside MSA Background
		A-13			
INORG	Copper	A-13	39	12.0	Outside MSA Background
INORG	Iron	A-13	33000	15,000	Outside MSA Background
INORG	Magnesium	A-13	40000	2,700	Outside MSA Background
INORG	Nickel	A-13	45	13.0	Outside MSA Background
INORG	Potassium	A-13	3800	1,100	Outside MSA Background
INORG	Selenium	A-13	1.6	0.37	Outside MSA Background
INORG	Sodium	A-13	200	130.0	Outside MSA Background
INORG	Vanadium	A-13	31	25.0	Outside MSA Background
INORG	Zinc	A-13	63	60.2	Outside MSA Background
INORG	Aluminum	A-14	12000	9,200	Outside MSA Background
INORG	Beryllium	A-14	0.70	0.56	Outside MSA Background
INORG	Calcium	A-14	. 61000	5,525	Outside MSA Background
INORG	Chromium	A-14	23	13.0	Outside MSA Background
INORG	Cobalt	A-14	9.6	8.9	Outside MSA Background
INORG	Copper	A-14	27	12.0	Outside MSA Background
INORG	Iron	A-14	27000	15,000	Outside MSA Background
INORG	Magnesium	A-14	31000	2,700	Outside MSA Background
INORG	Nickel	A-14	_30	13.0	Outside MSA Background
INORG	Potassium	A-14	2800	1,100	Outside MSA Background
INORG	Selenium	A-14	1.7	0.37	Outside MSA Background
INORG	Sodium	A-14	170	130.0	Outside MSA Background
INORG	Vanadium	A-14	29	25.0	Outside MSA Background
INORG	Aluminum	A-15	14000	9,200	Outside MSA Background
INORG	Beryllium	A-15	0.79	0.56	Outside MSA Background
INORG	Calcium	A-15	56000	5,525	Outside MSA Background
INORG	Chromium	A-15	27	13.0	Outside MSA Background
INORG	Cobalt	A-15	16	8.9	Outside MSA Background
INORG	Copper	A-15	21	12.0	Outside MSA Background
INORG	Iron	A-15	23000	15,000	Outside MSA Background
INORG	Magnesium	A-15	26000	2,700	Outside MSA Background
INORG	Nickel	A-15	41	13.0	Outside MSA Background
INORG	Potassium	A-15	3400	1,100	Outside MSA Background
INORG	Selenium	A-15	1.5	0.37	Outside MSA Background
INORG	Sodium	A-15	170	130.0	Outside MSA Background
INORG	Vanadium	A-15	27	25.0	Outside MSA Background
INORG	Aluminum	A-16	12000	9,200	Outside MSA Background
INORG	Beryllium	A-16	0.73	0.56	Outside MSA Background
INORG	Calcium	A-16	71000	5,525	Outside MSA Background
INORG	Chromium	A-16	24	13.0	Outside MSA Background
INORG	Cobalt	A-16	9.9	8.9	Outside MSA Background
INORG	Copper	A-16	30	12.0	Outside MSA Background
INORG	Cyanide	A-16	0.59	0.50	Outside MSA Background
INORG	Iron	A-16	26000	15,000	Outside MSA Background
INORG	Magnesium	A-16 A-16	39000	2,700	Outside MSA Background
INORG	Nickel	A-16 A-16	39000	13.0	Outside MSA Background
INORG	Potassium		2700	1,100	Outside MSA Background Outside MSA Background
INORG		A-16			
INORG	Selenium	A-16	1.4	0.37	Outside MSA Background
	Sodium	A-16	180	130.0	Outside MSA Background
INORG	Vanadium	A-16	29	25.0	Outside MSA Background
INORG	Aluminum	A-17	13000	9,200	Outside MSA Background
INORG	Beryllium	A-17	0.82	0.56	Outside MSA Background
INORG	Calcium	A-17	65000	5,525	Outside MSA Background
INORG	Chromium	· A-17	26	13.0	Outside MSA Background

^{* -} result and RO units are mg/L

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin-EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Cobalt	A-17	12	8.9	Outside MSA Background
INORG	Copper	A-17	30	12.0	Outside MSA Background
INORG	Cyanide	A-17	1.1	0.50	Outside MSA Background
INORG	Iron	A-17	27000	15,000	Outside MSA Background
INORG	Magnesium	A-17	34000	2,700	Outside MSA Background
INORG	Nickel	A-17	36	13.0	Outside MSA Background
INORG	Potassium	A-17	3100	1,100	Outside MSA Background
INORG	Selenium	A-17	1.4	0.37	Outside MSA Background
INORG	Sodium	A-17	180	130.0	Outside MSA Background
INORG	Vanadium	A-17	28	25.0	Outside MSA Background

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (VOC)

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003 19010622-004 19010622-005

Client Sample ID : A-18 A-19 A-20 A-21 A-22

Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30 01/23/2019 06:45 01/23/2019 07:00

			toute Specific	Constructi Route Specia	ic Values for	Soil Component of Groundwater Ingestion Exposure Route Values		Į.				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II					
67-64-1	Acetone	70,000	100,000	*****	100,000	25	25	< 0.070	0.097	0.17	0.12	0.10
71-43-2	Benzene	12	0.8	2,300	2,2	0.03	0.17	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.0093	< 0.013	< 0.010	< 0.012	< 0.012
78-93-3	2-Butanone							< 0.070	< 0.097	< 0.078	< 0.087	< 0.089
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.046	< 0.064	< 0.052	< 0.058	< 0.059
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
75-00-3	Chloroethane							< 0.0093	< 0.013	< 0.010	< 0.012	< 0.012
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
74-87-3	Chloromethane							< 0.0093	< 0.013	< 0.010	< 0.012	< 0.012
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0019	< 0.0026	< 0.0021	< 0.0023	< 0.0024
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0019	< 0.0026	< 0.0021	< 0.0023	< 0.0024
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
591-78-6	2-Hexanone							< 0.019	< 0.026	< 0.021	< 0.023	< 0.024
108-10-1	4-Methyl-2-pentanone							< 0.019	< 0.026	< 0.021	< 0.023	< 0.024
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.0093	< 0.013	< 0.010	< 0.012	< 0.012
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0046	< 0.0064	< 0.0052	< 0.0058	< 0.0059
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.014	< 0.019	< 0.016	< 0.017	< 0.018

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (VOC)

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-006 19010622-007 19010622-008 19010622-009 19010622-010

Client Sample ID : A-23 A-24 A-25 A-26 A-27

Date Collected: 01/23/2019 07:15 01/23/2019 07:30 01/23/2019 07:45 01/23/2019 08:00 01/23/2019 08:15

		Construction Worker Soil Component of						· 1				
				· ·								
		1	loute Specific		ic Values for	Groundwat	•					
a.a		Values			oil		oute Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II					
	Acetone	70,000	100,000	*****	100,000	25	25	0.18	0.13	< 0.076	< 0.097	< 0.082
	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.011	< 0.011	< 0.010	< 0.013	< 0.011
78-93-3	2-Butanone					•		< 0.085	< 0.081	< 0.076	< 0.097	< 0.082
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.057	< 0.054	< 0.051	< 0.065	< 0.054
56-23-5	Carbon tetrachloride	.5	0.3	410	0.90	0.07	0.33	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
75-00-3	Chloroethane							< 0.011	< 0.011	< 0.010	< 0.013	< 0.011
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
74-87-3	Chloromethane							< 0.011	< 0.011	< 0.010	< 0.013	< 0.011
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0023	< 0.0021	< 0.0020	< 0.0026	< 0.0022
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0023	< 0.0021	< 0.0020	< 0.0026	< 0.0022
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
591-78-6	2-Hexanone							< 0.023	< 0.021	< 0.020	< 0.026	< 0.022
108-10-1	4-Methyl-2-pentanone							< 0.023	< 0.021	< 0.020	< 0.026	< 0.022
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.011	< 0.011	< 0.010	< 0.013	< 0.011
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
79-34-5	1,1,2,2-Tetrachloroethane		i i		 			< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0057	< 0.0054	< 0.0051	< 0.0065	< 0.0054
	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.017	< 0.016	< 0.015	< 0.019	< 0.016

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (VOC)

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-011 19010622-012 19010622-013 19010622-014 19010622-015

Client Sample ID: A-28 A-29 A-30 A-31 A-32

Date Collected: 01/23/2019 08:30 01/23/2019 08:45 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30

			 	Construction Worker Soil Component of								
		Residential F	loute Specific		ic Values for		er Ingestion					
			for Soil		oil		oute Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II					
67-64-1	Acetone	70,000	100,000		100,000	25	25	< 0.071	< 0.075	< 0.088	< 0.096	< 0.078
71-43-2	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.0094	< 0.010	< 0.012	< 0.013	< 0.010
78-93-3	2-Butanone							< 0.071	< 0.075	< 0.088	< 0.096	< 0.078
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.047	< 0.050	< 0.059	< 0.064	< 0.052
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
75-00-3	Chloroethane							< 0.0094	< 0.010	< 0.012	< 0.013	< 0.010
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
74-87-3	Chloromethane							< 0.0094	< 0.010	< 0.012	< 0.013	< 0.010
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7_	3.4	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	· < 0.0019	< 0.0020	< 0.0024	< 0.0026	< 0.0021
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0019	< 0.0020	< 0.0024	< 0.0026	< 0.0021
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
591-78-6	2-Hexanone							< 0.019	< 0.020	< 0.024	< 0.026	< 0.021
108-10-1	4-Methyl-2-pentanone							< 0.019	< 0.020	< 0.024	< 0.026	< 0.021
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.0094	< 0.010	< 0.012	< 0.013	< 0.010
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0047	< 0.0050	< 0.0059	< 0.0064	< 0.0052
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.014	< 0.015	< 0.018	< 0.019	< 0.016

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-016 19010622-017
Client Sample ID: A-33 A-34
Date Collected: 01/23/2019 09:45 01/23/2019 10:00

		Residential F	Route Specific		on Worker lic Values for		ponent of er Ingestion		
			for Soil	•	oil		oute Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
67-64-1	Acetone	70,000	100,000	*****	100,000	25	25	< 0.069	< 0.071
71-43-2	Benzene	12	0.8	2,300	2.2	0.03	0.17	< 0.0046	< 0.0047
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	0.6	0.6	< 0.0046	< 0.0047
75-25-2	Bromoform	81	53	16,000	140	0.8	0.8	< 0.0046	< 0.0047
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.0092	< 0.0095
78-93-3	2-Butanone						_	< 0.069	< 0.071
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.046	< 0.047
56-23-5	Carbon tetrachloride	5	0.3	410	0.90	0.07	0.33	< 0.0046	< 0.0047
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0046	< 0.0047
75-00-3	Chloroethane			-				< 0.0092	< 0.0095
67-66-3	Chloroform	100	0.3	2,000	0.76	0.6	2.9	< 0.0046	< 0.0047
74-87-3	Chloromethane							< 0.0092	< 0.0095
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0046	< 0.0047
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0046	< 0.0047
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0046	< 0.0047
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	0.06	0.3	< 0.0046	< 0.0047
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0046	< 0.0047
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0046	< 0.0047
78-87-5	1,2-Dichloropropane	9	15	1,800	0.50	0.03	0.15	< 0.0046	< 0.0047
10061-01-5	cis-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0018	< 0.0019
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0018	< 0.0019
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	19	< 0.0046	< 0.0047
591-78-6	2-Hexanone							< 0.018	< 0.019
108-10-1	4-Methyl-2-pentanone							< 0.018	< 0.019
75-09-2	Methylene chloride .	85	13	12,000	34	0.02	0.2	< 0.0092	< 0.0095
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0046	< 0.0047
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0046	< 0.0047
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0046	< 0.0047
127-18-4	Tetrachloroethene	12	11	2,400	28	0.06	0.3	< 0.0046	< 0.0047
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0046	< 0.0047
71-55-6	1,1,1-Trichloroethane		1,200		1,200	2	9.6	< 0.0046	< 0.0047
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0046	< 0.0047
79-01-6	Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0046	< 0.0047
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0046	< 0.0047
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.014	< 0.014

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PNA)

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003 19010622-004

Client Sample ID : A-18 A-19 A-20 A-21

Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30 01/23/2019 06:45

				Constructi	on Worker	Soil Com	ponent of				
		Residential R	oute Specific	Route Specif	ic Values for	Groundwat	er Ingestion				
		Values	for Soil	Se	oil	Exposure R	oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion Inhalation		Class I	Class II			•	
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.039	< 0.043	< 0.043	< 0.041
208-96-8	Acenaphthylene							< 0.039	< 0.043	< 0.043	< 0.041
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.039	< 0.043	< 0.043	< 0.041
56-55-3	Benz(a)anthracene	0.9	-	170		2	8	< 0.039	< 0.043	< 0.043	< 0.041
50-32-8	Benzo(a)pyrene	0.09		17		8	82	< 0.039	< 0.043	< 0.043	< 0.041
	Benzo(b)fluoranthene	0.9		170		5	25	< 0.039	< 0.043	< 0.043	< 0.041
	Benzo(g,h,i)perylene							< 0.039	< 0.043	< 0.043	< 0.041
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	< 0.039	< 0.043	< 0.043	< 0.041
218-01-9	Chrysene	88		17,000		160	800	< 0.039	< 0.043	< 0.043	< 0.041
53-70-3	Dibenz(a,h)anthracene	0.09	***	17		2	7.6	< 0.039	< 0.043	< 0.043	< 0.041
206-44-0	Fluoranthene	3,100		82,000	-	4,300	21,000	< 0.039	< 0.043	< 0.043	< 0.041
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.039	< 0.043	< 0.043	< 0.041
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.039	< 0.043	< 0.043	< 0.041
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	0.41	< 0.043	< 0.043	< 0.041
85-01-8	Phenanthrene							< 0.039	< 0.043	< 0.043	< 0.041
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.039	< 0.043	< 0.043	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-005 19010622-006 19010622-007 19010622-008

Client Sample ID: A-22 A-23 A-24 A-25

Date Collected: 01/23/2019 07:00 01/23/2019 07:15 01/23/2019 07:30 01/23/2019 07:45

		Residential Route Specific Values for Soil		Construction Worker Route Specific Values for Soil		Soil Component of Groundwater Ingestion Exposure Route Values					
CAS No.	Analyte	Ingestion	Inhalation			Class I Class II					
	Acenaphthene	4,700		120,000		570	2,900	< 0.041	< 0.043	< 0.040	< 0.037
	Acenaphthylene			, , , , , ,			_,	< 0.041	< 0.043	< 0.040	< 0.037
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.041	< 0.043	.< 0.040	< 0.037
56-55-3	Benz(a)anthracene	0.9		170		2	8	< 0.041	< 0.043	< 0.040	< 0.037
50-32-8	Benzo(a)pyrene	0.09		17		8	82	< 0.041	< 0.043	<.0.040	< 0.037
205-99-2	Benzo(b)fluoranthene	0.9		170		5	25	< 0.041	< 0.043	< 0.040	< 0.037
191-24-2	Benzo(g,h,i)perylene							< 0.041	< 0.043	< 0.040	< 0.037
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	< 0.041	< 0.043	< 0.040	< 0.037
218-01-9	Chrysene	88		17,000		160	800	< 0.041	< 0.043	< 0.040	< 0.037
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.041	< 0.043	< 0.040	< 0.037
206-44-0	Fluoranthene	3,100		82,000	-	4,300	21,000	< 0.041	< 0.043	< 0.040	< 0.037
86-73-7	Fluorene	3,100	***	82,000	-	560	2,800	< 0.041	< 0.043	< 0.040	< 0.037
193-39-5	Indeno(1,2,3-cd)pyrene	0.9	***	170	_	14	69	< 0.041	< 0.043	< 0.040	< 0.037
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.041	< 0.043	< 0.040	< 0.037
85-01-8	Phenanthrene							< 0.041	< 0.043	< 0.040	< 0.037
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.041	< 0.043	< 0.040	< 0.037

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-009 19010622-010 19010622-011 19010622-012

Client Sample ID : A-26 A-27 A-28 A-29

Date Collected: 01/23/2019 08:00 01/23/2019 08:15 01/23/2019 08:30 01/23/2019 08:45

				Construction Worker		Soil Component of					
		Residential R	loute Specific	Route Specif	ic Values for	Groundwat	er Ingestion				
		Values	for Soil	Se	oil	Exposure Route Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
83-32-9	Acenaphthene	4,700	•••	120,000		570	2,900	< 0.040	< 0.039	< 0.038	< 0.040
208-96-8	Acenaphthylene							< 0.040	< 0.039	< 0.038	< 0.040
120-12-7	Anthracene	23,000	•	610,000		12,000	59,000	< 0.040	< 0.039	< 0.038	< 0.040
56-55-3	Benz(a)anthracene	0.9		170		. 2	8	< 0.040	< 0.039	< 0.038	< 0.040
50-32-8	Benzo(a)pyrene	0.09		17		8	82	< 0.040	< 0.039	< 0.038	< 0.040
205-99-2	Benzo(b)fluoranthene	0.9	***	170		5	25	< 0.040	< 0.039	< 0.038	< 0.040
191-24-2	Benzo(g,h,i)perylene							< 0.040	< 0.039	< 0.038	< 0.040
207-08-9	Benzo(k)fluoranthene	9	•	1,700		49	250	< 0.040	< 0.039	< 0.038	< 0.040
218-01-9	Chrysene	88		17,000		160	800	< 0.040	< 0.039	< 0.038	< 0.040
53-70-3	Dibenz(a,h)anthracene	0.09		17	***	2	7.6	< 0.040	< 0.039	< 0.038	< 0.040
206-44-0	Fluoranthene	3,100	•••	82,000	-	4,300	21,000	< 0.040	< 0.039	< 0.038	< 0.040
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.040	< 0.039	< 0.038	< 0.040
193-39-5	Indeno(1,2,3-cd)pyrene	0.9	***	170		14	69	< 0.040	< 0.039	< 0.038	< 0.040
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.040	< 0.039	< 0.038	< 0.040
85-01-8	Phenanthrene							< 0.040	< 0.039	< 0.038	< 0.040
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.040	< 0.039	< 0.038	< 0.040

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-013 19010622-014 19010622-015 19010622-016

Client Sample ID: A-30 A-31 A-32 A-33
Date Collected: 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30 01/23/2019 09:45

		Values for Soil				Soil Component of Groundwater Ingestion Exposure Route Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.041	< 0.040	< 0.040	< 0.040
208-96-8	Acenaphthylene							< 0.041	< 0.040	< 0.040	< 0.040
120-12-7	Anthracene	23,000		610,000		12,000	59,000	< 0.041	< 0.040	< 0.040	< 0.040
56-55-3	Benz(a)anthracene	0.9		170		2	8	< 0.041	< 0.040	< 0.040	< 0.040
50-32-8	Benzo(a)pyrene	0.09		17		8	82	< 0.041	< 0.040	< 0.040	< 0.040
205-99-2	Benzo(b)fluoranthene	0.9	•••	170		5	25	< 0.041	< 0.040	< 0.040	< 0.040
191-24-2	Benzo(g,h,i)perylene							< 0.041	< 0.040	< 0.040	< 0.040
207-08-9	Benzo(k)fluoranthene	9		1,700		49	250	< 0.041	< 0.040	< 0.040	< 0.040
218-01-9	Chrysene	88		17,000		160	800	< 0.041	< 0.040	< 0.040	< 0.040
53-70-3	Dibenz(a,h)anthracene	0.09		17		2	7.6	< 0.041	< 0.040	< 0.040	< 0.040
206-44-0	Fluoranthene	3,100	_	82,000		4,300	21,000	< 0.041	< 0.040	< 0.040	< 0.040
86-73-7	Fluorene	3,100		82,000		560	2,800	< 0.041	< 0.040	< 0.040	< 0.040
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.041	< 0.040	< 0.040	< 0.040
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.041	< 0.040	< 0.040	< 0.040
85-01-8	Phenanthrene							< 0.041	< 0.040	< 0.040	< 0.040
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.041	< 0.040	< 0.040	< 0.040

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-017

Client Sample ID: A-34

Date Collected: 01/23/2019 10:00

		Residential F	toute Specific		on Worker fic Values for		ponent of er Ingestion	
		Values	for Soil	Se	oil	Exposure R	oute Values	
CAS No.	Analyte	Ingestion	Inbalation	Ingestion	Inhalation	Class I	Class II	
83-32-9	Acenaphthene	4,700		120,000		570	2,900	< 0.040
208-96-8	Acenaphthylene							< 0.040
120-12-7	Anthracene	23,000		610,000	***	12,000	59,000	< 0.040
56-55-3	Benz(a)anthracene	0.9		170	•••	2	8	< 0.040
50-32-8	Benzo(a)pyrene	0.09	•••	17		8	82	< 0.040
205-99-2	Benzo(b)fluoranthene	0.9	***	170		5	25	< 0.040
191-24-2	Benzo(g,h,i)perylene			-				< 0.040
207-08-9	Benzo(k)fluoranthene	9	***	1,700		49	250	< 0.040
218-01-9	Chrysene	88		17,000		160	800	< 0.040
53-70-3	Dibenz(a,h)anthracene	0.09		17	_	2	7.6	< 0.040
206-44-0	Fluoranthene	3,100	***	82,000		4,300	21,000	< 0.040
86-73-7	Fluorene	3,100	_	82,000		560	2,800	< 0.040
193-39-5	Indeno(1,2,3-cd)pyrene	0.9		170		14	69	< 0.040
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.040
85-01-8	Phenanthrene				ĺ			< 0.040
129-00-0	Pyrene	2,300		61,000		4,200	21,000	< 0.040

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID : 19010622-001 19010622-002 Client Sample ID : A-18 A-19 Date Collected : 01/23/2019 06:00 01/23/2019 06:15

			Construction Worker Route Specific Route Specific Values fo			Groundwat	ponent of er Ingestion		
		Z Values		: : : : : : : : : : : : : : : : : : :	oil and the second	Exposure R	oute Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion #	.Inhalation !	∜ Class I 🚧			
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5 ,	53	< 0.20	< 0.22
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20	< 0.22
541-73-1	1,3-Dichlorobenzene						~	< 0.20	< 0.22
106-46-7	1,4-Dichlorobenzene		11,000	•••	340	2	11	< 0.20	< 0.22
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.20	< 0.22
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.20	< 0.22
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.20	< 0.22
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.20	< 0.22
105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.20	< 0.22
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 0.99	< 1.1
121-14-2	2,4-Dinitrotoluene	0.9		180	•••	0.0008	0.0008	< 0.039	< 0.043
606-20-2	2,6-Dinitrotoluene	0.9	Y	180	•••	0.0007	0.0007	< 0.039	< 0.043
91-58-7	2-Chloronaphthalene							< 0.20	< 0.22
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20	< 0.22
91-57-6	2-Methylnaphthalene							0.29	< 0.22
95-48-7	2-Methylphenol	3,900		100,000	•••	15	15	< 0.20	< 0.22
88-74-4	2-Nitroaniline							< 0.20	< 0.22
88-75-5	2-Nitrophenol							< 0.20	< 0.22
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.20	< 0.22
99-09-2	3-Nitroaniline							< 0.20	< 0.22
534-52-1	4,6-Dinitro-2-methylphenol							< 0.39	< 0.43
101-55-3	4-Bromophenyl phenyl ether							< 0.20	< 0.22
59-50-7	4-Chloro-3-methylphenol							< 0.39	< 0.43
106-47-8	4-Chloroaniline	310		820	•••	0.7	0.7	< 0.20	< 0.22
7005-72-3	4-Chlorophenyl phenyl ether		Ì					< 0.20	< 0.22
106-44-5	4-Methylphenol							< 0.20	< 0.22
	4-Nitroaniline							< 0.20	< 0.22
100-02-7	4-Nitrophenol							< 0.39	< 0.43
62-53-3	Aniline							< 0.40	< 0.43
92-87-5	Benzidine							< 0.39	< 0.43
65-85-0	Benzoic acid	310,000		820,000	•••	400	400	< 0.99	< 1.1
100-51-6	Benzyl alcohol							< 0.20	< 0.22
111-91-1	Bis(2-chloroethoxy)methane							< 0.20	< 0.22
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20	< 0.22
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 0.99	< 1.1
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20	< 0.22
86-74-8	Carbazole	32	•••	6,200	•••	0.6	2.8	< 0.20	< 0.22
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300_	2,300	2,300	< 0.20	< 0.22
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20	< 0.22
	Dibenzofuran							< 0.20	< 0.22
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20	< 0.22
	Dimethyl phthalate							< 0.20	< 0.22
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.20	< 0.22
	Hexachlorobutadiene							< 0.20	< 0.22
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20	< 0.22
	Hexachloroethane	78	***	2,000		0.5	2.6	< 0.20	< 0.22
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20	< 0.22
	N-Nitrosodi-n-propylamine	0.09	***	18	•••	0.00005	0.00005	< 0.039	< 0.043
	N-Nitrosodimethylamine							< 0.20	< 0.22
	N-Nitrosodiphenylamine	130		25,000	•••	1	5.6	< 0.20	< 0.22
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.039	< 0.043
	Pentachlorophenol	3	***	520		0.03	0.14	< 0.080	< 0.086
108-95-2		23,000		61,000	•••	100	100	< 0.20	< 0.22
110-86-1	Pyridine							< 0.80	< 0.86

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-003 19010622-004 Client Sample ID: A-20 A-21

Date Collected: 01/23/2019 06:30 01/23/2019 06:45

				C	Wester	Soil Com			
		Desidential B	auta Smaaifia	Route Specif	on Worker	Groundwat			
		1	loute Specific	•		Exposure R			
CACNI	A malada		for Soil	So Ingestion	Inhalation	Class I	Class II		
CAS No.	Analyte 1.2.4-Trichlorobenzene	Ingestion 780	Inhalation 3,200	2,000	920	5	53	< 0.22	< 0.21
				18,000	310	17	43	< 0.22	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.22	< 0.21
	1,3-Dichlorobenzene		11.000		240	2	. 11	< 0.22	< 0.21
	1,4-Dichlorobenzene		11,000		340		• 11	< 0.22	< 0.21
	2, 2'-oxybis(1-Chloropropane)	7.000		200,000		220	1.400	< 0.22	< 0.21
	2,4,5-Trichlorophenol	7,800		200,000	540	270	1,400	< 0.22	< 0.21
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77		< 0.21
	2,4-Dichlorophenol	230		610		1	1	< 0.22	
	2,4-Dimethylphenol	1,600		41,000		9	0.2	< 0.22	< 0.21
	2,4-Dinitrophenol	160		410		0.2		< 1.1	
	2,4-Dinitrotoluene	0.9		180	•••	0.0008	0.0008	< 0.043	< 0.041 < 0.041
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.043	
	2-Chloronaphthalene							< 0.22	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.22	< 0.21
	2-Methylnaphthalene							< 0.22	< 0.21
	2-Methylphenol	3,900		100,000		15	15	< 0.22	< 0.21
	2-Nitroaniline							< 0.22	< 0.21
	2-Nitrophenol							< 0.22	< 0.21
	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.22	< 0.21
99-09-2	3-Nitroaniline							< 0.22	< 0.21
	4,6-Dinitro-2-methylphenol							< 0.43	< 0.41
	4-Bromophenyl phenyl ether							< 0.22	< 0.21
	4-Chloro-3-methylphenol							< 0.43	< 0.41
106-47-8	4-Chloroaniline	310	•••	820	•••	0.7	0,7	< 0.22	< 0.21
7005-72-3	4-Chlorophenyl phenyl ether						·	< 0.22	< 0.21
106-44-5	4-Methylphenol							< 0.22	< 0.21
100-01-6	4-Nitroaniline							< 0.22	< 0.21
100-02-7	4-Nitrophenol			_				< 0.43	< 0.41
62-53-3	Aniline							< 0.43	< 0.42
92-87-5	Benzidine			·				< 0.43	< 0.41
65-85-0	Benzoic acid	310,000	•	820,000		400	400	< 1.1	< 1.0
100-51-6	Benzyl alcohol							< 0.22	< 0.21
111-91-1	Bis(2-chloroethoxy)methane		_					< 0.22	< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.22	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.1	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.22	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.22	< 0.21
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.22	< 0.21
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.22	< 0.21
	Dibenzofuran							< 0.22	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.22	< 0.21
	Dimethyl phthalate		,					< 0.22	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.22	< 0.21
87-68-3	Hexachlorobutadiene							< 0.22	< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.22	< 0.21
	Hexachloroethane	78		2,000		0.5	2.6	< 0.22	< 0.21
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.22	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.043	< 0.041
	N-Nitrosodimethylamine	0.07				- 0.0000	5.5,5000	< 0.22	< 0.21
	N-Nitrosodiphenylamine	130	•••	25,000		1	5.6	< 0.22	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.043	< 0.041
	Pentachiorophenol	3		520		0.03	0.14	< 0.087	< 0.084
108-95-2		23,000		61,000		100	100	< 0.22	< 0.21
110-86-1		23,000		01,000		100	100	< 0.87	< 0.84
110-90-1	јг униш с	L						- 0.07	- 0.04

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-005 19010622-006 Client Sample ID: A-22 A-23

					on Worker		ponent of		
		Residential R	-	•	ic Values for		er Ingestion oute Values		
CAS No.	Analyte	Values Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21	< 0.22
95-50-1	1.2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21	< 0.22
541-73-1	1.3-Dichlorobenzene	7,000		10,000				< 0.21	< 0.22
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21	< 0.22
	2, 2'-oxybis(1-Chloropropane)		, , , , , , , , , , , , , , , , , , , ,					< 0.21	< 0.22
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21	< 0.22
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21	< 0.22
	2,4-Dichlorophenol	230		610		1	1	< 0.21	< 0.22
105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21	< 0.22
51-28-5	2,4-Dinitrophenol	160		410	•••	0.2	0.2	< 1.0	< 1.1
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.041	< 0.043
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.041	< 0.043
91-58-7	2-Chloronaphthalene						_	< 0.21	< 0.22
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21	< 0.22
91-57-6	2-Methylnaphthalene							< 0.21	< 0.22
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.21	< 0.22
88-74-4	2-Nitroaniline							< 0.21	< 0.22
88-75-5	2-Nitrophenol							< 0.21	< 0.22
91-94-1	3,3'-Dichlorobenzidine	1	•••	280		0.007	0.033	< 0.21	< 0.22
99-09-2	3-Nitroaniline							< 0.21	< 0.22
	4,6-Dinitro-2-methylphenol							< 0.41	< 0.43
	4-Bromophenyl phenyl ether							< 0.21	< 0.22
	4-Chloro-3-methylphenol	2.70				2		< 0.41	< 0.43
	4-Chloroaniline	310		820		0.7	0.7	< 0.21	< 0.22
	4-Chlorophenyl phenyl ether							< 0.21	< 0.22
	4-Methylphenol							< 0.21 < 0.21	< 0.22 < 0.22
	4-Nitroaniline							< 0.41	< 0.43
	4-Nitrophenol							< 0.41	< 0.43
62-53-3	Aniline							< 0.42	< 0.43
92-87-5 65-85-0	Benzidine Benzoic acid	310,000		820,000		400	400	< 1.0	< 1.1
	Benzyl alcohol	310,000		820,000		400	400	< 0.21	< 0.22
	Bis(2-chloroethoxy)methane							< 0.21	< 0.22
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21	< 0.22
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0	< 1.1
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21	< 0.22
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21	< 0.22
84-74-2	Di-n-butyl phthalate	7,800	2,300	200.000	2,300	2,300	2,300	< 0.21	< 0.22
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21	< 0.22
	Dibenzofuran	1,000	10,000	1,200	10,000			< 0.21	< 0.22
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21	< 0.22
	Dimethyl phthalate	,	_,,,,,,	-,,	_,,,,,,			< 0.21	< 0.22
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21	< 0.22
87-68-3	Hexachlorobutadiene			-				< 0.21	< 0.22
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21	< 0.22
67-72-1	Hexachloroethane	78		2,000	•••	0.5	2.6	< 0.21	< 0.22
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21	< 0.22
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.041	< 0.043
62-75-9	N-Nitrosodimethylamine							< 0.21	< 0.22
86-30-6	N-Nitrosodiphenylamine	130	•••	25,000	•••	1	5.6	< 0.21	< 0.22
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041	< 0.043
87-86-5	Pentachlorophenol	3		520		0.03	0.14	< 0.084	< 0.087
108-95-2	Phenol	23,000		61,000		100	100	< 0.21	< 0.22
110-86-1	Pyridine							< 0.84	< 0.87

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-007 19010622-008 Client Sample ID: A-24 A-25

Date Collected: 01/23/2019 07:30 01/23/2019 07:45

				Constructi	on Worker	Soil Com	ponent of		•
		Residential B	loute Specific		ic Values for		er Ingestion		
			for Soil		oil		oute Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21	< 0.19
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21	< 0.19
541-73-1	1,3-Dichlorobenzene				·			< 0.21	< 0.19
	1,4-Dichlorobenzene		11,000	•••	340	2	11	< 0.21	< 0.19
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21	< 0.19
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21	< 0.19
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21	< 0.19
	2,4-Dichlorophenol	230	•••	610		1	1	< 0.21	< 0.19
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21	< 0.19
	2,4-Dinitrophenol	160	•••	410		0.2	0.2	< 1.0 < 0.040	< 0.92 < 0.037
	2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.9		180 180	•••	0.0008 0.0007	0.0008	< 0.040	< 0.037
	2-Chloronaphthalene	0.9	•••	160		0.0007	0.0007	< 0.040	< 0.19
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21	< 0.19
	2-Methylnaphthalene	370	33,000	10,000	33,000		-	< 0.21	< 0.19
	2-Methylphenol	3,900		100,000		15	15	< 0.21	< 0.19
	2-Nitroaniline	3,200		100,000				< 0.21	< 0.19
88-75-5	2-Nitrophenol							< 0.21	< 0.19
	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21	< 0.19
99-09-2	3-Nitroaniline							< 0.21	< 0.19
534-52-1	4,6-Dinitro-2-methylphenol							< 0.40	< 0.37
	4-Bromophenyl phenyl ether	-	·				_	< 0.21	< 0.19
	4-Chloro-3-methylphenol							< 0.40	< 0.37
	4-Chloroaniline	310		820		0.7	0.7	< 0.21	< 0.19
	4-Chlorophenyl phenyl ether							< 0.21	< 0.19
	4-Methylphenol							< 0.21	< 0.19
	4-Nitroaniline							< 0.21	< 0.19
	4-Nitrophenol							< 0.40	< 0.37 < 0.37
62-53-3	Aniline Benzidine							< 0.41 < 0.40	< 0.37
	Benzoic acid	310,000		820,000	•••	400	400	< 1.0	< 0.92
	Benzyl alcohol	310,000		820,000		400	400	< 0.21	< 0.19
	Bis(2-chloroethoxy)methane							< 0.21	< 0.19
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21	< 0.19
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0	< 0.92
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21	< 0.19
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21	< 0.19
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21	< 0.19
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21	< 0.19
	Dibenzofuran							< 0.21	< 0.19
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21	< 0.19
	Dimethyl phthalate							< 0.21	< 0.19
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21	< 0.19
	Hexachlorobutadiene							< 0.21	< 0.19
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21	< 0.19
	Hexachloroethane	78	4.600	2,000	4.600	0.5	2.6	< 0.21	< 0.19
	Isophorone	15,600	4,600	410,000	4,600	8	8 00006	< 0.21	< 0.19
	N-Nitrosodi-n-propylamine	0.09		18	•••	0.00005	0.00005	< 0.040 < 0.21	< 0.037
	N-Nitrosodimethylamine	120		25,000		1	5 4	< 0.21	< 0.19
	N-Nitrosodiphenylamine Nitrobenzene	130 39	92	1,000	9,4	0.1	5.6 0.1	< 0.21	< 0.037
87-86-5	Pentachlorophenol	39	92	520	9.4	0.03	0.14	< 0.040	< 0.074
	Phenol	23,000		61,000		100	100	< 0.082	< 0.19
110-86-1		23,000		01,000		100		< 0.82	< 0.74
110-00-1	i Judine							- U102	

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

,

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-009 19010622-010

Client Sample ID: A-26 A-27
Date Collected: 01/23/2019 08:00 01/23/2019 08:15

		r			337. 1	6-7-6		1	
		.			on Worker	Soil Com			
		B.	Route Specific		ic Values for	Groundwat			
			for Soil		oil	Exposure R			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.20	< 0.20
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20	< 0.20
	1,3-Dichlorobenzene							< 0.20	< 0.20
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.20	< 0.20
	2, 2'-oxybis(1-Chloropropane)							< 0.20	< 0.20
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.20	< 0.20
	2,4,6-Trichlorophenol	58	200	11,000	540 ·	0.2	0.77	< 0.20	< 0.20
	2,4-Dichlorophenol	230	•••	610		1	. 1	< 0.20	< 0.20
	2,4-Dimethylphenol	1,600	•••	41,000	***	9	9	< 0.20	< 0.20
	2,4-Dinitrophenol	160		410		0.2	0.2	< 0.99	< 0.99
	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.040	< 0.039
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.040	< 0.039
	2-Chloronaphthalene							< 0.20	< 0.20
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20	< 0.20
	2-Methylnaphthalene							< 0.20	< 0.20
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.20	< 0.20
88-74-4	2-Nitroaniline							< 0.20	< 0.20
88-75-5	2-Nitrophenol							< 0.20	< 0.20
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.20	< 0.20
99-09-2	3-Nitroaniline							< 0.20	< 0.20
534-52-1	4,6-Dinitro-2-methylphenol							< 0.40	< 0.39
101-55-3	4-Bromophenyl phenyl ether							< 0.20	< 0.20
59-50-7	4-Chloro-3-methylphenol							< 0.40	< 0.39
	4-Chloroaniline	310		820	•••	0.7	0.7	< 0.20	< 0.20
7005-72-3	4-Chlorophenyl phenyl ether							< 0.20	< 0.20
106-44-5	4-Methylphenol							< 0.20	< 0.20
100-01-6	4-Nitroaniline							< 0.20	< 0.20
100-02-7	4-Nitrophenol							< 0.40	< 0.39
62-53-3	Aniline							< 0.40	< 0.40
92-87-5	Benzidine							< 0.40	< 0.39
65-85-0	Benzoic acid	310,000		820,000		400	400	< 0.99	< 0.99
100-51-6	Benzyl alcohol							< 0.20	< 0.20
111-91-1	Bis(2-chloroethoxy)methane							< 0.20	< 0.20
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20	< 0.20
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 0.99	< 0.99
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20	< 0.20
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.20	< 0.20
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.20	< 0.20
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20	< 0.20
	Dibenzofuran			, , , , , , , , , , , , , , , , , , ,				< 0.20	< 0.20
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20	< 0.20
	Dimethyl phthalate	1,	_,,,,,					< 0.20	< 0.20
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.20	< 0.20
87-68-3	Hexachlorobutadiene	t						< 0.20	< 0.20
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20	< 0.20
	Hexachloroethane	78		2,000		0.5	2.6	< 0.20	< 0.20
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20	< 0.20
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.040	< 0.039
	N-Nitrosodimethylamine	1		 		0.000		< 0.20	< 0.20
	N-Nitrosodiphenylamine	130	•••	25,000		1	5.6	< 0.20	< 0.20
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040	< 0.039
	Pentachlorophenol	39		520		0.03	0.14	< 0.080	< 0.080
_	Phenol	23,000		61,000		100	100	< 0.20	< 0.20
110-86-1		23,000		01,000		100	- :00	< 0.80	< 0.80
110-80-1		<u> </u>	L					- 0.00	- 0.00

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-011 19010622-012 Client Sample ID: A-28 A-29

Date Collected: 01/23/2019 08:30 01/23/2019 08:45

				Commenced!	on Worker	Soil Com	nonent of		
		Posidential B	loute Specific	Route Specif		Groundwat			
			for Soil	•	oil	Exposure R			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.20	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20	< 0.21
	1,3-Dichlorobenzene	7,000	300	10,000	- 510			< 0.20	< 0.21
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.20	< 0.21
	2, 2'-oxybis(1-Chloropropane)		11,000		3.0			< 0.20	< 0.21
	2.4.5-Trichlorophenol	7,800	•••	200,000	•••	270	1,400	< 0.20	< 0.21
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.20	< 0.21
	2,4-Dichlorophenol	230	•••	610		1	1	< 0.20	< 0.21
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.20	< 0.21
	2,4-Dinitrophenol	160		410		0.2	0.2	< 0.96	< 1.0
	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.038	< 0.040
	2,6-Dinitrotoluene	0.9	•••	180		0.0007	0.0007	< 0.038	< 0.040
	2-Chloronaphthalene							< 0.20	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20	< 0.21
91-57-6	2-Methylnaphthalene		·					< 0.20	< 0.21
	2-Methylphenol	3,900		100,000		15	15	< 0.20	< 0.21
88-74-4	2-Nitroaniline							< 0.20	< <u>0.21</u>
88-75-5	2-Nitrophenol							< 0.20	< 0.21
91-94-1	3,3'-Dichlorobenzidine	1	•••	280	•••	0.007	0.033	< 0.20	< 0.21
99-09-2	3-Nitroaniline							< 0.20	< 0.21
534-52-1	4,6-Dinitro-2-methylphenol							< 0.38	< 0.40
	4-Bromophenyl phenyl ether							< 0.20	< 0.21
	4-Chloro-3-methylphenol							< 0.38	< 0.40
	4-Chloroaniline	310		820		0.7	0.7	< 0.20	< 0.21
	4-Chlorophenyl phenyl ether							< 0.20	< 0.21
	4-Methylphenol							< 0.20	< 0.21
	4-Nitroaniline							< 0.20	< 0.21
	4-Nitrophenol							< 0.38	< 0.40
62-53-3	Aniline							< 0.38	< 0.41
92-87-5	Benzidine						100	< 0.38	< 0.40
	Benzoic acid	310,000		820,000	•••	400	400	< 0.96	< 1.0
	Benzyl alcohol							< 0.20	< 0.21
	Bis(2-chloroethoxy)methane				2.66	0.0004	0.0004	< 0.20	< 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20	< 0.21
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 0.96 < 0.20	< 1.0 < 0.21
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930 2.8	< 0.20	< 0.21
	Carbazole	7,800	2 200	6,200 200,000	2 200	0.6 2,300	2,300	< 0.20	< 0.21
	Di-n-butyl phthalate		2,300 10,000	4,100	2,300 10,000	10,000	10,000	< 0.20	< 0.21
	Di-n-octyl phthalate Dibenzofuran	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20	< 0.21
	Dimethyl phthalate	03,000	2,000	1,000,000	2,000	7/0_	7/0	< 0.20	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.20	< 0.21
87-68-3	Hexachlorobutadiene	0.4	1		2.0		**	< 0.20	< 0.21
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20	< 0.21
	Hexachloroethane	78		2,000		0.5	2.6	< 0.20	< 0.21
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.038	< 0.040
	N-Nitrosodimethylamine	· · · · · · · ·				0.0000		< 0.20	< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.20	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.038	< 0.040
87-86-5	Pentachlorophenol	3		520		0.03	0.14	< 0.077	< 0.082
	Phenol	23,000		61,000		100	100	< 0.20	< 0.21
110-86-1		,						< 0.77	< 0.82

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-013 19010622-014 Client Sample ID: A-30 A-31

Date Collected: 01/23/2019 09:00 01/23/2019 09:15

CAS No. Analyte Cas Values for Fort Va			r——		C	an Wantan	Sail Cam		ì	
CAS No. Analyte Ingestion Inhalation Ingestion Inhalation Class		Desidential B	eute Spesifie	-			•			
CAS No.					•			•		
	CAS No	Analyte								
93-50-1 12-Dehlorobeanen 7,000 500 15,000 310 17 43 < 0.21 < 0.21									< 0.21	< 0.21
13-17-18-blorobeanene				,						
1064-67 1,4-Dichloropeane			7,000		10,000			<u> </u>		
95-95-4 2.4-5Trichisrophenol 7.800 200,000 270 1,400 < 0.21 < 0.21 < 0.21				11,000	•••	340	2	11	< 0.21	< 0.21
95-95-4 24.5-Trichlorophenol 7,800	108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21	< 0.21
190-33-2 2.4-Dichlorophenol 230			7,800	***	200,000		270	1,400	< 0.21	< 0.21
	88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21	< 0.21
19-12-13 19-13 1	120-83-2	2,4-Dichlorophenol	230	•••	610		1		< 0.21	
			1,600		41,000					
180 0.0007 0.0007 0.0001 0.0004 0.0040				•••						
91-58-7 2-Chloropathbalene 93-90 53,000 10,000 53,000 4 4 < 0.21 < 0.21 91-57-6 2-Methylpaphhalene 39-90 53,000 10,000 53,000 4 4 < 0.21 < 0.21 < 0.21 91-57-6 2-Methylpaphhalene 3,900 100,000 15 15 < 0.21 < 0.21 < 0.21 91-57-6 2-Methylpaphhalene 3,900 100,000 15 15 < 0.21 < 0.21 < 0.21 91-57-7 2-Methylpaphhalene 1 280 0.007 0.033 < 0.21 < 0.21 < 0.21 91-91-8 3-7-7 3-Mitroaniline 1 280 0.007 0.033 < 0.21 < 0.21 < 0.21 91-91-9 3-Mitroaniline 1 280 0.007 0.033 < 0.21 < 0.21 < 0.21 91-93-13-13-14 3-Mitroaniline 1 280 0.007 0.033 < 0.21 < 0.21 < 0.21 91-93-13-14 3-Mitroaniline 1 280 0.007 0.033 < 0.21 < 0.21 < 0.21 91-93-13-14 3-Mitroaniline 1 280 0.7 0.7 < 0.21 < 0.21 < 0.21 91-93-14 3-Mitroaniline 310 820 0.7 0.7 0.7 < 0.21 < 0.21 < 0.21 91-93-14 3-Mitroaniline 310 820 0.7 0.7 0.7 < 0.21 < 0.21 < 0.21 91-93-14 3-Mitroaniline 310 820 0.7 0.7 0.7 < 0.21 < 0.21 < 0.21 91-93-15 8-mitroaniline 1 820 0.7 0.7 0.7 < 0.21 < 0.21 < 0.21 91-93-15 8-mitroaniline 0.00 0.00 0.00 0.	121-14-2	2,4-Dinitrotoluene		***						
95-97-8 2-Chlorophenol 390 53,000 10,000 53,000 4 4 < 0.21 < 0.21 < 0.21 95-48-7 2-Methylpaphhalene 3,900 100,000 15 15 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.		1 /	0.9	•••	180		0.0007	0.0007		
91-97-6 2-Methylphenol 3,900 100,000 15 15 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21										
93-48-7 2-Methylphenol 3,900 100,000 15 15 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21 < 0.21			390	53,000	10,000	53,000	4	4		
S8.744 2.Nitroaniline										
S8-75-5 2-Nitrophenol			3,900	•••	100,000		15	15		
91-94-1 3.3 * * Dichiprobenzidine 1										
99-99-2 3-Nitroaniline					200		2 225	0.000		
334-52-1 4,6-Dinitro-2-methylphenol			1		280		0.007	0.033		
101-55-3 4-Bromophenyl phenyl ether										
Section Sect										
106-47-8 4-Chlorophenyl phenyl ether										
100-5-72-3 4-Chlorophenyl phenyl ether			210		920		0.7	0.7		
106-44-5 4-Methylphenol			310	•••	820		0.7	0.7		
100-01-6										
100-02-7 4-Nitrophenol										
62-53-3 Aniline							_			
92-87-5 Benzidine										
65-85-0 Benzoic acid 310,000 820,000 400 400 <1.0 <1.0							-			
100-51-6 Benzyl alcohol		 	310,000		820,000		400	400		
111-91-1 Bis(2-chloroethxy)methane			310,000		320,000		100			_
111-44-4 Bis(2-chloroethyl)ether 0.6 0.2 75 0.66 0.0004 0.0004 < 0.21 < 0.21										
117-81-7 Bis(2-ethylhexyl)phthalate			0.6	0.2	75	0.66	0.0004	0.0004		
85-68-7 Buyl benzyl phthalate 16,000 930 410,000 930 930 930 930 <0.21 <0.21 86-74-8 Carbazole 32 6,200 0.6 2.8 <0.21										
86-74-8 Carbazole 32										
84-74-2 Di-n-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 2,300 < 0.21 < 0.21					,					
117-84-0 Di-n-octyl phthalate						2,300				
132-64-9 Dibenzofuran										
84-66-2 Diethyl phthalate 63,000 2,000 1,000,000 2,000 470 470 <0.21 <0.21 131-11-3 Dimethyl phthalate 0.4 1 78 2.6 2 11 <0.21									< 0.21	< 0.21
131-11-3 Dimethyl phthalate			63,000	2,000	1,000,000	2,000	470	470	< 0.21	< 0.21
87-68-3 Hexachlorobutadiene <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.21</td><td>< 0.21</td></th<>									< 0.21	< 0.21
87-68-3 Hexachlorobutadiene < 0.21 < 0.21 77-47-4 Hexachlorocyclopentadiene 550 10 14,000 1.1 400 2,200 < 0.21	118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21	< 0.21
67-72-1 Hexachloroethane 78 2,000 0.5 2.6 < 0.21										
67-72-1 Hexachloroethane 78 2,000 0.5 2.6 < 0.21 < 0.21 78-59-1 Isophorone 15,600 4,600 410,000 4,600 8 8 < 0.21	77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400			< 0.21
621-64-7 N-Nitrosodi-n-propylamine 0.09 18 0.00005 < 0.041	67-72-1	Hexachloroethane		•••					**	
62-75-9 N-Nitrosodimethylamine 0.21			15,600	4,600	410,000	4,600				
86-30-6 N-Nitrosodiphenylamine 130 25,000 1 5.6 < 0.21		N-Nitrosodi-n-propylamine	0.09	•••	18	•••	0.00005	0.00005		
98-95-3 Nitrobenzene 39 92 1,000 9.4 0.1 0.1 <0.041										
87-86-5 Pentachlorophenol 3 520 0.03 0.14 < 0.082 < 0.081 108-95-2 Phenol 23,000 61,000 100 100 < 0.21										
108-95-2 Phenol 23,000 61,000 100 100 < 0.21 < 0.21	98-95-3	Nitrobenzene		92		9.4				
				•••						
110-86-1 Pyridine			23,000		61,000		100	100		
	110-86-1	Pyridine							< 0.82	< 0.81

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-015 19010622-016 Client Sample ID: A-32 A-33

Date Collected: 01/23/2019 09:30 01/23/2019 09:45

				Constant	on Worker	Soil Com	popent of		
		Desidential E	loute Specific		ic Values for	Groundwat			
			for Soil	•	oil	Exposure R	_		
CACNE	Amalida			Ingestion	Inhalation	Class I	Class II		
CAS No.	Analyte 1,2,4-Trichlorobenzene	Ingestion 780	Inhalation 3,200	2,000	920	5	53	< 0.20	< 0.21
			560	18,000	310	17	43	< 0.20	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	300	18,000	310	. 17	43	< 0.20	< 0.21
	1,3-Dichlorobenzene		11,000		340	2	11	< 0.20	< 0.21
	1,4-Dichlorobenzene		11,000	•••	340	<u> </u>	11	< 0.20	< 0.21
	2, 2'-oxybis(1-Chloropropane)	7,800		200,000		270	1,400	< 0.20	< 0.21
	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.20	< 0.21
	2,4-Dichlorophenol	230		610	340	1	1	< 0.20	< 0.21
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.20	< 0.21
	2,4-Dinitrophenol	160		410	•••	0.2	0.2	< 1.0	< 1.0
	2,4-Dinitrotoluene	0.9		180	•••	0.0008	0.0008	< 0.040	< 0.040
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.040	< 0.040
	2-Chloronaphthalene	0.9		100		0.0007	0.0007	< 0.20	< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20	< 0.21
	2-Methylnaphthalene	350	33,000	10,000	33,000			< 0.20	< 0.21
	2-Methylphenol	3,900		100.000		15	15	< 0.20	< 0.21
	2-Nitroaniline	3,500		100,000				< 0.20	< 0.21
	2-Nitrophenol							< 0.20	< 0.21
	3,3'-Dichlorobenzidine	1		280	•••	0.007	0.033	< 0.20	< 0.21
	3-Nitroaniline	1		200		0.007	0.033	< 0.20	< 0.21
	4,6-Dinitro-2-methylphenol	-						< 0.40	< 0.40
	4-Bromophenyl phenyl ether						-	< 0.20	< 0.21
	4-Chloro-3-methylphenol							< 0.40	< 0.40
	4-Chloroaniline	310	•••	820		0.7	0.7	< 0.20	< 0.21
	4-Chlorophenyl phenyl ether	310		020		- 0.,	0.7	< 0.20	< 0.21
	4-Methylphenol	-		· · · · ·				< 0.20	< 0.21
	4-Nitroaniline							< 0.20	< 0.21
	4-Nitrophenol							< 0.40	< 0.40
62-53-3	Aniline							< 0.40	< 0.41
92-87-5	Benzidine					-		< 0.40	< 0.40
	Benzoic acid	310,000		820,000		400	400	< 1.0	< 1.0
	Benzyl alcohol	310,000		020,000				< 0.20	< 0.21
	Bis(2-chloroethoxy)methane		. "					< 0.20	< 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20	< 0.21
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0	< 1.0
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.20	< 0.21
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.20	< 0.21
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20	< 0.21
	Dibenzofuran			.,,,,,,			,	< 0.20	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20	< 0.21
	Dimethyl phthalate		_,,,,,,	-,,-,	****			< 0.20	< 0.21
	Hexachlorobenzene	0.4	i	78	2.6	2	11	< 0.20	< 0.21
	Hexachlorobutadiene		-					< 0.20	< 0.21
	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20	< 0.21
	Hexachloroethane	78		2,000	•••	0.5	2.6	< 0.20	< 0.21
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20	< 0.21
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.040	< 0.040
	N-Nitrosodimethylamine							< 0.20	< 0.21
	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.20	< 0.21
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040	< 0.040
	Pentachlorophenol	3		520		0.03	0.14	< 0.081	< 0.082
108-95-2		23,000		61,000		100	100	< 0.20	< 0.21
110-86-1								< 0.81	< 0.82
	- /				•				

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID : 19010622-017
Client Sample ID : A-34
Date Collected : 01/23/2019 10:00

		Values	oute Specific	Route Specia		Exposure R	er Ingestion oute Values	
CAS No.	Analyte			#Ingestion T	Inhalation?	₹YClass I 😘	₹Class II 🏕	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
	1,3-Dichlorobenzene							< 0.21
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
	2, 2'-oxybis(1-Chloropropane)							< 0.21
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
	2,4-Dichlorophenol	230		610		1	1	< 0.21
	2,4-Dimethylphenol	1,600	***	41,000		0.2	9 0.2	< 0.21 < 1.0
51-28-5	2,4-Dinitrophenol	160 0.9		410 180		0.0008	0.0008	< 0.040
	2,4-Dinitrotoluene 2,6-Dinitrotoluene	0.9	•••	180		0.0007	0.0008	< 0.040
91-58-7	2-Chloronaphthalene	0.9	•••	180	*	0.0007	0.0007	< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
91-57-6	2-Methylnaphthalene	330	33,000	10,000	33,000	-7		< 0.21
95-48-7	2-Methylphenol	3,900	•••	100,000		15	15	< 0.21
88-74-4	2-Metroaniline	3,500		100,000	- 	1.5		< 0.21
88-75-5	2-Nitrophenol							< 0.21
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline					0.007	0.000	< 0.21
	4,6-Dinitro-2-methylphenol							< 0.40
	4-Bromophenyl phenyl ether							< 0.21
	4-Chloro-3-methylphenol							< 0.40
	4-Chloroaniline	310	•••	820		0.7	0.7	< 0.21
7005-72-3	4-Chlorophenyl phenyl ether							< 0.21
	4-Methylphenol	<u> </u>						< 0.21
	4-Nitroaniline							< 0.21
100-02-7	4-Nitrophenol							< 0.40
62-53-3	Aniline					·		< 0.41
92-87-5	Benzidine							< 0.40
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol							< 0.21
	Bis(2-chloroethoxy)methane							< 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
	Dibenzofuran	(2.22	2.000	1 000 000	- 2000	450	450	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
	Dimethyl phthalate	 	•	70	1		1,	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene	550	10	14.000		400	2 200	< 0.21 < 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78 15,600	4.600	2,000	4.600	0.5 8	2.6 8	< 0.21
78-59-1	Isophorone		4,600	410,000	4,600		0.00005	< 0.040
621-64-7	N-Nitrosodi-n-propylamine	0.09	•••	18		0.00005	0.00003	< 0.040
62-75-9	N-Nitrosodimethylamine	120		25,000		1	5.6	< 0.21
86-30-6 98-95-3	N-Nitrosodiphenylamine Nitrobenzene	130 39	92	25,000 1,000	9.4	0.1	0.1	< 0.040
98-95-3 87-86-5	Pentachlorophenol	39	92 	520	9.4	0.03	0.14	< 0.040
108-95-2	Phenol	23,000		61,000		100	100	< 0.21
110-86-1	Pyridine	23,000	•••	01,000		100	100	< 0.82
110-00-1	i Juanic			L	L			- 0.02

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003 19010622-004

Client Sample ID : A-18 A-19 A-20 A-21

Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30 01/23/2019 06:45

		B.	Route Specific for Soil	Route Specif	on Worker lic Values for oil	Groundwat	ponent of er Ingestion loute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II			_	
12674-11-2	Aroclor 1016	1		1				< 0.097	< 0.10	< 0.10	< 0.099
11104-28-2	Aroclor 1221	1		1				< 0.097	< 0.10	< 0.10	< 0.099
11141-16-5	Aroclor 1232	1		1	***			< 0.097	< 0.10	< 0.10	< 0.099
53469-21-9	Aroclor 1242	1	***	1				< 0.097	< 0.10	< 0.10	< 0.099
12672-29-6	Aroclor 1248	1	***	1				< 0.097	< 0.10	< 0.10	< 0.099
11097-69-1	Aroclor 1254	i		1				< 0.097	< 0.10	< 0.10	< 0.099
11096-82-5	Aroclor 1260	1		1	***			< 0.097	< 0.10	< 0.10	< 0.099

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-005 19010622-006 19010622-007 19010622-008

Client Sample ID: A-22 A-23 A-24 A-25

Date Collected: 01/23/2019 07:00 01/23/2019 07:15 01/23/2019 07:30 01/23/2019 07:45

			Route Specific	Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion loute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2	Aroclor 1016	1		1		_	***	< 0.099	< 0.10	< 0.10	< 0.091
11104-28-2	Aroclor 1221	1		1	-4-			< 0.099	< 0.10	< 0.10	< 0.091
11141-16-5	Aroclor 1232	1		1	***			< 0.099	< 0.10	< 0.10	< 0.091
53469-21-9	Aroclor 1242	1		1				< 0.099	< 0.10	< 0.10	< 0.091
12672-29-6	Aroclor 1248	1		ì				< 0.099	< 0.10	< 0.10	< 0.091
11097-69-1	Aroclor 1254	1		1				< 0.099	< 0.10	< 0.10	< 0.091
11096-82-5	Aroclor 1260	1	•••	1		***		< 0.099	< 0.10	< 0.10	< 0.091

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-009 19010622-010 19010622-011 19010622-012

Client Sample ID: A-26 A-27 A-28 A-29

Date Collected: 01/23/2019 08:00 01/23/2019 08:15 01/23/2019 08:30 01/23/2019 08:45

			Route Specific for Soil	Route Specif	on Worker lic Values for oil	Groundwat	ponent of er Ingestion loute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2 A	roclor 1016	1		1	-	-		< 0.098	< 0.095	< 0.093	< 0.097
11104-28-2 A	roclor 1221	1		1		-	_	< 0.098	< 0.095	< 0.093	< 0.097
11141-16-5 A	roclor 1232	1	-	1				< 0.098	< 0.095	< 0.093	< 0.097
53469-21-9 A	roclor 1242	1	***	1				< 0.098	< 0.095	< 0.093	< 0.097
12672-29-6 A	roclor 1248	1		1				< 0.098	< 0.095	< 0.093	< 0.097
11097-69-1 A	roclor 1254	1		1	_			< 0.098	< 0.095	< 0.093	< 0.097
11096-82-5 A	roclor 1260	1		1	***			< 0.098	< 0.095	< 0.093	< 0.097

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-013 19010622-014 19010622-015 19010622-016

Client Sample ID : A-30 A-31 A-32 A-33

Date Collected: 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30 01/23/2019 09:45

			toute Specific for Soil	Route Specif	on Worker ic Values for oil	Groundwat	ponent of er Ingestion loute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2 A	roclor 1016	1	-	1	***			< 0.099	< 0.099	< 0.096	< 0.099
11104-28-2 A	roclor 1221	1	-	1		***	_	< 0.099	< 0.099	< 0.096	< 0.099
11141-16-5 A	roclor 1232	1		1	•••			< 0.099	< 0.099	< 0.096	< 0.099
53469-21-9 A	roclor 1242	1		1				< 0.099	< 0.099	< 0.096	< 0.099
12672-29-6 A	roclor 1248	1	***	1				< 0.099	< 0.099	< 0.096	< 0.099
11097-69-1 A	roclor 1254	1		1				< 0.099	< 0.099	< 0.096	< 0.099
11096-82-5 A	roclor 1260	1		1				< 0.099	< 0.099	< 0.096	< 0.099

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-017

Client Sample ID: A-34
Date Collected: 01/23/2019 10:00

			Route Specific for Soil	Route Specia	on Worker fic Values for oil	Groundwat	ponent of er Ingestion toute Values	
CAS No.	Analyte	Ingestion	Inhalation	· Ingestion	Inhalation	Class I	Class II	
12674-11-2 A	Aroclor 1016	1	_	1		***	•••	< 0.10
11104-28-2 A	Aroclor 1221	1		1				< 0.10
11141-16-5 A	Aroclor 1232	1		1	-		•••	< 0.10
53469-21-9 A	Aroclor 1242	. 1		1				< 0.10
12672-29-6 A	Aroclor 1248	1		1				< 0.10
11097-69-1 A	Aroclor 1254	1	***	1	_			< 0.10
11096-82-5 A	Aroclor 1260	1		1				< 0.10

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003 19010622-004

Client Sample ID: A-18 A-19 A-20 A-21

Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30 01/23/2019 06:45

			loute Specific for Soil	Route Specif	on Worker ic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
72-54-8	4,4'-DDD	3		520		16	80	< 0.0019	< 0.0021	< 0.0021	< 0.0020
72-55-9	4,4'-DDE	2		370		54	270	< 0.0019	< 0.0021	< 0.0021	< 0.0020
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0019	< 0.0021	< 0.0021	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0019	< 0.0021	< 0.0021	< 0.0020
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0019	< 0.0021	< 0.0021	< 0.0020
5103-71-9	alpha-Chlordane							< 0.0019	< 0.0021	< 0.0021	< 0.0020
319-85-7	beta-BHC					·		< 0.0019	< 0.0021	< 0.0021	< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.019	< 0.021	< 0.021	< 0.020
319-86-8	delta-BHC							< 0.0019	< 0.0021	< 0.0021	< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0019	< 0.0021	< 0.0021	< 0.0020
959-98-8	Endosulfan I	470	-	1,200		18	90	< 0.0019	< 0.0021	< 0.0021	< 0.0020
33213-65-9	Endosulfan II	470		1,200		18	90	< 0.0019	< 0.0021	< 0.0021	< 0.0020
1031-07-8	Endosulfan sulfate							< 0.0019	< 0.0021	< 0.0021	< 0.0020
72-20-8	Endrin	23		61	***	1	5	< 0.0019	< 0.0021	< 0.0021	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0019	< 0.0021	< 0.0021	< 0.0020
53494-70-5	Endrin ketone							< 0.0019	< 0.0021	< 0.0021	< 0.0020
58-89-9	gamma-BHC	0.5	-	96	_	0.009	0.047	< 0.0019	< 0.0021	< 0.0021	< 0.0020
5566-34-7	gamma-Chlordane	1						< 0.0019	< 0.0021	< 0.0021	< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0019	< 0.0021	< 0.0021	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0019	< 0.0021	< 0.0021	< 0.0020
72-43-5	Methoxychlor	390	_	1,000		160	780	< 0.0019	< 0.0021	< 0.0021	< 0.0020
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.040	< 0.043	< 0.043	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-005 19010622-006 19010622-007 19010622-008 Client Sample ID: A-22 A-23 A-24 A-25

Date Collected: 01/23/2019 07:00 01/23/2019 07:15 01/23/2019 07:30 01/23/2019 07:45

			•		on Worker		ponent of			
			Route Specific	-	ic Values for		er Ingestion			
		Values	for Soil		oil	Exposure R	loute Values			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II			
72-54-8	4,4'-DDD	3		520		16	80	< 0.0020	< 0.0021	
72-55-9	4,4'-DDE	2		370		54	270	< 0.0020	< 0.0021	
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0020	< 0.0021	
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020	< 0.0021	
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0020	< 0.0021	
5103-71-9	alpha-Chlordane	ŀ						< 0.0020	< 0.0021	
319-85-7	beta-BHC							< 0.0020	< 0.0021	
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.020	< 0.021	
319-86-8	delta-BHC							< 0.0020	< 0.0021	
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020	< 0.0021	
959-98-8	Endosulfan I	470		1,200		18	90	< 0.0020	< 0.0021	
33213-65-9	Endosulfan II	470		1,200		18	90	< 0.0020	< 0.0021	
1031-07-8	Endosulfan sulfate							< 0.0020	< 0.0021	
72-20-8	Endrin	23		61	_	1	5	< 0.0020	< 0.0021	
7421-93-4	Endrin aldehyde							< 0.0020	< 0.0021	
53494-70-5	Endrin ketone							< 0.0020	< 0.0021	
58-89-9	gamma-BHC	0.5		96		0.009	0.047	< 0.0020	< 0.0021	
5566-34-7	gamma-Chlordane							< 0.0020	< 0.0021	
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0020	< 0.0021	
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020	< 0.0021	
72-43-5	Methoxychlor	390		1,000		160	780	< 0.0020	< 0.0021	
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.041	< 0.043	

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-009 19010622-010 19010622-011 19010622-012 Client Sample ID: A-26 A-27 A-28 A-29

Date Collected: 01/23/2019 08:00 01/23/2019 08:15 01/23/2019 08:30 01/23/2019 08:45

		Values	for Soil	Route Speci		Groundwat Exposure R	oute Values				
CAS No.	Analyte	■Ingestion ■	[Inhalation]		Inhalation	Class I	■Class II ■				
	4,4'-DDD	3		520		16	80	< 0.0020	< 0.0019	< 0.0019	< 0.0019
	4,4'-DDE	2		370		54	270	< 0.0020	< 0.0019	< 0.0019	< 0.0019
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0020	< 0.0019	< 0.0019	< 0.0019
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020	< 0.0019	< 0.0019	< 0.0019
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0020	< 0.0019	< 0.0019	< 0.0019
5103-71-9	alpha-Chlordane							< 0.0020	< 0.0019	< 0.0019	< 0.0019
319-85-7	beta-BHC							< 0.0020	< 0.0019	< 0.0019	< 0.0019
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.020	< 0.019	< 0.019	< 0.019
319-86-8	delta-BHC							< 0.0020	< 0.0019	< 0.0019	< 0.0019
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020	< 0.0019	< 0.0019	< 0.0019
959-98-8	Endosulfan I	470	***	1,200		18	90	< 0.0020	< 0.0019	< 0.0019	< 0.0019
33213-65-9	Endosulfan II	470		1,200		18	90	< 0.0020	< 0.0019	< 0.0019	< 0.0019
1031-07-8	Endosulfan sulfate							< 0.0020	< 0.0019	< 0.0019	< 0.0019
72-20-8	Endrin	23		61	_	1	5	< 0.0020	< 0.0019	< 0.0019	< 0.0019
7421-93-4	Endrin aldehyde							< 0.0020	< 0.0019	< 0.0019	< 0.0019
53494-70-5	Endrin ketone							< 0.0020	< 0.0019	< 0.0019	< 0.0019
58-89-9	gamma-BHC	0.5		96		0.009	0.047	< 0.0020	< 0.0019	< 0.0019	< 0.0019
5566-34-7	gamma-Chlordane							< 0.0020	< 0.0019	< 0.0019	< 0.0019
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0020	< 0.0019	< 0.0019	< 0.0019
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020	< 0.0019	< 0.0019	< 0.0019
72-43-5	Methoxychlor	390	***	1,000		160	780	< 0.0020	< 0.0019	< 0.0019	< 0.0019
3001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.040	< 0.039	< 0.039	< 0.040

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-013 19010622-014 19010622-015 19010622-016
Client Sample ID: A-30 A-31 A-32 A-33

Date Collected: 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30 01/23/2019 09:45

			toute Specific for Soil	Route Specif	on Worker fic Values for oil	Groundwat	ponent of er Ingestion oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
	4,4′ - DDD	3		520		16	80	< 0.0020	< 0.0020	< 0.0019	< 0.0020
72-55-9	4,4'-DDE	2		370		54	270	< 0.0020	< 0.0020	< 0.0019	< 0.0020
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0020	< 0.0020	< 0.0019	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020	< 0.0020	< 0.0019	< 0.0020
319-84-6	alpha-BHC	0.1	0.8	20	2,1	0.0005	0.003	< 0.0020	< 0.0020	< 0.0019	< 0.0020
5103-71-9	alpha-Chlordane							< 0.0020	< 0.0020	< 0.0019	< 0.0020
319-85-7	beta-BHC							< 0.0020	< 0.0020	< 0.0019	< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.020	< 0.020	< 0.019	< 0.020
319-86-8	delta-BHC					*		< 0.0020	< 0.0020	< 0.0019	< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020	< 0.0020	< 0.0019	< 0.0020
959-98-8	Endosulfan I	470	***	1,200	_	18	90	< 0.0020	< 0.0020	< 0.0019	< 0.0020
33213-65-9	Endosulfan II	470	_	1,200		18	90	< 0.0020	< 0.0020	< 0.0019	< 0.0020
1031-07-8	Endosulfan sulfate							< 0.0020	< 0.0020	< 0.0019	< 0.0020
72-20-8	Endrin	23		61		1	5	< 0.0020	< 0.0020	< 0.0019	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0020	< 0.0020	< 0.0019	< 0.0020
53494-70-5	Endrin ketone					,		< 0.0020	< 0.0020	< 0.0019	< 0.0020
58-89-9	gamma-BHC	0.5	•••	96		0.009	0.047	< 0.0020	< 0.0020	< 0.0019	< 0.0020
5566-34-7	gamma-Chlordane							< 0.0020	< 0.0020	< 0.0019	< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0020	< 0.0020	< 0.0019	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020	< 0.0020	< 0.0019	< 0.0020
72-43-5	Methoxychlor	390		1,000		160	780	< 0.0020	< 0.0020	< 0.0019	< 0.0020
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.041	< 0.041	< 0.040	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-017 Client Sample ID: A-34

Date Collected: 01/23/2019 10:00

		4	Route Specific for Soil		on Worker ic Values for oil	Groundwat	ponent of ter Ingestion Loute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
	4,4'-DDD	3		520		16	80	< 0.0020
72-55-9	4,4'-DDE	2	•••	370		54	270	< 0.0020
50-29-3	4,4'-DDT	2		100	2,100	32	160	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020
319-84-6	alpha-BHC	0.1	0.8	20	2.1	0.0005	0.003	< 0.0020
5103-71-9	alpha-Chlordane							< 0.0020
319-85-7	beta-BHC							< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.020
319-86-8	delta-BHC							< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020
959-98-8	Endosulfan I	470		1,200		18	90	< 0.0020
33213-65-9	Endosulfan II	470		1,200		18	90	< 0.0020
1031-07-8	Endosulfan sulfate							< 0.0020
72-20-8	Endrin	23		61		1	5	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0020
53494-70-5	Endrin ketone							< 0.0020
58-89-9	gamma-BHC	0.5		96		0.009	0.047	< 0.0020
5566-34-7	gamma-Chlordane							< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	16	23	110	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020
72-43-5	Methoxychlor	390		1,000		160	780	< 0.0020
8001-35-2	Toxaphene	0.6	89	110	240	31	150	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003 19010622-004

Client Sample ID: A-18 A-19 A-20 A-21

Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30 01/23/2019 06:45

					on Worker	Soil Comp					
		Residential R	•	Route Specif	ic Values for [Groundwate					
		Values	for Soil	Se	oil	Exposure Ro					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
	Aluminum							13000	15000	14000	13000
7440-36-0	Antimony	31		82				< 2.0	< 2.4	< 2.3	< 2.2
7440-38-2	Arsenic	13.0/11.3	750	61	25,000			4.7	4.3	3.9	5.2
7440-39-3	Barium	5,500	690,000	14,000	870,000			30	60	71	74
7440-41-7	Beryllium	160	1,300	410	44,000			0.70	0.80	0.82	0.70
7440-43-9	Cadmium	78	1,800	200	59,000			< 0.51	< 0.59	< 0.58	< 0.56
7440-70-2	Calcium							77000	52000	47000	70000
7440-47-3	Chromium	230	270	4,100	690			24	28	28	26
7440-48-4	Cobalt	4,700		12,000				11	17	15	19
7440-50-8	Copper	2,900	***	8,200	_			30	26	24	30
	Cyanide	1,600		4,100				< 0.30	< 0.33	< 0.33	< 0.31
7439-89-6	Iron							24000	26000	25000	25000
7439-92-1	Lead	400		700				14	15	14	15
7439-95-4	Magnesium	325,000		730,000	_		_	38000	25000	22000	34000
7439-96-5	Manganese	1,600	69,000	4,100	8,700			480	380	350	510
7439-97-6	Mercury	23	10	61	0.1			< 0.021	0.029	0.027	0.024
7440-02-0	Nickel	1,600	13,000	4,100	440,000			33	47	43	45
7440-09-7	Potassium	•••		_				2900	3400	3300	3100
7782-49-2	Selenium	390		1,000				< 1.0	< 1.2	< 1.2	< 1.1
7440-22-4	Silver	390	•••	1,000	_			< 1.0	< 1.2	< 1.2	< 1.1
7440-23-5	Sodium	***	•••					180	150	140	150
7440-28-0	Thallium	6.3		160				< 1.0	< 1.2	< 1.2	< 1.1
7440-62-2	Vanadium	550		1,400				29	27	27	26
7440-66-6	Zinc	23,000		61,000				56	56	56	56

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-005 19010622-006 19010622-007 19010622-008

Client Sample ID : A-22 A-23 A-24 A-25

Date Collected: 01/23/2019 07:00 01/23/2019 07:15 01/23/2019 07:30 01/23/2019 07:45

			Constructi	on Worker	Soil Com	ponent of				
	Residential R	oute Specific	Route Specif	ic Values for	Groundwat	er Ingestion				
	Values	for Soil	Ls	oil	Exposure R	oute Values				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7429-90-5 Aluminum		1					18000	19000	17000	13000
7440-36-0 Antimony	31	1	82				< 2.2	< 2.3	< 2.2	< 1.9
7440-38-2 Arsenic	13.0/11.3	750	61	25,000			11	6.8	6.1	13
7440-39-3 Barium	5,500	690,000	14,000	870,000			76	78	120	39
7440-41-7 Beryllium	160	1,300	410	44,000			1.0	1.1	0.98	0.76
7440-43-9 Cadmium	78	1,800	200	59,000			< 0.54	< 0.58	< 0.55	< 0.49
7440-70-2 Calcium							76000	66000	80000	70000
7440-47-3 Chromium	230	270	4,100	690			35	38	33	26
7440-48-4 Cobalt	4,700		12,000	_			21	27	18	17
7440-50-8 Copper	2,900	-	8,200	***			39	32	37	33
57-12-5 Cyanide	1,600	-	4,100	***	•		< 0.31	< 0.33	< 0.31	< 0.28
7439-89-6 Iron							33000	34000	35000	27000
7439-92-1 Lead	400		700				17	20	17	16
7439-95-4 Magnesium	325,000		730,000				37000	31000	39000	35000
7439-96-5 Manganese	1,600	69,000	4,100	8,700			600	500	640	520
7439-97-6 Mercury	23	10	61	0.1			< 0.022	0.023	0.026	0.025
7440-02-0 Nickel	1,600	13,000	4,100	440,000			56	70	50	44
7440-09-7 Potassium		-		•••			4700	4900	4000	3300
7782-49-2 Selenium	390		1,000				< 1.1	1.5	< 1.1	< 0.97
7440-22-4 Silver	390	***	1,000				< 1.1	< 1.2	< 1.1	< 0.97
7440-23-5 Sodium							200	200	190	230
7440-28-0 Thallium	6.3		160				< 1.1	< 1.2	< 1.1	< 0.97
7440-62-2 Vanadium	550		1,400				36	37	32	26
7440-66-6 Zinc	23,000		61,000	•••			69	74	69	57

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-009

19010622-010

19010622-011

19010622-012

Client Sample ID:

A-26

A-27

A-28

A-29

Date Collected: 01/23/2019 08:00 01/23/2019 08:15 01/23/2019 08:30 01/23/2019 08:45

1										
	D 1 1 41 - 1 D	4 . 6	1	on Worker	Soil Comp					
	Residential R	-	_	ic Values for	Groundwate					
0.031	Values			oil	Exposure R					
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7429-90-5 Aluminum							12000	15000	14000	16000
7440-36-0 Antimony	31		82			·	< 2.2	< 2.2	< 2.1	< 2.2
7440-38-2 Arsenic	13.0/11.3	750	61	25,000			13	8.0	7.0	11
7440-39-3 Barium	5,500	690,000	14,000	870,000			39	63	73	69
7440-41-7 Beryllium	160	1,300	410	44,000			0.76	0.86	0.83	0.88
7440-43-9 Cadmium	78	1,800	200	59,000			< 0.55	< 0.54	< 0.54	< 0.55
7440-70-2 Calcium							58000	71000	76000	97000
7440-47-3 Chromium	230	270	4,100	690			23	30	34	31
7440-48-4 Cobalt	4,700		12,000				9.4	16	14	21
7440-50-8 Copper	2,900	•••	8,200				45	32	30	39
57-12-5 Cyanide	1,600	_	4,100				< 0.31	< 0.30	< 0.29	< 0.31
7439-89-6 Iron				-			30000	28000	32000	32000
7439-92-1 Lead	400		700				24	15	17	18
7439-95-4 Magnesium	325,000	_	730,000	_		-	29000	35000	37000	45000
7439-96-5 Manganese	1,600	69,000	4,100	8,700			310	530	490	670
7439-97-6 Mercury	23	10	61	0.1			0.027	0.026	0.027	0.029
7440-02-0 Nickel	1,600	13,000	4,100	440,000			34	44	44	54
7440-09-7 Potassium	***						2700	3900	3200	3800
7782-49-2 Selenium	390		1,000				< 1.1	< 1.1	< 1.1	1.2
7440-22-4 Silver	390		1,000				< 1.1	< 1.1	< 1.1	< 1.1
7440-23-5 Sodium		_					200	360	350	240
7440-28-0 Thallium	6.3		160				< 1.1	< 1.1	< 1.1	< 1.1
7440-62-2 Vanadium	550		1,400	•••			29	30	28	33
7440-66-6 Zinc	23,000	***	61,000				53	60	63	68

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-013

Client Sample ID:

9010622-013 A-30 19010622-014 A-31 19010622-015 A-32

19010622-016

A-33

Date Collected: 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30 01/23/2019 09:45

		Residential R	oute Specific		on Worker ic Values for	Soil Compo Groundwater					
		Values	for Soil	· Se	oil	Exposure Ro	ute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7429-90-5					·			14000	16000	15000	16000
7440-36-0		31	•••	82				< 2.2	< 2.1	< 2.0	< 2.3
7440-38-2	Arsenic	13.0/11.3	750	61	25,000			11	11	6.6	10
7440-39-3	Barium	5,500	690,000	14,000	870,000			46	79	63	87
7440-41-7	Beryllium	160	1,300	410	44,000			0.95	0.90	0.79	0.86
7440-43-9	Cadmium	78	1,800	200	59,000			< 0.55	< 0.53	< 0.51	< 0.57
7440-70-2	Calcium							54000	73000	74000	81000
7440-47-3	Chromium	230	270	4,100	690			27	29	27	31
7440-48-4	Cobalt	4,700		12,000				18	19	15	20
7440-50-8	Copper	2,900		8,200				54	33	29	34
57-12-5	Cyanide	1,600		4,100				< 0.31	< 0.31	< 0.31	< 0.31
7439-89-6	Iron				·			39000	31000	28000	29000
7439-92-1	Lead	400		700				26	16	15	17
7439-95-4	Magnesium	325,000		730,000				27000	35000	33000	38000
7439-96-5	Manganese	1,600	69,000	4,100	8,700			450	620	530	570
7439-97-6	Mercury	23	10	61	0.1			0.030	0.022	0.024	0.025
7440-02-0	Nickel	1,600	13,000	4,100	440,000			57	49	42	50
7440-09-7	Potassium							3000	3700	2600	3900
7782-49-2	Selenium	390		1,000				1.9	1.1	< 1.0	< 1.1
7440-22-4	Silver	390	•	1,000				< 1.1	< 1.1	< 1.0	< 1.1
7440-23-5	Sodium	***						680	350	740	240
7440-28-0	Thallium	6.3		160				< 1.1	< 1.1	< 1.0	< 1.1
7440-62-2	Vanadium	550		1,400				31	30	27	31
7440-66-6	Zinc	23,000		61,000	•••			98	66	64	69

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-017 Client Sample ID: A-34

Date Collected: 01/23/2019 10:00

		Residential R Values	•	Route Specif	on Worker ic Values for oil	Groundwat	ponent of ter Ingestion toute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
7429-90-5	Aluminum							14000
	Antimony	31	•••	82				< 2.3
7440-38-2	Arsenic	13.0/11.3	750	61	25,000			9.0
7440-39-3	Barium	5,500	690,000	14,000	870,000			91
7440-41-7	Beryllium	160	1,300	410	44,000			0.85
	Cadmium	78	1,800	200	59,000			< 0.56
7440-70-2	Calcium	-			•••			79000
7440-47-3	Chromium	230	270	4,100	· 690			28
7440-48-4	Cobalt	4,700	1	12,000				19
7440-50-8	Соррег	2,900		8,200				32
57-12-5	Cyanide	1,600		4,100				< 0.31
7439-89-6	Iron		***		-			27000
7439-92-1	Lead	400	_	700				15
7439-95-4	Magnesium	325,000		730,000				37000
7439-96-5	Manganese	1,600	69,000	4,100	8,700			550
7439-97-6		23	10	61	0.1			0.024
7440-02-0	Nickel	1,600	13,000	4,100	440,000			46
7440-09-7	Potassium			*** \				3700 .
7782-49-2	Selenium	390		1,000	***			< 1.1
7440-22-4	Silver	390	_	1,000			1	< 1.1
7440-23-5	Sodium						1	250
7440-28-0	Thallium	6.3		160				< 1.1
7440-62-2	Vanadium	550		1,400				30
7440-66-6	Zinc	23,000		61,000			T	60

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003 19010622-004 Client Sample ID: A-18 A-19 A-20 A-21

Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30 01/23/2019 06:45

	Values for Soil		Construction Worker Route Specific Values for Soil		Soil Component of Groundwater Ingestion Exposure Route Values					
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0 Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium					2.0	2.0	0.054	0.73	0.72	0.74
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt					1.0	1.0	0.025	0.053	0.099	0.080
7440-50-8 Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6 Iron					5.0	5.0	1.2	< 0.25	< 0.25	< 0.25
7439-92-1 Lead					0.0075	0.1	0.014	< 0.0050	0:0089	0.0069
7439-96-5 Manganese					0.15	10.0	5.0	4!5	4.97	493
7439-97-6 Mercury					0.002	0.01	0.00025	< 0.00020	< 0.00020	0.00020
7440-02-0 Nickel					0.1	2.0	0.040	0.067	0.16	0.15
7782-49-2 Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver					0.05	-	< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	0.055	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-005 19010622-006 19010622-007 19010622-008 Client Sample ID: A-22 A-23 A-24 A-25

Date Collected: 01/23/2019 07:00 01/23/2019 07:15 01/23/2019 07:30 01/23/2019 07:45

			Constructi	on Worker	Soil Com	ponent of				
	Residential R	loute Specific	Route Specif	ic Values for	Groundwat	er Ingestion				
	Values	for Soil	Se	oil	Exposure R	oute Values				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0 Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium					2.0	2.0	0.83	0.74	0.83	0.43
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt					1.0	1.0	0.052	0.034	0.066	0.095
7440-50-8 Copper					0.65	0.65	< 0.10	< 0.10	0.12	0.16
7439-89-6 Iron					5.0	5.0	< 0.25	< 0.25	< 0.25	< 0.25
7439-92-1 Lead					0.0075	0.1	0:007.7	< 0.0050	0:014	0.013
7439-96-5 Manganese					0.15	10.0	6:5	2!1	6:7	6:3
7439-97-6 Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 Nickel					0.1	2.0	0.072	0.081	0.083	0!17
7782-49-2 Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver					0.05		< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	< 0.050	0.065

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-009

19010622-010

19010622-011 A-28

19010622-012

Client Sample ID:

A-26

A-29

A-27 Date Collected: 01/23/2019 08:00 01/23/2019 08:15 01/23/2019 08:30 01/23/2019 08:45

		Residential Route Specific Values for Soil		Construction Worker Route Specific Values for Soil		Soil Component of Groundwater Ingestion Exposure Route Values					
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0	Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2	Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3						2.0	2.0	0.34	0.77	0.53	0.52
7440-41-7	Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9	Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3	Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4	Cobalt					1.0	1.0	< 0.010	0.037	0.017	0.063
7440-50-8	Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	0.14
7439-89-6	Iron					5.0	5.0	< 0.25	0.44	1.5	< 0.25
7439-92-1	Lead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	0:0095
	Manganese					0.15	10.0	0.90	4.7	3:5	5:2
7439-97-6	Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0	Nickel					0.1	2.0	< 0.020	0.020	< 0.020	0:12
7782-49-2	Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4	Silver					0.05		< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0	Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2	Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6	Zinc					5.0	10	< 0.050	< 0.050	< 0.050	0.066

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

 Laboratory ID:
 19010622-013
 19010622-014
 19010622-015
 19010622-016

 Client Sample ID:
 A-30
 A-31
 A-32
 A-33

 Date Collected:
 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30 01/23/2019 09:45

			Constructi	on Worker	Soil Com	ponent of				
	Residential F	Route Specific	Route Specif	ic Values for	Groundwat	er Ingestion				
	Values	for Soil	Se	oil	Exposure R	oute Values				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7440-36-0 Antimony					0.006	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium					2.0	2.0	0.55	0.46	0.49	0.95
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt					1.0	1.0	0.038	0.027	0.065	0.11
7440-50-8 Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	0.14
7439-89-6 Iron					5.0	5.0	0.28	< 0.25	0.31	< 0.25
7439-92-1 Lead	1				0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	0.0087
7439-96-5 Manganese					0.15	10.0	4.8	2.7	5.9	5:2
7439-97-6 Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 Nickel					0.1	2.0	0.043	0.074	0.051	0!17
7782-49-2 Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver					0.05		< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	< 0.050	0.064

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-017
Client Sample ID: A-34
Date Collected: 01/23/2019 10:00

		Values for Soil		Route Specif	on Worker ic Values for oil	Soil Com Groundwat Exposure R		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
7440-36-0	Antimony					0.006	0.024	< 0.015
7440-38-2	Arsenic					0.05	0.2	< 0.010
7440-39-3	Barium		,			2.0	2.0	0.84
7440-41-7	Beryllium					0.004	0.5	< 0.0050
7440-43-9	Cadmium					0.005	0.05	< 0.0050
7440-47-3	Chromium					0.1	1.0	< 0.010
7440-48-4	Cobalt					1.0	1.0	0.064
7440-50-8	Соррег					0.65	0.65	< 0.10
7439-89-6	Iron				·	5.0	5.0	< 0.25
7439-92-1	Lead					0.0075	0.1	< 0.0050
7439-96-5	Manganese					0.15	10.0	2:6
7439-97-6	Mercury					0.002	0.01	< 0.00020
7440-02-0	Nickel					0.1	2.0	0!13
7782-49-2	Selenium					0.05	0.05	< 0.010
7440-22-4	Silver					0.05		< 0.010
7440-28-0	Thallium					0.002	0.02	< 0.0050
7440-62-2	Vanadium					0.049	0.1	< 0.010
7440-66-6	Zinc					5.0	10	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-002 19010622-010
Client Sample ID: A-19 A-27
Date Collected: 01/23/2019 06:15 01/23/2019 08:15

pH = 7.7 pH = 7.65

	1	Route Specific for Soil		l Component of stion Route Values		
	Ingestion	Inhalation	Class I	Class II		
Analyte		pH Ran	ge 7.25 to 7.74			
Aluminum					15000	15000
Antimony	31	•••	5	20	< 2.4	< 2.2
Arsenic	13.0/11.3	750	30	120	4.3	8.0
Barium	5,500	690,000	1,800	1,800	60	63
Beryllium	160	1,300	1,000	130,000	0.80	0.86
Cadmium	78	1,800	59	590	< 0.59	< 0.54
Calcium		•••			52000	71000
Chromium	230	270	32	No Data	28	30
Cobalt	4,700		See TCLP/SPLP	See TCLP/SPLP	17	16
Copper	2,900	•••	330,000	330,000	26	32
Cyanide	1,600	***	40	120	< 0.33	< 0.30
Iron			See TCLP/SPLP	See TCLP/SPLP	26000	28000
Lead	400	•••	107	1,420	15	15
Magnesium	325,000	•••			25000	35000
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	380	530
Mercury	23	10 / 0.1*	6.4	32	0.029	0.026
Nickel	1,600	13,000	700	14,000	47	44
Potassium					3400	3900
Selenium	390		3.3	3.3	< 1.2	< 1.1
Silver	390		39		< 1.2	< 1.1
Sodium	•••	•••			150	360
Thallium	6.3		3.4	34	< 1.2	< 1.1
Vanadium	550		980	See TCLP/SPLP	27	30
Zinc	23,000	•••	16,000	32,000	56	60

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

Chromium Class I / II objectives based on hexavalent chromium.

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

TACO Tier I pH Specific Soil Remediation Objectives - Supplemental Residential Report

Client: Environmental Group Services, Ltd.

Project: Franklin - EB
Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-003 19010622-004 19010622-005 19010622-006 Client Sample ID: A-18 A-20 A-21 A-22 A-23

Date Collected: 01/23/2019 06:00 01/23/2019 06:30 01/23/2019 06:45 01/23/2019 07:00 01/23/2019 07:15

pH = 7.83 pH = 7.94 pH = 7.9 pH = 8.05 pH = 8.18

		Route Specific for Soil	• •	l Component of stion Route Values					
	Ingestion	Inhalation	Class I	Class II					
Analyte		pH Ran	ge 7.75 to 8.24						
Aluminum					13000	14000	13000	18000	190
Antimony	_ 31	•••	5	20	< 2.0	< 2.3	< 2.2	< 2.2	< 2
Arsenic	13.0/11.3	750	31	120	4.7	3.9	5.2	11	6.
Barium	5,500	. 690,000	2,100	2,100	30	71	74	76	7:
Beryllium	160	1,300	8,000	1,000,000	0.70	0.82	0.70	1.0	1.
Cadmium	78	1,800	430	4,300	< 0.51	< 0.58	< 0.56	< 0.54	< 0.
Calcium		•••			77000	47000	70000	76000	660
Chromium	230	270	28	No Data	24	28	26	35	33
Cobalt	4,700		See TCLP/SPLP	See TCLP/SPLP	11	15	19	21	2
Copper	2,900		330,000	330,000	30	24	30	39	33
Cyanide	1,600	•••	40	120	< 0.30	< 0.33	< 0.31	< 0.31	< 0.
Iron			See TCLP/SPLP	See TCLP/SPLP	24000	25000	25000	33000	340
Lead	400	•••	107	1,420	14	14	15	17	20
Magnesium	325,000	:			38000	22000	34000	37000	310
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	480	350	510	600	50
Mercury	23	10 / 0.1*	8.0	40	< 0.021	0.027	0.024	< 0.022	0.0
Nickel	1,600	13,000	3,800	76,000	33	43	45	56	70
Potassium					2900	3300	3100	4700	490
Selenium	390		2.4	2.4	< 1.0	< 1.2	< 1.1	< 1.1	1.
Silver	390		110		< 1.0	< 1.2	< 1.1	< 1.1	<1
Sodium	•••				180	140	150	· 200	20
Thallium	6.3	•••	3.8	38	< 1.0	< 1.2	< 1.1	< 1.1	< 1
Vanadium	550	•••	980	See TCLP/SPLP	29	27	26	36	31
Zinc	23,000	•••	53,000	110,000	56	56	56	69	74

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

Chromium Class I / II objectives based on hexavalent chromium.

^{• -} Construction Worker Inhalation Objective from Appendix B, Table B.

TACO Tier I pH Specific Soil Remediation Objectives - Supplemental Residential Report

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-007 19010622-008 19010622-009 19010622-011 19010622-012

Client Sample ID: A-24 A-25 A-26 A-28 A-29

Date Collected: 01/23/2019 07:30 01/23/2019 07:45 01/23/2019 08:00 01/23/2019 08:30 01/23/2019 08:45

pH = 8.11 pH = 7.77 pH = 8.1 pH = 7.81 pH = 7.91

		Route Specific for Soil	pH Specific Soi Groundwater Inge	l Component of stion Route Values					
	Ingestion	Inhalation	Class I	Class II					
G Analyte		pH Ran	ge 7.75 to 8.24						
Aluminum					17000	13000	12000	14000	16000
Antimony	31	•••	5	20	< 2.2	< 1.9	< 2.2	< 2.1	< 2.2
Arsenic	13.0/11.3	750	31	120	6.1	13	13	7.0	11
Barium	5,500	690,000	2,100	2,100	120	39	39	73	69
Beryllium	160	1,300	8,000	1,000,000	0.98	0.76	0.76	0.83	0.88
Cadmium	78	1,800	430	4,300	< 0.55	< 0.49	< 0.55	< 0.54	< 0.55
Calcium	•••				80000	70000	58000	76000	97000
Chromium	230	270	28	No Data	33	26	23	34	31
Cobalt	4,700		See TCLP/SPLP	See TCLP/SPLP	18	17	9.4	14	21
Соррег	2.900		330,000	330,000	37	33	45	30	39
Cyanide	1,600	•••	40	120	< 0.31	< 0.28	< 0.31	< 0.29	< 0.31
Iron			See TCLP/SPLP	See TCLP/SPLP	35000	27000	30000	32000	32000
Lead	400		107	1,420	17	16	24.	17	18
Magnesium	325,000	•••			39000	35000	29000	37000	45000
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	640	520	310	490	670
Mercury	23	10 / 0.1*	8.0	40	0.026	0.025	0.027	0.027	0.029
Nickel	1,600	13,000	3,800	76,000	50	44	34	44	54
Potassium	•••	•••			4000	3300	2700	3200	3800
Selenium	390		2.4	2.4	< 1.1	< 0.97	< 1.1	< 1.1	1.2
Silver	390	•••	110		< 1.1	< 0.97	< 1.1	< 1.1	< 1.1
Sodium	•••				190	230	200	350	240
Thallium	6.3		3.8	38	< 1.1	< 0.97	< 1.1	< 1.1	< 1.1
Vanadium	550	•••	980	See TCLP/SPLP	32	26	29	28	33
Zinc	23,000	•••	53,000	110,000	69	57	53	63	68

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

Chromium Class 1 / II objectives based on hexavalent chromium.

^{* -} Construction Worker Inhalation Objective from Appendix B, Table B.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-013 19010622-014 19010622-015 19010622-016 19010622-017

Client Sample ID : A-30 A-31 A-32 A-33 A-34

Date Collected: 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30 01/23/2019 09:45 01/23/2019 10:00

pH = 8.07 pH = 7.97 pH = 8.1 pH = 8.23 pH = 8.05

		Route Specific for Soil	• •	l Component of stion Route Values					
	Ingestion	Inhalation	Class I	Class II					
Analyte		pH Ran	ge 7.75 to 8.24						
Aluminum					14000	16000	15000	16000	140
Antimony	31	•••	5	20	< 2.2	< 2.1	< 2.0	< 2.3	< 2
Arsenic	13.0/11.3	750	31	120	11	11	6.6	10	9.0
Barium	5,500	690,000	2,100	2,100	46	79	63	87	91
Beryllium	160	1,300	. 8,000	1,000,000	0.95	0.90	0.79	0.86	0.8
Cadmium	78	1,800	430	4,300	< 0.55	< 0.53	< 0.51	< 0.57	< 0.
Calcium	***				54000	73000	74000	81000	790
Chromium	230	270	28	No Data	27	29	27	31	21
Cobalt	4,700	•	See TCLP/SPLP	See TCLP/SPLP	18	19	15	20	19
Copper	2,900		330,000	330,000	54	33	29	34	32
Cyanide	1,600	•••	40	120	< 0.31	< 0.31	< 0.31	< 0.31	< 0.
Iron			See TCLP/SPLP	See TCLP/SPLP	39000	31000	28000	29000	270
Lead	400		107	1,420	26	16	15	17	15
Magnesium	325,000	•••	ı		27000	35000	33000	38000	370
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	450	620	530	570	55
Mercury	23	10 / 0.1*	8.0	40	0.030	0.022	0.024	0.025	0.0
Nickel	1,600	13,000	3,800	76,000	57	49	42	50	46
Potassium	•••	•••			3000	3700	2600	3900	370
Selenium	390	•••	2.4	2.4	1.9	1.1	< 1.0	< 1.1	< 1
Silver	390	•••	110		< 1.1	< 1.1	< 1.0	< 1.1	< 1
Sodium	•••				680	350	740	240	25
Thallium	6.3	•••	3.8	38	< 1.1	< 1.1	< 1.0	< 1.1	< 1
Vanadium	550		980	See TCLP/SPLP	31	30	27	31	3(
Zinc	23,000	•••	53,000	110,000	98	66	64	69	60

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective.

Chromium Class I / II objectives based on hexavalent chromium.

* - Construction Worker Inhalation Objective from Appendix B, Table B.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003 19010622-004 19010622-005 19010622-006 19010622-007

Client Sample ID : A-18 A-19 A-20 A-21 A-22 A-23 A-24

Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30 01/23/2019 06:45 01/23/2019 07:00 01/23/2019 07:15 01/23/2019 07:30

			ntration of Che Background Se						·		
	Analyte	City of		Outside MSA							
NA	Acenaphthene	0.09	0.13	0.04	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Acenaphthylene	0.03	0.07	0.04	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Anthracene	0.25	0.40	0.14	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Benz(a)anthracene	1.1	1.8	0.72	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Benzo(a)pyrene	1.3	2.1	0.98	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Benzo(k)fluoranthene	0.99	1.7	0.63	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Chrysene	1.2	2.7	1.1	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Fluoranthene	2.7	4.1	1.8	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Fluorene	0.10	0.18	0.04	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Naphthalene	0.04	0.20	0.17	0.41	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Phenanthrene	1.3	2.5	0.99	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
	Pyrene	1.9	3.0	1.2	< 0.039	< 0.043	< 0.043	< 0.041	< 0.041	< 0.043	< 0.040
NORG	Aluminum		9,500	9,200	13000	15000	14000	13000	18000	19000	17000
	Antimony	1	4.0	3.3	< 2.0	< 2.4	< 2.3	< 2.2	< 2.2	< 2.3	< 2.2
	Arsenic		13.0	11.3	4.7	4.3	3.9	5.2	11	6.8	6.1
	Barium		110	122	30	60	71	74	76	78	120
	Beryllium		0.59	0.56	0.70	0.80	0 82	0.70	1:0	1!1	0.98
	Cadmium		0.6	0.50	< 0.51	< 0.59	< 0.58	< 0.56	< 0.54	< 0.58	< 0.55
	Calcium		9,300	5,525	7.7000	52000	47000	70000	76000	66000	80000
	Chromium		16.2	13.0	24	28	28	26	35	38	33
	Cobalt		8.9	8.9	بطوية المكافئة	1745	5	19	21	27	18
	Copper	1	19.6	12.0	30	26	4	30 30 30 30	391	32	37
	Cyanide		0.51	0.50	< 0.30	< 0.33	< 0.33	< 0.31	< 0.31	< 0.33	< 0.31
	Iron		15,900	15,000	24000	26000	25000	25000	33000	34000	35000
	Lead		36.0	20.9	14	15	14	15	17	20	17
	Magnesium		4,820	2,700	38000	25000	22000	34000	37000	31000	39000
	Manganese		636	630	480	380	350	510	600	500	640
	Mercury		0.06	0.05	< 0.021	0.029	0.027	0.024	< 0.022	0.023	0.026
	Nickel		18.0	13.0	33	47	43	45	56	70	50
	Potassium		1,268	1,100	2900	3400	3300	3100	4700	4900	4000
	Selenium		0.48	0.37	< 1.0	< 1.2	< 1.2	< 1.1	< 1.1	1!5	< 1.1
	Silver		0.55	0.50	< 1.0	< 1.2	< 1.2	< 1.1	< 1.1	< 1.2	< 1.1
	Sodium		130	130.0	180	150	40	150	200	200	190
	Thallium		0.32	0.42	< 1.0	< 1.2	< 1.2	< 1.1	< 1.1	< 1.2	< 1.1
	Vanadium		25.2	25.0	29	27	7,000	26	36	37	32
	Zinc		95.0	60.2	56	56	56	56	69	74	69

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-008 19010622-009 19010622-010 19010622-011 19010622-012 19010622-013 19010622-014 Client Sample ID: A-25 A-26 A-27 A-28 A-29 A-30 A-31 Date Collected: 01/23/2019 07:45 01/23/2019 08:00 01/23/2019 08:15 01/23/2019 08:30 01/23/2019 08:45 01/23/2019 09:00 01/23/2019 09:15

		Conce	ntration of Che	emicals in						•	
			Background Sc								
		City of	- Contraction								
	Analyte	Chicago	Within MSA	Outside MSA							
PNA	Acenaphthene	. 0.09	0.13	0.04	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Acenaphthylene	0.03	0.07	0.04	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Anthracene	0.25	0.40	0.14	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Benz(a)anthracene	1.1	1.8	0.72	< 0.037	< 0.040	< 0.039	< 0.038	. < 0.040	< 0.041	< 0.040
	Benzo(a)pyrene	1.3	2.1	0.98	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Benzo(k)fluoranthene	0.99	1.7	0.63	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Chrysene	1.2	2.7	1.1	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Fluoranthene	2.7	4.1	1.8	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Fluorene	0.10	0.18	0.04	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Naphthalene	0.04	0.20	0.17	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Phenanthrene	1.3	2.5	0.99	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
	Pyrene	1.9	3.0	1.2	< 0.037	< 0.040	< 0.039	< 0.038	< 0.040	< 0.041	< 0.040
INORG	Aluminum		9,500	9,200	13000	12000	15000	14000	16000	14000	16000
	Antimony		4.0	3.3	< 1.9	< 2.2	< 2.2	< 2.1	< 2.2	< 2.2	< 2.1
	Arsenic		13.0	11.3	13	13	8.0	7.0	11	11	11
	Barium		110	122	39	39 ·	. 63	73	69	46	79
	Beryllium		0.59	0.56	0.76	0.76	0.86	0.83	0.88	0.95	0.90
	Cadmium		0.6	0.50	< 0.49	< 0.55	< 0.54	< 0.54	< 0.55	< 0.55	< 0.53
	Calcium		. 9,300	5,525	70000	58000	71000	76000	97000	54000	73000
	Chromium		16.2	13.0	26	231	130	34	31	27	29
	Cobalt		8.9	8.9	17	9.4	116	14:	21	18	19
	Copper		19.6	12.0	33	45	132	30	39	54	33
	Cyanide		0.51	0.50	< 0.28	< 0.31	< 0.30	< 0.29	< 0.31	< 0.31	< 0.31
	Iron	·	15,900	15,000	27000	30000	28000	32000	32000	39000	31000
	Lead		36.0	20.9	16	24	15	17_	18	26	16
	Magnesium		4,820	2,700	35000	29000	35000	37000	45000	27000	35000
	Manganese		636	630	520	310	530	490	670	450	620
	Mercury		0.06	0.05	0.025	0.027	0.026	0.027	0.029	0.030	0.022
	Nickel		18.0	13.0	44	34	[44	44	54	57	49
	Potassium		1,268	1,100	3300	2700	3900	3200	3800	3000	3700
	Selenium		0.48	0.37	< 0.97	< 1.1	< 1.1	< 1.1	1!2	1!9	111
	Silver		0.55	0.50	< 0.97	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
	Sodium		130	130.0	230	200	360	350	240	680	350
	Thallium		0.32	0.42	< 0.97	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
	Vanadium		25.2	25.0	261	29	30	28	33	31	30
	Zinc		95.0	60.2	57	53	60	63	68	98	66

MSA - Metropolitan Statistical Area All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table G and Table H. Bolded/Shaded values exceed the within MSA background level.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-015 19010622-016 19010622-017
Client Sample ID: A-32 A-33 A-34
Date Collected: 01/23/2019 09:30 01/23/2019 09:45 01/23/2019 10:00

			stration of Che				
	Analyte	City of Chicago	Within MSA	Outside MSA			
PNA	Acenaphthene	0.09	0.13	0.04	< 0.040	< 0.040	< 0.040
	Acenaphthylene	0.03	0.07	0.04	< 0.040	< 0.040	< 0.040
	Anthracene	0.25	0.40	0.14	< 0.040	< 0.040	< 0.040
	Benz(a)anthracene	1.1	1.8	0.72	< 0.040	< 0.040	< 0.040
	Benzo(a)pyrene	1.3	2.1	0.98	< 0.040	< 0.040	< 0.040
	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.040	< 0.040	< 0.040
	Benzo(g,h,i)perylene	0.68	1.7	0.84	< 0.040	< 0.040	< 0.040
	Benzo(k)fluoranthene	0.99	1.7	0.63	< 0.040	< 0.040	< 0.040
	Chrysene	1.2	2.7	1.1	< 0.040	< 0.040	< 0.040
	Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.040	< 0.040	< 0.040
	Fluoranthene	2.7	4.1	1.8	< 0.040	< 0.040	< 0.040
	Fluorene	0.10	0.18	0.04	< 0.040	< 0.040	< 0.040
	Indeno(1,2,3-cd)pyrene	0.86	1.6	0.51	< 0.040	< 0.040	< 0.040
	Naphthalene	0.04	0.20	0.17	< 0.040	< 0.040	< 0.040
	Phenanthrene	1.3	2.5	0.99	< 0.040	< 0.040	< 0.040
	Pyrene	1.9	3.0	1.2	< 0.040	< 0.040	< 0.040
INORG	Aluminum		9,500	9,200	15000	16000	14000
	Antimony		4.0	3.3	< 2.0	< 2.3	< 2.3
	Arsenic		13.0	11.3	6.6	10	9.0
	Barium		110	122	63	87	91
	Beryllium		0.59	0.56	0.79	0.86	0.85
	Cadmium		0.6	0.50	< 0.51	< 0.57	< 0.56
	Calcium		9,300	5,525	74000	81000	79000
	Chromium		16.2	13.0	27.	31	28
	Cobalt		8.9	8.9	15	20	19
	Copper		19.6	12.0	29	34	32
	Cyanide		0.51	0.50	< 0.31	< 0.31	< 0.31
	Iron		15,900	15,000	28000	29000	27000
	Lead		36.0	20.9	15	17	15
	Magnesium		4,820	2,700	33000	38000	37000
	Manganese		636	630	530	570	550
	Mercury		0.06	0.05	0.024	0.025	0.024
	Nickel		18.0	13.0	42	50	46
	Potassium		1,268	1,100	2600	3900	3700
	Selenium		0.48	0.37	< 1.0	< 1.1	< 1.1
	Silver		0.55	0.50	< 1.0	< 1.1	< 1.1
	Sodium		130	130.0	740	240	250
	Thallium		0.32	0.42	< 1.0	< 1.1	< 1.1
	Vanadium		25.2	25.0	27	31	30
	Zinc		95.0	60.2	64	69	60

MSA - Metropolitan Statistical Area All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table G and Table H. Bolded/Shaded values exceed the within MSA background level.

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-001 19010622-002 19010622-003
Client Sample ID: A-18 A-19 A-20
Date Collected: 01/23/2019 06:00 01/23/2019 06:15 01/23/2019 06:30

			Soil Saturation Limits for Chemicals With Melting Point < 30°C				
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			
VOC	67-64-1	Acetone	100,000	200,000	< 0.070	0.097	0.17
	71-43-2	Benzene	800	580	< 0.0046	< 0.0064	< 0.0052
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0046	< 0.0064	< 0.0052
	75-25-2	Bromoform	2,000	1,200	< 0.0046	< 0.0064	< 0.0052
	74-83-9	Bromomethane	3,100	3,600	< 0.0093	< 0.013	< 0.010
	78-93-3	2-Butanone	25,000	45,000	< 0.070	< 0.097	< 0.078
	75-15-0	Carbon disulfide	850	520	< 0.046	< 0.064	< 0.052
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0046	< 0.0064	< 0.0052
	108-90-7	Chlorobenzene	620	290	< 0.0046	< 0.0064	< 0.0052
	67-66-3	Chloroform	3,400	2,500	< 0.0046	< 0.0064	< 0.0052
	124-48-1	Dibromochloromethane	1,400	890	< 0.0046	< 0.0064	< 0.0052
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0046	< 0.0064	< 0.0052
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0046	< 0.0064	< 0.0052
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0046	< 0.0064	< 0.0052
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0046	< 0.0064	< 0.0052
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0046	< 0.0064	< 0.0052
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0046	< 0.0064	< 0.0052
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0019	< 0.0026	< 0.0021
		trans-1,3-Dichloropropene	1,000	850	< 0.0019	< 0.0026	< 0.0021
	100-41-4	Ethylbenzene	350	150	< 0.0046	< 0.0064	< 0.0052
	75-09-2	Methylene chloride	2,500	3,000	< 0.0093	< 0.013	< 0.010
		Methyl tert-butyl ether	8,400	11,000	< 0.0046	< 0.0064	< 0.0052
	100-42-5	Styrene	630	260	< 0.0046	< 0.0064	< 0.0052
	127-18-4	Tetrachloroethene	800	310	< 0.0046	< 0.0064	< 0.0052
	108-88-3	Toluene	580	290	< 0.0046	< 0.0064	< 0.0052
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0046	< 0.0064	< 0.0052
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0046	< 0.0064	< 0.0052
	79-01-6	Trichloroethene	1,200	650	< 0.0046	< 0.0064	< 0.0052
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0046	< 0.0064	< 0.0052
	1330-20-7	Xylenes, Total	280	110	< 0.014	< 0.019	< 0.016
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.20	< 0.22	< 0.22
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.20	< 0.22	< 0.22
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.20	< 0.22	< 0.22
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.20	< 0.22	< 0.22
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.20	< 0.22	< 0.22
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 0.99	< 1.1	< 1.1
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.20	< 0.22	< 0.22
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.20	< 0.22	< 0.22
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.20	< 0.22	< 0.22
	84-66-2	Diethyl phthalate	2,200	920	< 0.20	< 0.22	< 0.22
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.20	< 0.22	< 0.22
	78-59-1	Isophorone	3,000	3,000	< 0.20	< 0.22	< 0.22
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.039	< 0.043	< 0.043
	98-95-3	Nitrobenzene	710	590	< 0.039	< 0.043	< 0.043
INORG	7439-97-6	Mercury	3.1	N/A	< 0.021	0.029	0.027

Project: Franklin - EB

Laboratory: STAT ANALYSIS

19010622-005 19010622-006 Laboratory ID: 19010622-004 Client Sample ID : A-21 A-22 A-23

Date Collected: 01/23/2019 06:45 01/23/2019 07:00 01/23/2019 07:15

			Soil Saturation Limit Melting Po				
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			
VOC	67-64-1	Acetone	100,000	200,000	0.12	0.10	0.18
	71-43-2	Benzene	800	580	< 0.0058	< 0.0059	< 0.0057
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0058	< 0.0059	< 0.0057
	75-25-2	Bromoform	2,000	1,200	< 0.0058	< 0.0059	< 0.0057
	74-83-9	Bromomethane	3,100	3,600	< 0.012	< 0.012	< 0.011
	78-93-3	2-Butanone	25,000	45,000	< 0.087	< 0.089	< 0.085
	75-15-0	Carbon disulfide	850	520	< 0.058	< 0.059	< 0.057
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0058	< 0.0059	< 0.0057
	108-90-7	Chlorobenzene	620	290	< 0.0058	< 0.0059	< 0.0057
	67-66-3	Chloroform	3,400	2,500	< 0.0058	< 0.0059	< 0.0057
	124-48-1	Dibromochloromethane	1,400	890	< 0.0058	< 0.0059	< 0.0057
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0058	< 0.0059	< 0.0057
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0058	< 0.0059	< 0.0057
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0058	< 0.0059	< 0.0057
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0058	< 0.0059	< 0.0057
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0058	< 0.0059	< 0.0057
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0058	< 0.0059	< 0.0057
		cis-1,3-Dichloropropene	1,000	850	< 0.0023	< 0.0024	< 0.0023
		trans-1,3-Dichloropropene	1,000	850	< 0.0023	< 0.0024	< 0.0023
	100-41-4	Ethylbenzene	350	150	< 0.0058	< 0.0059	< 0.0057
	75-09-2	Methylene chloride	2,500	3,000	< 0.012	< 0.012	< 0.011
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0058	< 0.0059	< 0.0057
	100-42-5	Styrene	630	260	< 0.0058	< 0.0059	< 0.0057
	127-18-4	Tetrachloroethene	800	310	< 0.0058	< 0.0059	< 0.0057
	108-88-3	Toluene	580	290	< 0.0058	< 0.0059	< 0.0057
	71-55-6	1.1.1-Trichloroethane	1,300	670	< 0.0058	< 0.0059	< 0.0057
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0058	< 0.0059	< 0.0057
	79-01-6	Trichloroethene	1,200	650	< 0.0058	< 0.0059	< 0.0057
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0058	< 0.0059	< 0.0057
	1330-20-7	Xylenes, Total	280	110	< 0.017	< 0.018	< 0.017
svoc	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21	< 0.22
0.00	95-50-1	1.2-Dichlorobenzene	560	210	< 0.21	< 0.21	< 0.22
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21	< 0.22
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21	< 0.22
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21	< 0.22
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0	< 1.1
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21	< 0.22
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21	< 0.22
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21	< 0.22
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21	< 0.22
•	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21	< 0.22
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21	< 0.22
		N-Nitrosodi-n-propylamine	1,900	2,300	< 0.041	< 0.041	< 0.043
	98-95-3	Nitrobenzene	710	590	< 0.041	< 0.041	< 0.043
DIODO	7439-97-6		3.1	N/A	0.024	< 0.041	0.023
INOKO	/437-7/-0	ivicicury	3.1	IV/A	0.024	V.U22	V.023

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-007 19010622-008 19010622-009
Client Sample ID: A-24 A-25 A-26
Date Collected: 01/23/2019 07:30 01/23/2019 07:45 01/23/2019 08:00

				ts for Chemicals With oint < 30°C			
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			
VOC	67-64-1	Acetone	100,000	200,000	0.13	< 0.076	< 0.097
	71-43-2	Benzene	800	580	< 0.0054	< 0.0051	< 0.0065
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0054	< 0.0051	< 0.0065
	75-25-2	Bromoform		1,200	< 0.0054	< 0.0051	< 0.0065
	74-83-9	Bromomethane	3,100	3,600	< 0.011	< 0.010	< 0.013
	78-93-3	2-Butanone	25,000	45,000	< 0.081	< 0.076	< 0.097
	75-15-0	Carbon disulfide	850	520	< 0.054	< 0.051	< 0.065
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0054	< 0.0051	< 0.0065
	108-90-7	Chlorobenzene	620	290	< 0.0054	< 0.0051	< 0.0065
	67-66-3	Chloroform	3,400	2,500	< 0.0054	< 0.0051	< 0.0065
	124-48-1	Dibromochloromethane	1,400	890	< 0.0054	< 0.0051	< 0.0065
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0054	< 0.0051	< 0.0065
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0054	< 0.0051	< 0.0065
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0054	< 0.0051	< 0.0065
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0054	< 0.0051	< 0.0065
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0054	< 0.0051	< 0.0065
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0054	< 0.0051	< 0.0065
		cis-1,3-Dichloropropene	1,000	850	< 0.0021	< 0.0020	< 0.0026
		trans-1,3-Dichloropropene	1,000	850	< 0.0021	< 0.0020	< 0.0026
	100-41-4	Ethylbenzene	350	150	< 0.0054	< 0.0051	< 0.0065
	75-09-2	Methylene chloride	2,500	3,000	< 0.011	< 0.010	< 0.013
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0054	< 0.0051	< 0.0065
	100-42-5	Styrene	630	260	< 0.0054	< 0.0051	< 0.0065
	127-18-4	Tetrachloroethene	800	310	< 0.0054	< 0.0051	< 0.0065
	108-88-3	Toluene	580	290	< 0.0054	< 0.0051	< 0.0065
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0054	< 0.0051	< 0.0065
	79-00-5	1.1.2-Trichloroethane	1,800	1,300	< 0.0054	< 0.0051	< 0.0065
	79-01-6	Trichloroethene	1,200	650	< 0.0054	< 0.0051	< 0.0065
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0054	< 0.0051	< 0.0065
	1330-20-7	Xylenes, Total	280	110	< 0.016	< 0.015	< 0.019
svoc	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.19	< 0.20
0100	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.19	< 0.20
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.19	< 0.20
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.19	< 0.20
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.19	< 0.20
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 0.92	< 0.99
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.19	< 0.20
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.19	< 0.20
	117-84-0	Di-n-outyl phthalate	16	5.2	< 0.21	< 0.19	< 0.20
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.19	< 0.20
	77-47-4		130	44	< 0.21	< 0.19	< 0.20
	77-47-4 78-59-1	Hexachlorocyclopentadiene	3,000	3,000	< 0.21	< 0.19	< 0.20
		Isophorone	1,900	2,300	< 0.040	< 0.13	< 0.040
	621-64-7 98-95-3	N-Nitrosodi-n-propylamine Nitrobenzene		590	< 0.040	< 0.037	< 0.040
BIORG			710 3.1	N/A	0.026	0.025	0.027
INORG	7439-97-6	Intercury	J.1	11//4	0.020	0.023	0.027

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-010 19010622-011 19010622-012
Client Sample ID: A-27 A-28 A-29
Date Collected: 01/23/2019 08:15 01/23/2019 08:30 01/23/2019 08:45

				ts for Chemicals With bint < 30°C			
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)	-		
VOC	67-64-1	Acetone	100,000	200,000	< 0.082	< 0.071	< 0.075
	71-43-2	Benzene	800	580	< 0.0054	< 0.0047	< 0.0050
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0054	< 0.0047	< 0.0050
	75-25-2	Bromoform	2,000	1,200	< 0.0054	< 0.0047	< 0.0050
	74-83-9	Bromomethane	3,100	3,600	< 0.011	< 0.0094	< 0.010
	78-93-3	2-Butanone	25,000	45,000	< 0.082	< 0.071	< 0.075
	75-15-0	Carbon disulfide	850	520	< 0.054	< 0.047	< 0.050
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0054	< 0.0047	< 0.0050
	108-90-7	Chlorobenzene	620	290	< 0.0054	< 0.0047	< 0.0050
	67-66-3	Chloroform	3,400	2,500	< 0.0054	< 0.0047	< 0.0050
	124-48-1	Dibromochloromethane	1,400	890	< 0.0054	< 0.0047	< 0.0050
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0054	< 0.0047	< 0.0050
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0054	< 0.0047	< 0.0050
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0054	< 0.0047	< 0.0050
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0054	< 0.0047	< 0.0050
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0054	< 0.0047	< 0.0050
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0054	< 0.0047	< 0.0050
		cis-1,3-Dichloropropene	1,000	850	< 0.0022	< 0.0019	< 0.0020
		trans-1,3-Dichloropropene	1,000	850	< 0.0022	< 0.0019	< 0.0020
	100-41-4	Ethylbenzene	350	150	< 0.0054	< 0.0047	< 0.0050
	75-09-2	Methylene chloride	2,500	3,000	< 0.011	< 0.0094	< 0.010
		Methyl tert-butyl ether	8,400	11,000	< 0.0054	< 0.0047	< 0.0050
	100-42-5	Styrene	630	260	< 0.0054	< 0.0047	< 0.0050
•	127-18-4	Tetrachloroethene	800	310	< 0.0054	< 0.0047	< 0.0050
	108-88-3	Toluene	580	290	< 0.0054	< 0.0047	< 0.0050
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0054	< 0.0047	< 0.0050
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0054	< 0.0047	< 0.0050
	79-01-6	Trichloroethene	1,200	650	< 0.0054	< 0.0047	< 0.0050
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0054	< 0.0047	< 0.0050
		Xylenes, Total	280	110	< 0.016	< 0.014	< 0.015
svoc	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.20	< 0.20	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.20	< 0.20	< 0.21
		2,4-Dimethylphenol	10,000	4,700	< 0.20	< 0.20	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.20	< 0.20	< 0.21
		Bis(2-chloroethyl)ether	3,000	3,900	< 0.20	< 0.20	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 0.99	< 0.96	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.20	< 0.20	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.20	< 0.20	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.20	< 0.20	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.20	< 0.20	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.20	< 0.20	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.20	< 0.20	< 0.21
		N-Nitrosodi-n-propylamine	1,900	2,300	< 0.039	< 0.038	< 0.040
	98-95-3	Nitrobenzene	710	590	< 0.039	< 0.038	< 0.040
INORG	7439-97-6	Mercury	3.1	N/A	0.026	0.027	0.029

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-013 19010622-014 19010622-015
Client Sample ID: A-30 A-31 A-32
Date Collected: 01/23/2019 09:00 01/23/2019 09:15 01/23/2019 09:30

				ts for Chemicals With bint < 30°C			
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route			
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)			
VOC	67-64-1	Acetone	100,000	200,000	< 0.088	< 0.096	< 0.078
	71-43-2	Benzene	800	580	< 0.0059	< 0.0064	< 0.0052
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0059	< 0.0064	< 0.0052
	75-25-2	Bromoform	2,000	1,200	< 0.0059	< 0.0064	< 0.0052
	74-83-9	Bromomethane	3,100	3,600	< 0.012	< 0.013	< 0.010
	78-93-3	2-Butanone	25,000	45,000	< 0.088	< 0.096	< 0.078
	75-15-0	Carbon disulfide	850	520	< 0.059	< 0.064	< 0.052
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0059	< 0.0064	< 0.0052
	108-90-7	Chlorobenzene	620	290	< 0.0059	< 0.0064	< 0.0052
	67-66-3	Chloroform	3,400	2,500	< 0.0059	< 0.0064	< 0.0052
	124-48-1	Dibromochloromethane	1,400	890	< 0.0059	< 0.0064	< 0.0052
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0059	< 0.0064	< 0.0052
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0059	< 0.0064	< 0.0052
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0059	< 0.0064	< 0.0052
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0059	< 0.0064	< 0.0052
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0059	< 0.0064	< 0.0052
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0059	< 0.0064	< 0.0052
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0024	< 0.0026	< 0.0021
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0024	< 0.0026	< 0.0021
	100-41-4	Ethylbenzene	350	150	< 0.0059	< 0.0064	< 0.0052
	75-09-2	Methylene chloride	2,500	3,000	< 0.012	< 0.013	< 0.010
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0059	< 0.0064	< 0.0052
	100-42-5	Styrene	630	260	< 0.0059	< 0.0064	< 0.0052
	127-18-4	Tetrachloroethene	800	310	< 0.0059	< 0.0064	< 0.0052
	108-88-3	Toluene	580	290	< 0.0059	< 0.0064	< 0.0052
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0059	< 0.0064	< 0.0052
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0059	< 0.0064	< 0.0052
	79-01-6	Trichloroethene	1,200	650	< 0.0059	< 0.0064	< 0.0052
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0059	< 0.0064	< 0.0052
	1330-20-7	Xylenes, Total	280	110	< 0.018	< 0.019	< 0.016
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21	< 0.20
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21	< 0.20
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21	< 0.20
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21	< 0.20
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21	< 0.20
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21	< 0.20
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21	< 0.20
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21	< 0.20
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21	< 0.20
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21	< 0.20
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21	< 0.20
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.041	< 0.040	< 0.040
	98-95-3	Nitrobenzene	710	590	< 0.041	< 0.040	< 0.040
INORG	7439-97-6	Mercury	3.1	N/A	0.030	0.022	0.024

Project: Franklin - EB

Laboratory: STAT ANALYSIS

Laboratory ID: 19010622-016 19010622-017
Client Sample ID: A-33 A-34
Date Collected: 01/23/2019 09:45 01/23/2019 10:00

				ts for Chemicals With oint < 30°C		
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route		
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
VOC	67-64-1	Acetone	100,000	200,000	< 0.069	< 0.071
	71-43-2	Benzene	800	580	< 0.0046	< 0.0047
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0046	< 0.0047
	75-25-2	Bromoform	2,000	1,200	< 0.0046	< 0.0047
	74-83-9	Bromomethane	3,100	3,600	< 0.0092	< 0.0095
	78-93-3	2-Butanone	25,000	45,000	< 0.069	< 0.071
	75-15-0	Carbon disulfide	850	520	< 0.046	< 0.047
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0046	< 0.0047
	108-90-7	Chlorobenzene	620	290	< 0.0046	< 0.0047
	67-66-3	Chloroform	3,400	2,500	< 0.0046	< 0.0047
	124-48-1	Dibromochloromethane	1,400	890	< 0.0046	< 0.0047
	75-34-3	1.1-Dichloroethane	1,700	1,400	< 0.0046	< 0.0047
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0046	< 0.0047
	75-35-4	1.1-Dichloroethene	1,400	910	< 0.0046	< 0.0047
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0046	< 0.0047
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0046	< 0.0047
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0046	< 0.0047
		cis-1,3-Dichloropropene	1,000	850	< 0.0018	< 0.0019
		trans-1,3-Dichloropropene	1,000	850	< 0.0018	< 0.0019
	100-41-4	Ethylbenzene	350	150	< 0.0046	< 0.0047
•	75-09-2	Methylene chloride	2,500	3,000	< 0.0092	< 0.0095
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0046	< 0.0047
	100-42-5	Styrene	630	260	< 0.0046	< 0.0047
	127-18-4	Tetrachloroethene	800	310	< 0.0046	< 0.0047
	108-88-3	Toluene	580	290	< 0.0046	< 0.0047
	71-55-6	1.1.1-Trichloroethane	1,300	670	< 0.0046	< 0.0047
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0046	< 0.0047
	79-01-6	Trichloroethene	1,200	650	< 0.0046	< 0.0047
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0046	< 0.0047
	1330-20-7	Xylenes, Total	280	110	< 0.014	< 0.014
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1.000	340	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.040	< 0.040
	98-95-3	Nitrobenzene	710	590	< 0.040	< 0.040
INORG	7439-97-6	Mercury	3.1	N/A	0.025	0.024
MORO	1433-51-0	Interesty	3.1	1971	0.023	0.02

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		A-18	0.41	0.20	Within MSA Background
PNA	Naphthalene			0.17	Outside MSA Background
				0.04	City of Chicago Background
SVOC	2-Methylnaphthalene	A-18	0.29	0.14	Within MSA Background
		A-18	13000	9,500	Within MSA Background
		A-19	15000	9,200	Outside MSA Background
		A-20	14000	1 1	
		A-21	13000	1	
		A-22	18000	1	
		A-23	19000	1	
		A-24	17000	1 1	
		A-25	13000]	
INORG	Aluminum	A-26	12000	i 1	
		A-27	15000	1	
1		A-28	14000	1	
		A-29	16000		
		A-30	14000]	
		A-31	16000	1	
		A-32	15000	1 1	
		A-33	16000	1	
		A-34	14000	<u> </u>	
INORG	Arsenic	A-25	13	11.3	Outside MSA Background
		A-26	13	<u> </u>	
INORG	Barium	A-24	120	110	Within MSA Background
		A-18	0.70	0.59	Within MSA Background
		A-19	0.80	0.56	Outside MSA Background
		A-20	0.82		
		A-21	0.70		
		A-22	1.0		
		A-23	1.1		
	·	A-24	0.98		
		A-25	0.76		
INORG	Beryllium	A-26	0.76		
		A-27	0.86		
		A-28	0.83		
		A-29	0.88		,
		A-30	0.95		
		A-31	0.90		•
	,	A-32	0.79		
		A-33	0.86		
		A-34	0.85	<u> </u>	

Project: Franklin - EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
	·	A-18	77000	9,300	Within MSA Background
		A-19	52000	5,525	Outside MSA Background
		A-20	47000		•
		A-21	70000		
		A-22	76000		
		A-23	66000		
		A-24	80000		
		A-25	70000		
INORG	Calcium	A-26	58000		
		A-27	71000		
		A-28	76000		
		A-29	97000		
		A-30	54000		
		A-31	73000		
		A-32	74000		
		A-33	81000		
		A-34	79000		
		A-18	24	28	pH Specific SCGIR Class I
		A-19	28	16.2	Within MSA Background
		A-20	28	13.0	Outside MSA Background
		A-21	26		_
		A-22	35	,	
i		A-23	38		
		A-24	33		
		A-25	26		
INORG	Chromium	A-26	23		
		A-27	30		
		A-28	34		
		A-29	31		
		A-30	27		
l		A-31	29		
		A-32	27		
		A-33	31		3
		A-34	28		
Ì		A-18	11	8.9	Within MSA Background
		A-19	17	8.9	Outside MSA Background
		A-20	15		_
		A-21	19		
		A-22	21		
		A-23	27		
		A-24	18		
		A-25	17		
INORG	Cobalt	A-26	9.4		
		A-27	16		
		A-28	14		
		A-29	21		
		A-30	18		
		A-31	19		
		A-32	15		
		A-33	20		
		A-34	19		
		A-18	30	19.6	Within MSA Background
,		A-19	26	12.0	Outside MSA Background
		A-20	24		
		A-21	30		
		A-22	39	1	
		A-23	32	1	
		A-24	37		
1		J 7-24	l 3,	1	

^{* -} result and RO units are mg/L

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
	_	A-25	33		
INORG	Copper	A-26	45		
		A-27	32		
		A-28	30		
		A-29	39		
		A-30	54		
		A-31	33		
		A-32	29		
		A-33	34		
		A-34	32		

Project: Franklin - EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		A-18	24000	15,900	Within MSA Background
		A-19	26000	15,000	Outside MSA Background
		A-20	25000		
		A-21	25000	1	
		A-22	33000	1	
		A-23	34000		
		A-24	35000		
		A-25	27000	l	
INORG	Iron	A-26	30000		
		A-27	28000	1.	
		A-28	32000	l'	
		A-29	32000		·
		A-30	39000		
		A-31	31000		
		A-32	28000	ŀ	
		A-33	29000		
		A-34	27000		
DIODG	T J	A-26	24	20.9	Outside MSA Background
INORG	Lead	A-30	26		
		A-18	38000	4,820	Within MSA Background
		A-19	25000	2,700	Outside MSA Background
		A-20	22000		•
		A-21	34000		
		A-22	37000		
		A-23	31000		
		A-24	39000		
		A-25	35000		
INORG	Magnesium	A-26	29000		
1	Magnesiani	A-27	35000		
		A-28	37000		
1		A-29	45000		
		A-30	27000		
		A-31	35000		
		A-31 A-32	33000		
		A-32 A-33	38000		
l i					
\vdash		A-34	37000	(2)	Within MCA Back-mand
INORG	Manganese	A-24	640	636	Within MSA Background
——	<u> </u>	A-29	670	630	Outside MSA Background
		A-18	33	18.0	Within MSA Background
		A-19	47	13.0	Outside MSA Background
		A-20	43		
		A-21	45		
		A-22	56 70		
		A-23	70		
		A-24	50		
		A-25	44		
INORG	Nickel	A-26	34		
		A-27	44		
	. •	A-28	44		
		A-29	54		
		A-30	57		
		A-31	49		
	6	A-32	42		
		A-33	50		
		A-34	46		

Project: Franklin - EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
		A-18	2900	1,268	Within MSA Background
		A-19	3400	1,100	Outside MSA Background
		A-20	3300		
		A-21	3100		
		A-22	4700		
		A-23	4900		•
		A-24	4000		
		A-25	3300		
INORG	Potassium	A-26	2700		
		A-27	3900		
		A-28	3200		
		A-29	3800		
		A-30	3000		
		A-31	3700		
		A-32	2600		
		A-33	3900	1	
·		A-33 A-34	3700		
+		A-34 A-23	1.5	0.48	Within MSA Background
INORG	Selenium	A-23 A-29	1.3	0.48	Outside MSA Background
INOKG	Selemum			0.37	Outside MSA Background
		A-30 A-18	1.9	130	Within MSA Background
1		•	180		
		A-19	150	130.0	Outside MSA Background
		A-20	140	1	
		A-21	150	1	
		A-22	200		
		A-23	200	1 1	
		A-24	190	1 1	`
		A-25	230	1	
INORG	Sodium	A-26	200	1	
		A-27	360	1	
ŀ		A-28	350	1	
1		A-29	240	i i	
		A-30	680		
		A-31	350		
		A-32	740	† I	
		A-33	240	1	
		A-34	250	1	
	<u>-</u>	A-18	29	25.2	Within MSA Background
		A-19	27	25.0	Outside MSA Background
		A-20	27		-
		A-21	26		
		A-22	36		
		A-23	37		
		A-24	32		
		A-25	26		
INORG	Vanadium	A-26	29		
11,010	· wiwaiwiii	A-27	30	1	
-		A-27 A-28	28		
1		A-26 A-29	33		
			33	1	
		A-30		1	
		A-31	30		
l i		A-32	27		
		A-33	31		
		A-34	30	<u>l </u>	

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

T			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		A-22	69	95.0	Within MSA Background
		A-23	74	60.2	Outside MSA Background
		A-24	69		
		A-28	63		
INORG	Zinc	A-29	68		
		A-30	98		
		A-31	66		
		A-32	64		
		A-33	69		
		A-18	0.014 *	0.0075	SCGIR Class I
		A-20	0.0089 *		
		A-22	0.0077 *		
TCLP	Lead	A-24	0.014 *	1	
		A-25	0.013 *		
		A-29	0.0095 *	1	
		A-33	0.0087 *		
		A-18	5.0 *	0.15	SCGIR Class I
		A-19	4.5 *		
		A-20	4.7 *		
i		A-21	4.3 *	1	
		A-22	6.5 *		
		A-23	2.1 *		
		A-24	6.7 *		
		A-25	6.3 *		
TCLP	Manganese	A-26	0.90 *		
i		A-27	4.7 *		
	•	A-28	3.5 *		
l		A-29	5.2 *		
		A-30	4.8 *		
		A-31	2.7 *		
		A-32	5.9 *		
		A-33	5.2 *		
į		A-34	2.6 *		
		A-20	0.16 *	0.1	SCGIR Class I
1		A-21	0.15 *		
TOLD	NT: -11	A-25	0.17 *	1	
TCLP	Nickel	A-29	0.12 *		
		A-33	0.17 *		
		A-34	0.13 *		

Project: Franklin - EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
TCLP	Lead	A-18	0.014 *	0.0075	SCGIR Class I
TCLP	Manganese	A-18	5.0 *	0.0075	SCGIR Class I
TCLP	Manganese	A-19	4.5 *	0.15	SCGIR Class I
TCLP	Lead	A-19 A-20	0.0089 *	0.0075	SCGIR Class I
TCLP		A-20	4.7 *	0.0073	SCGIR Class I
TCLP	Manganese Nickel		0.16 *	0.13	SCGIR Class I
		A-20	4.3 *		SCGIR Class I
TCLP TCLP	Manganese	A-21	0.15 *	0.15	SCGIR Class I
	Nickel	A-21			
TCLP TCLP	Lead	A-22	0.0077 *	0.0075	SCGIR Class I
	Manganese	A-22	6.5 *	0.15	SCGIR Class I SCGIR Class I
TCLP	Manganese	A-23	2.1 *	0.15	
TCLP	Lead	A-24	0.014 *	0.0075	SCGIR Class I
TCLP	Manganese	A-24	6.7 *	0.15	SCGIR Class I
TCLP	Lead	A-25	0.013 *	0.0075	SCGIR Class I
TCLP	Manganese	A-25	6.3 *	0.15	SCGIR Class I
TCLP	Nickel	A-25	0.17 *	0.1	SCGIR Class I
TCLP	Manganese	A-26	0.90 *	0.15	SCGIR Class I
TCLP	Manganese	A-27	4.7 *	0.15	SCGIR Class I
TCLP	Manganese	A-28	3.5 *	0.15	SCGIR Class I
TCLP	Lead	A-29	0.0095 *	0.0075	SCGIR Class I
TCLP	Manganese	A-29	5.2 *	0.15	SCGIR Class I
TCLP	Nickel	A-29	0.12 *	0.1	SCGIR Class I
TCLP	Manganese	A-30	4.8 *	0.15	SCGIR Class I
TCLP	Manganese	A-31	2.7 *	0.15	SCGIR Class I
TCLP	Manganese	A-32	5.9 *	0.15	SCGIR Class I
TCLP	Lead	A-33	0.0087_*	0.0075	SCGIR Class I
TCLP	Manganese	A-33	5.2 *	0.15	SCGIR Class I
TCLP	Nickel	A-33	0.17 *	0.1	SCGIR Class I
TCLP	Manganese	A-34	2.6 *	0.15	SCGIR Class I
TCLP	Nickel	A-34	0.13 *	0.1	SCGIR Class I
INORG	Chromium	A-22	35	28	pH Specific SCGIR Class I
INORG	Chromium	A-23	38	28	pH Specific SCGIR Class I
INORG	Chromium	A-24	33	28	pH Specific SCGIR Class I
INORG	Chromium	A-28	34	28	pH Specific SCGIR Class I
INORG	Chromium	A-29	31	28	pH Specific SCGIR Class I
INORG	Chromium	A-31	29	28	pH Specific SCGIR Class I
INORG	Chromium	A-33	31	28	pH Specific SCGIR Class I
INORG	Aluminum	A-18	13000	9,500	Within MSA Background
INORG	Beryllium	A-18	0.70	0.59	Within MSA Background
INORG	Calcium	A-18	77000	9,300	Within MSA Background
INORG	Chromium	A-18	24	16.2	Within MSA Background
INORG	Cobalt	A-18	11	8.9	Within MSA Background
INORG	Copper	A-18	30	19.6	Within MSA Background
INORG	Iron	A-18	24000	15,900	Within MSA Background
INORG	Magnesium	A-18	38000	4,820	Within MSA Background Within MSA Background
INORG	Nickel	A-18 A-18	33	18.0	Within MSA Background
INORG	Potassium	A-18	2900	1,268	Within MSA Background Within MSA Background
INORG	Sodium		180	130	Within MSA Background Within MSA Background
INORG	Vanadium	A-18 A-18	29	25.2	Within MSA Background Within MSA Background
INORG		A-18 A-19	15000	9,500	Within MSA Background Within MSA Background
INORG	Aluminum Beryllium		0.80	0.59	Within MSA Background Within MSA Background
		A-19		+	
INORG	Charming	A-19	52000	9,300	Within MSA Background
INORG	Chromium	A-19	28	16.2	Within MSA Background
INORG	Cobalt	A-19	17	8.9	Within MSA Background
INORG	Copper	A-19	26	19.6	Within MSA Background
INORG	Iron	A-19	26000	15,900	Within MSA Background
INORG	Magnesium	A-19	25000	4,820	Within MSA Background
INORG	Nickel	A-19	47	18.0	Within MSA Background

Project: Franklin - EB

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Potassium	<u>A-19</u>	3400	1,268	Within MSA Background
INORG	Sodium	A-19	150	130	Within MSA Background
INORG	Vanadium	A-19	27	25.2	Within MSA Background
INORG	Aluminum	A-20	14000	9,500	Within MSA Background
INORG	Beryllium	A-20	0.82	0.59	Within MSA Background
INORG	Calcium	A-20	47000	9,300	Within MSA Background
INORG	Chromium	A-20	28	16.2	Within MSA Background
INORG	Cobalt	A-20	15	8.9	Within MSA Background
INORG	Copper	A-20	24	19.6	Within MSA Background
INORG	Iron	A-20	25000	15,900	Within MSA Background
INORG	Magnesium	A-20	22000	4,820	Within MSA Background
INORG	Nickel	A-20	43	18.0	Within MSA Background
INORG	Potassium	A-20	3300	1,268	Within MSA Background
INORG	Sodium	A-20	140	130	Within MSA Background
INORG	Vanadium	A-20	27	25.2	Within MSA Background
INORG	Aluminum	A-21	13000	9,500	Within MSA Background
INORG	Beryllium	A-21	0.70	0.59	Within MSA Background
INORG	Calcium	A-21	70000	9,300	Within MSA Background
INORG	Chromium	A-21	26	16.2	Within MSA Background
INORG	Cobalt	A-21 A-21	19	8.9	Within MSA Background
INORG		A-21 A-21	30	19.6	Within MSA Background
INORG	Copper Iron	A-21 A-21	25000	15,900	Within MSA Background
INORG	Magnesium	A-21	34000	4,820	Within MSA Background
INORG	Nickel	A-21	45	18.0	Within MSA Background
INORG	Potassium	A-21	3100	1,268	Within MSA Background
INORG	Sodium	A-21	150	130	Within MSA Background
INORG	Vanadium	A-21	26	25.2	Within MSA Background
INORG	Aluminum	A-22	18000	9,500	Within MSA Background
INORG	Beryllium	A-22	1.0	0.59	Within MSA Background
INORG	Calcium	A-22	76000	9,300	Within MSA Background
INORG	Chromium	A-22	35	16.2	Within MSA Background
INORG	Cobalt	A-22	21	8.9	Within MSA Background
INORG	Copper	A-22	39	19.6	Within MSA Background
INORG	Iron	A-22	33000	15,900	Within MSA Background
INORG	Magnesium	A-22	37000	4,820	Within MSA Background
INORG	Nickel	A-22	56	18.0	Within MSA Background
INORG	Potassium	A-22	4700	1,268	Within MSA Background
INORG	Sodium	A-22	200	130	Within MSA Background
INORG	Vanadium	A-22	36	25.2	Within MSA Background
INORG	Aluminum	A-23	19000	9,500	Within MSA Background
INORG	Beryllium	A-23	1.1	0.59	Within MSA Background
INORG	Calcium	A-23	66000	9,300	Within MSA Background
INORG	Chromium	A-23	38	16.2	Within MSA Background
INORG	Cobalt	A-23	27	8.9	Within MSA Background
INORG	Copper	A-23	32	19.6	Within MSA Background
INORG	Iron	A-23	34000	15,900	Within MSA Background
INORG	Magnesium	A-23	31000	4,820	Within MSA Background
INORG	Nickel	A-23	70	18.0	Within MSA Background
INORG	Potassium	A-23	4900	1,268	Within MSA Background
INORG	Selenium	A-23	1.5	0.48	Within MSA Background
INORG	Sodium	A-23	200	130	Within MSA Background
INORG	Vanadium		37	25.2	Within MSA Background
		A-23			
INORG	Aluminum	A-24	17000	9,500	Within MSA Background
INORG	Barium	A-24	120	110	Within MSA Background
INORG	Beryllium	A-24	0.98	0.59	Within MSA Background
INORG	Calcium_	A-24	80000	9,300	Within MSA Background
INORG	Chromium	A-24	33	16.2	Within MSA Background
INORG	Cobalt	A-24	18	8.9	Within MSA Background

Project: Franklin - EB

1			Concentration	TACO Tier 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
v Test	Chemical 25	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Copper	A-24	37	19.6	Within MSA Background
INORG	Iron	A-24	35000	15,900	Within MSA Background
INORG	Magnesium	A-24	39000	4,820	Within MSA Background
INORG	Manganese	A-24	640	636	Within MSA Background
INORG	Nickel	A-24	50	18.0	Within MSA Background
INORG	Potassium	A-24	4000	1,268	Within MSA Background
INORG	Sodium	A-24	190	130	Within MSA Background
INORG	Vanadium	A-24	32	25.2	Within MSA Background
INORG	Aluminum	A-25	13000	9,500	Within MSA Background
INORG	Beryllium	A-25	0.76	0.59	Within MSA Background
INORG	Calcium	A-25	70000	9,300	Within MSA Background
INORG	Chromium	A-25	26	16.2	Within MSA Background
INORG	Cobalt	A-25	17	8.9	Within MSA Background
INORG	Copper	A-25	33	19.6	Within MSA Background
INORG	Iron	A-25	27000	15,900	Within MSA Background
INORG	Magnesium	A-25	35000	4,820	Within MSA Background
INORG	Nickel	A-25	44	18.0	Within MSA Background
INORG	Potassium	A-25	3300		
INORG	Sodium	A-25 A-25	230	1,268 130	Within MSA Background Within MSA Background
INORG	Vanadium	A-25	26	25.2	Within MSA Background
INORG	Aluminum	A-26	12000	9,500	Within MSA Background
INORG	Beryllium	A-26	0.76	0.59	Within MSA Background
INORG	Calcium	A-26	58000	9,300	Within MSA Background
INORG	Chromium	A-26	23	16.2	Within MSA Background
INORG	Cobalt	A-26	9.4	8.9	Within MSA Background
INORG	Copper	A-26	45	19.6	Within MSA Background
INORG	Iron	A-26	30000	15,900	Within MSA Background
INORG	Magnesium	A-26	29000	4,820	Within MSA Background
INORG	Nickel	A-26	34	18.0	Within MSA Background
INORG	Potassium	A-26	2700	1,268	Within MSA Background
INORG	Sodium	A-26	200	130	Within MSA Background
INORG	Vanadium	A-26	29	25.2	Within MSA Background
INORG	Aluminum	A-27	15000	9,500	Within MSA Background
INORG	Beryllium	A-27	0.86	0.59	Within MSA Background
INORG	Calcium	A-27	71000	9,300	Within MSA Background
INORG	Chromium	A-27	30	16.2	Within MSA Background
INORG	Cobalt	A-27	16	8.9	Within MSA Background
INORG	Copper	A-27	32	19.6	Within MSA Background
INORG	Iron	A-27	28000	15,900	Within MSA Background
INORG	Magnesium	A-27	35000	4,820	Within MSA Background
INORG	Nickel	A-27	44	18.0	Within MSA Background
INORG	Potassium	A-27	3900	1,268	Within MSA Background
INORG	Sodium	A-27	360	130	Within MSA Background
INORG	Vanadium	A-27	30	25.2	Within MSA Background
INORG	Aluminum	A-28	14000	9,500	Within MSA Background
INORG	Beryllium	A-28	0.83	0.59	Within MSA Background
INORG	Calcium	A-28	76000	9,300	Within MSA Background
INORG	Chromium	A-28	34	16.2	Within MSA Background
INORG	Cobalt	A-28	14	8.9	Within MSA Background
INORG	Copper	A-28	30	19.6	Within MSA Background
INORG	Iron	A-28	32000	15,900	Within MSA Background
INORG	Magnesium	A-28	37000	4,820	Within MSA Background
INORG	Nickel	A-28	44	18.0	Within MSA Background Within MSA Background
INORG	Potassium	A-28	3200	1,268	Within MSA Background Within MSA Background
					Within MSA Background Within MSA Background
INORG	Sodium	A-28	350 28	130	Within MSA Background Within MSA Background
INORG	Vanadium	A-28		25.2	
INORG	Aluminum	A-29	16000	9,500	Within MSA Background
INORG	Beryllium	A-29	0.88	0.59	Within MSA Background

Project: Franklin - EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Calcium	A-29	97000	9,300	Within MSA Background
INORG	Chromium	A-29	31	16.2	Within MSA Background
INORG	Cobalt	A-29	21	8.9	Within MSA Background
INORG	Copper	A-29	39	19.6	Within MSA Background
INORG	Iron	A-29	32000	15,900	Within MSA Background
INORG	Magnesium	A-29	45000	4,820	Within MSA Background
INORG	Manganese	A-29	670	636	Within MSA Background
INORG	Nickel	A-29	54	18.0	Within MSA Background
INORG	Potassium	A-29	3800	1,268	Within MSA Background
INORG	Selenium	A-29	1.2	0.48	Within MSA Background
INORG	Sodium	A-29 A-29	240	130	Within MSA Background
			33	25.2	
INORG	Vanadium	A-29			Within MSA Background
INORG	Aluminum	A-30	14000	9,500	Within MSA Background
INORG	Beryllium	A-30	0.95	0.59	Within MSA Background
INORG	Calcium	A-30	54000	9,300	Within MSA Background
INORG	Chromium	A-30	27	16.2	Within MSA Background
INORG	Cobalt	A-30	18	8.9	Within MSA Background
INORG	Copper	A-30	54	19.6	Within MSA Background
INORG	Iron	A-30	39000	15,900	Within MSA Background
INORG	Magnesium	A-30	27000	4,820	Within MSA Background
INORG	Nickel	A-30	57	18.0	Within MSA Background
INORG	Potassium	A-30	3000	1,268	Within MSA Background
INORG	Selenium	. A-30	1.9	0.48	Within MSA Background
INORG	Sodium	A-30	680	130	Within MSA Background
INORG	Vanadium	A-30	31	25.2	Within MSA Background
INORG	Zinc	A-30	98	95.0	Within MSA Background
INORG	Aluminum	A-31	16000	9,500	Within MSA Background
INORG	Beryllium	A-31	0.90	0.59	Within MSA Background
INORG	Calcium	A-31	73000	9,300	Within MSA Background
INORG	Chromium	A-31	29	16.2	Within MSA Background
INORG	Cobalt	A-31	19	8.9	Within MSA Background
INORG	Copper	A-31	33	19.6	Within MSA Background
INORG	Iron	A-31	31000	15,900	Within MSA Background
			35000	4,820	Within MSA Background
INORG	Magnesium	A-31			
INORG	Nickel	· A-31	49	18.0	Within MSA Background
INORG	Potassium	A-31	3700	1,268	Within MSA Background
INORG	Sodium	A-31	350	130	Within MSA Background
INORG	Vanadium	A-31	30	25.2	Within MSA Background
INORG	Aluminum	A-32	15000	9,500	Within MSA Background
INORG	Beryllium_	A-32	0.79	0.59	Within MSA Background
INORG	Calcium	A-32	74000	9,300	Within MSA Background
INORG	Chromium	A-32	27	16.2	Within MSA Background
INORG	Cobalt	A-32	15	8.9	Within MSA Background
INORG	Copper	A-32	29	19.6	Within MSA Background
INORG	Iron	A-32	28000	15,900	Within MSA Background
INORG	Magnesium	A-32	33000	4,820	Within MSA Background
INORG	Nickel	A-32	42	18.0	Within MSA Background
INORG	Potassium	A-32	2600	1,268	Within MSA Background
INORG	Sodium	A-32	740	130	Within MSA Background
INORG	Vanadium	A-32	27	25.2	Within MSA Background
INORG	Aluminum	A-33	16000	9,500	Within MSA Background
INORG	Beryllium	A-33	0.86	0.59	Within MSA Background
INORG	Calcium	A-33	81000	9,300	Within MSA Background
INORG			31	16.2	Within MSA Background Within MSA Background
	Chromium	A-33			Within MSA Background Within MSA Background
INORG	Cobalt	A-33	20	8.9	
INORG	Copper	A-33	34	19.6	Within MSA Background
INORG	Iron	A-33	29000	15,900	Within MSA Background
INORG	Magnesium	A-33	38000	4,820	Within MSA Background

Project: Franklin - EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Nickel	A-33	50	18.0	Within MSA Background
INORG		A-33	3900	1,268	Within MSA Background
	Potassium			130	Within MSA Background
NORG	Sodium	A-33	240	25.2	Within MSA Background
NORG	Vanadium	A-33	31		
NORG	Aluminum	A-34	14000	9,500	Within MSA Background
NORG	Beryllium	A-34	0.85	0.59	Within MSA Background
NORG	Calcium	A-34	79000	9,300	Within MSA Background
NORG	Chromium	A-34	28	16.2	Within MSA Background
NORG	Cobalt	A-34	19	8.9	Within MSA Background
NORG	Copper	A-34	32	19.6	Within MSA Background
NORG	Iron	A-34	27000	15,900	Within MSA Background
NORG	Magnesium	A-34	37000	4,820	Within MSA Background
NORG	Nickel	A-34	46	18.0	Within MSA Background
NORG	Potassium	A-34	3700	1,268	Within MSA Background
NORG	Sodium	A-34	250	130	Within MSA Background
NORG	Vanadium	A-34	30	25.2	Within MSA Background
PNA	Naphthalene	A-18	0.41	0.20	Within MSA Background
svoc	2-Methylnaphthalene	A-18	0.29	0.14	Within MSA Background
NORG	Aluminum	A-18	13000	9,200	Outside MSA Background
NORG	Beryllium	A-18	0.70	0.56	Outside MSA Background
NORG	Calcium	A-18	77000	5,525	Outside MSA Background
NORG	Chromium	A-18	24	13.0	Outside MSA Background
NORG	Cobalt	A-18	11	8.9	Outside MSA Background
NORG	Copper	A-18	30	12.0	Outside MSA Background
NORG	Iron	A-18	24000	15,000	Outside MSA Background
NORG		A-18	38000	2,700	Outside MSA Background
	Magnesium	A-16 A-18	33	13.0	Outside MSA Background
NORG	Nickel	A-18	2900	1,100	Outside MSA Background
NORG	Potassium			130.0	Outside MSA Background
NORG	Sodium	A-18	180		Outside MSA Background
NORG	Vanadium	A-18	29	25.0	
NORG	Aluminum	A-19	15000	9,200	Outside MSA Background
NORG	Beryllium	A-19	0.80	0.56	Outside MSA Background
NORG	Calcium	A-19	52000	5,525	Outside MSA Background
NORG	Chromium	A-19	28	13.0	Outside MSA Background
NORG	Cobalt	A-19	17	8.9	Outside MSA Background
NORG	Copper	A-19	26	12.0	Outside MSA Background
NORG	Iron	A-19	26000	15,000	Outside MSA Background
NORG	Magnesium	A-19	25000	2,700	Outside MSA Background
NORG	Nickel	A-19	47	13.0	Outside MSA Background
NORG	Potassium	A-19	3400	1,100	Outside MSA Background
NORG	Sodium	A-19	150	130.0	Outside MSA Background
NORG	Vanadium	A-19	27	25.0	Outside MSA Background
NORG	Aluminum	A-20	14000	9,200	Outside MSA Background
NORG	Beryllium	A-20	0.82	0.56	Outside MSA Background
NORG	Calcium	A-20	47000	5,525	Outside MSA Background
NORG	Chromium	A-20	28	13.0	Outside MSA Background
NORG	Cobalt	A-20	15	8.9	Outside MSA Background
NORG	Copper	A-20	24	12.0	Outside MSA Background
NORG		A-20	25000	15,000	Outside MSA Background
NORG	Magnesium	A-20 A-20	22000	2,700	Outside MSA Background
NORG	Nickel	A-20 A-20	43	13.0	Outside MSA Background
					Outside MSA Background
NORG	Potassium	A-20	3300	1,100	
NORG	Sodium	A-20	140	130.0	Outside MSA Background
NORG	Vanadium	A-20	27	25.0	Outside MSA Background
NORG	Aluminum	A-21	13000	9,200	Outside MSA Background
NORG	Beryllium	A-21	0.70	0.56	Outside MSA Background
NORG	Calcium	A-21	70000	5,525	Outside MSA Background
NORG	Chromium	A-21	26	13.0	Outside MSA Background

^{* -} result and RO units are mg/L

Project: Franklin - EB
Laboratory: STAT ANALYSIS

		Sample Number	Concentration	TACO Tier 1	
∄Test	Chemical 1	Sample Number	Detected (ppm) 1	RO (mg/Kg)	Exposure Pathway
INORG	Cobalt	A-21	19	8.9	Outside MSA Background
INORG	Copper	A-21	30	12.0	Outside MSA Background
INORG	Iron	A-21	25000	15,000	Outside MSA Background
INORG	Magnesium	A-21	34000	2,700	Outside MSA Background
INORG	Nickel	A-21	45	13.0	Outside MSA Background
INORG	Potassium	A-21	3100	1,100	Outside MSA Background
INORG	Sodium	A-21	150	130.0	Outside MSA Background
INORG	Vanadium	A-21	26	25.0	Outside MSA Background
INORG	Aluminum	A-22	18000	9,200	Outside MSA Background
INORG	Beryllium	A-22	1.0	0.56	Outside MSA Background
INORG	Calcium	A-22	76000	5,525	Outside MSA Background
INORG	Chromium	A-22	35	13.0	Outside MSA Background
INORG	Cobalt	A-22	21	8.9	Outside MSA Background
INORG	Copper	A-22	39	12.0	Outside MSA Background
INORG	Iron	A-22	33000	15,000	Outside MSA Background
INORG	Magnesium	A-22	37000	2,700	Outside MSA Background
INORG	Nickel	A-22	56	13.0	Outside MSA Background
INORG	Potassium	A-22 A-22	4700	1,100	Outside MSA Background
INORG	Sodium	A-22 A-22	200	130.0	Outside MSA Background
INORG	Vanadium	A-22	36	25.0	Outside MSA Background
INORG	Zinc	A-22	69	60.2	Outside MSA Background
INORG			19000	9,200	Outside MSA Background
	Aluminum	A-23 A-23	1,1	0.56	Outside MSA Background
INORG	Beryllium			5,525	Outside MSA Background
INORG	Calcium	A-23	66000	13.0	Outside MSA Background Outside MSA Background
INORG	Chromium	A-23	38		
INORG	Cobalt	A-23	27	8.9	Outside MSA Background
INORG	Copper	A-23	32	12.0	Outside MSA Background
INORG	Iron	A-23	34000 31000	15,000	Outside MSA Background
INORG	Magnesium	A-23		2,700	Outside MSA Background Outside MSA Background
INORG	Nickel	A-23	70	13.0	
INORG	Potassium	A-23	4900	1,100	Outside MSA Background
INORG	Selenium	A-23	1.5	0.37	Outside MSA Background
INORG	Sodium	A-23	200	130.0	Outside MSA Background
INORG	Vanadium	A-23	37	25.0	Outside MSA Background
INORG	Zinc	A-23	74	60.2	Outside MSA Background
INORG	Aluminum	A-24	17000	9,200	Outside MSA Background
INORG	Beryllium	A-24	0.98	0.56	Outside MSA Background
INORG	Calcium	A-24	80000	5,525	Outside MSA Background
INORG	Chromium	A-24	33	13.0	Outside MSA Background
INORG	Cobalt	A-24	18	8.9	Outside MSA Background
INORG	Copper	A-24	37	12.0	Outside MSA Background
INORG	Iron	A-24	35000	15,000	Outside MSA Background
INORG	Magnesium	A-24	39000	2,700	Outside MSA Background
INORG	Manganese	A-24	640	630	Outside MSA Background
INORG	Nickel	A-24	50	13.0	Outside MSA Background
INORG	Potassium	A-24	4000	1,100	Outside MSA Background
INORG	Sodium	A-24	190	130.0	Outside MSA Background
INORG	Vanadium	A-24	32	25.0	Outside MSA Background
INORG	Zinc	A-24	69	60.2	Outside MSA Background
INORG	Aluminum	A-25	13000	9,200	Outside MSA Background
INORG	Arsenic	A-25	13	11.3	Outside MSA Background
INORG	Beryllium	A-25	0.76	0.56	Outside MSA Background
INORG	Calcium	A-25	70000	5,525	Outside MSA Background
INORG	Chromium	A-25	26	13.0	Outside MSA Background
INORG	Cobalt	A-25	17	8.9	Outside MSA Background
INORG	Copper	A-25	33	12.0	Outside MSA Background
INORG	Iron	A-25	27000	15,000	Outside MSA Background
INORG	Magnesium	A-25	35000	2,700	Outside MSA Background
DAOFIL	Magnesium	17-63	33000	2,700	Outside into a Duengiouna

^{* -} result and RO units are mg/L

Project: Franklin - EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Nickel	A-25	44	13.0	Outside MSA Background
INORG	Potassium	A-25	3300	1,100	Outside MSA Background
INORG	Sodium	A-25	230	130.0	Outside MSA Background
INORG	Vanadium	A-25	26	25.0	Outside MSA Background
INORG	Aluminum	A-26	12000	9,200	Outside MSA Background
INORG	Arsenic	A-26	13	11.3	Outside MSA Background
INORG		A-26	0.76	0.56	Outside MSA Background
	Beryllium Calcium	A-26	58000	5,525	Outside MSA Background
INORG					
INORG	Chromium	A-26	9.4	13.0 8.9	Outside MSA Background
INORG	Cobalt	A-26			Outside MSA Background
INORG	Copper	A-26	45	12.0	Outside MSA Background
INORG	Iron	A-26	30000	15,000	Outside MSA Background
INORG	Lead	A-26	24	20.9	Outside MSA Background
INORG	Magnesium	A-26	29000	2,700	Outside MSA Background
INORG	Nickel	A-26	34	13.0	Outside MSA Background
INORG	Potassium	A-26	2700	1,100	Outside MSA Background
INORG	Sodium	A-26	200	130.0	Outside MSA Background
INORG	Vanadium	A-26	29	25.0	Outside MSA Background
INORG	Aluminum	A-27	15000	9,200	Outside MSA Background
INORG	Beryllium	A-27	0.86	0.56	Outside MSA Background
INORG	Calcium	A-27	71000	5,525	Outside MSA Background
INORG	Chromium	A-27	30	13.0	Outside MSA Background
INORG	Cobalt	A-27	16	8.9	Outside MSA Background
INORG	Copper	A-27	32	12.0	Outside MSA Background
INORG	Iron	A-27	28000	15,000	Outside MSA Background
				2,700	Outside MSA Background
INORG	Magnesium	A-27	35000		
INORG	Nickel	A-27	44	13.0	Outside MSA Background
INORG	Potassium	A-27	3900	1,100	Outside MSA Background
INORG	Sodium	A-27	360	130.0	Outside MSA Background
INORG	Vanadium	A-27	30	25.0	Outside MSA Background
INORG	Aluminum	A-28	14000	9,200	Outside MSA Background
INORG	Beryllium	A-28	0.83	0.56	Outside MSA Background
INORG	Calcium	A-28	76000	5,525	Outside MSA Background
INORG	Chromium	A-28	34	13.0	Outside MSA Background
INORG	Cobalt	A-28	14	8.9	Outside MSA Background
INORG	Copper	A-28	30	12.0	Outside MSA Background
INORG	Iron	A-28	32000	15,000	Outside MSA Background
INORG	Magnesium	A-28	37000	2,700	Outside MSA Background
INORG	Nickel	A-28	44	13.0	Outside MSA Background
INORG	Potassium	A-28	3200	1,100	Outside MSA Background
INORG	Sodium	A-28	350	130.0	Outside MSA Background
INORG	Vanadium	A-28	28	25.0	Outside MSA Background
INORG	Zinc	A-28	63	60.2	Outside MSA Background
INORG	Aluminum	A-29	16000	9,200	Outside MSA Background
INORG	Beryllium	A-29	0.88	0.56	Outside MSA Background
		A-29 A-29	97000	5,525	Outside MSA Background
INORG	Charming			,	Outside MSA Background
INORG	Chromium	A-29	31	13.0	
INORG	Cobalt	A-29	21	8.9	Outside MSA Background
INORG	Copper	A-29	39	12.0	Outside MSA Background
INORG	Iron	A-29	32000	15,000	Outside MSA Background
INORG	Magnesium	A-29	45000	2,700	Outside MSA Background
INORG	Manganese	A-29	670	630	Outside MSA Background
INORG	Nickel	A-29	54	13.0	Outside MSA Background
INORG	Potassium	A-29	3800	1,100	Outside MSA Background
INORG	Selenium	A-29	1.2	0.37	Outside MSA Background
INORG	Sodium	A-29	240	130.0	Outside MSA Background
INORG	Vanadium	A-29	33	25.0	Outside MSA Background
		/			Outside MSA Background

^{* -} result and RO units are mg/L

Project: Franklin - EB
Laboratory: STAT ANALYSIS

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Aluminum	A-30	14000	9,200	Outside MSA Background
INORG	Beryllium	A-30	0.95	0.56	Outside MSA Background
INORG	Calcium	A-30	54000	5,525	Outside MSA Background
INORG	Chromium	A-30	27	13.0	Outside MSA Background
INORG	Cobalt	A-30	18	8.9	Outside MSA Background
INORG	Copper	A-30	54	12.0	Outside MSA Background
INORG	Iron	A-30	39000	15,000	Outside MSA Background
INORG	Lead	A-30	26	20.9	Outside MSA Background
INORG	Magnesium	A-30	27000	2,700	Outside MSA Background
INORG	Nickel	A-30	57	13.0	Outside MSA Background
INORG	Potassium	A-30	3000	1,100	Outside MSA Background
INORG	Selenium	A-30	1.9	0.37	Outside MSA Background
INORG	Sodium	A-30	680	130.0	Outside MSA Background
INORG	Vanadium	A-30	31	25.0	Outside MSA Background
INORG	Zinc	A-30	98	60.2	Outside MSA Background
INORG	Aluminum	A-31	16000	9,200	Outside MSA Background
INORG		A-31	0.90	0.56	Outside MSA Background
INORG	Beryllium Calcium		73000	-	Outside MSA Background
INORG		A-31 A-31	73000	5,525	
INORG	Chromium Cobalt		19	13.0 8.9	Outside MSA Background Outside MSA Background
INORG		A-31	33		
	Copper	A-31		12.0	Outside MSA Background
INORG	Iron	A-31	31000	15,000	Outside MSA Background
INORG	Magnesium	A-31	35000	2,700	Outside MSA Background
INORG	Nickel	A-31	49	13.0	Outside MSA Background
INORG	Potassium	A-31	3700	1,100	Outside MSA Background
INORG	Sodium	A-31	350	130.0	Outside MSA Background
INORG	Vanadium	A-31	30	25.0	Outside MSA Background
INORG	Zinc	A-31	66	60.2	Outside MSA Background
INORG	Aluminum	A-32	15000	9,200	Outside MSA Background
INORG	Beryllium	A-32	0.79	0.56	Outside MSA Background
INORG	Calcium	A-32	74000	5,525	Outside MSA Background
INORG	Chromium	A-32	27	13.0	Outside MSA Background
INORG	Cobalt	A-32	15	8.9	Outside MSA Background
INORG	Copper	A-32	29	12.0	Outside MSA Background
INORG	Iron	A-32	28000	15,000	Outside MSA Background
INORG	Magnesium	A-32	33000	2,700	Outside MSA Background
INORG	Nickel	A-32	42	13.0	Outside MSA Background
INORG	Potassium	A-32	2600	1,100	Outside MSA Background
INORG	Sodium	A-32	740	130.0	Outside MSA Background
INORG	Vanadium	A-32	27	25.0	Outside MSA Background
INORG	Zinc	A-32	64	60.2	Outside MSA Background
INORG	Aluminum	A-33	16000	9,200	Outside MSA Background
INORG	Beryllium	A-33	0.86	0.56	Outside MSA Background
INORG	Calcium	A-33	81000	5,525	Outside MSA Background
INORG	Chromium	A-33	31	13.0	Outside MSA Background
INORG	Cobalt	A-33	20	8.9	Outside MSA Background
INORG	Copper	A-33	34	12.0	Outside MSA Background
INORG	Iron	A-33	29000	15,000	Outside MSA Background
INORG	Magnesium	A-33	38000	2,700	Outside MSA Background
INORG	Nickel	A-33	50	13.0	Outside MSA Background
INORG	Potassium	A-33	3900	1,100	Outside MSA Background
INORG	Sodium	A-33	240	130.0	Outside MSA Background
INORG	Vanadium	A-33	31	25.0	Outside MSA Background
INORG	Zinc	A-33	69	60.2	Outside MSA Background
INORG	Aluminum	A-34	14000	9,200	Outside MSA Background
INORG	Beryllium	A-34	0.85	0.56	Outside MSA Background
INORG	Calcium	A-34	79000	5,525	Outside MSA Background
					Outside MSA Background
INORG	Chromium	A-34	28	13.0	Outside MISA Dackground

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin - EB

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Cobalt	A-34	19	8.9	Outside MSA Background
INORG	Copper	A-34	32	12.0	Outside MSA Background
INORG	Iron	A-34	27000	15,000	Outside MSA Background
INORG	Magnesium	A-34	37000	2,700	Outside MSA Background
INORG	Nickel	A-34	46	13.0	Outside MSA Background
INORG	Potassium	A-34	3700	1,100	Outside MSA Background
INORG	Sodium	A-34	250	130.0	Outside MSA Background
INORG	Vanadium	A-34	30	25.0	Outside MSA Background
PNA	Naphthalene	A-18	0.41	0.17	Outside MSA Background
PNA	Naphthalene	A-18	0.41	0.04	City of Chicago Background

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

February 01, 2019

Environmental Group Services, Ltd. 557 W. Polk Chicago, IL 60610

Telephone: (312) 447-1200 Fax: (312) 447-0922

Analytical Report for STAT Work Order: 19010565 Revision 1

RE: Franklin-EB

Dear Bill Lennon:

STAT Analysis received 17 samples for the referenced project on 1/22/2019 5:05:00 PM. The analytical results are presented in the following report.

This report is revised to reflect changes made after the last report revision.

All analyses were performed in accordance with the requirements of 35 IAC part 186 / NELAP standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Craig Chawla

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: February 01, 2019

Client: Environmental Group Services, Ltd.

Project: Franklin-EB Work Order Sample Summary

Work Order: 19010565 Revision 1

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
19010565-001A	A-1		1/22/2019 6:00:00 AM	1/22/2019
19010565-001B	A-1	•	1/22/2019 6:00:00 AM	1/22/2019
19010565-002A	A-2		1/22/2019 6:15:00 AM	1/22/2019
19010565-002B	A-2		1/22/2019 6:15:00 AM	1/22/2019
19010565-003A	A-3	•	1/22/2019 6:30:00 AM	1/22/2019
19010565-003B	A-3		1/22/2019 6:30:00 AM	1/22/2019
19010565-004A	A-4		1/22/2019 6:45:00 AM	1/22/2019
19010565-004B	A-4		1/22/2019 6:45:00 AM	1/22/2019
19010565-005A	A-5	•	1/22/2019 7:00:00 AM	1/22/2019
19010565-005B	A-5		1/22/2019 7:00:00 AM	1/22/2019
19010565-006A	A-6		1/22/2019 7:15:00 AM	1/22/2019
19010565-006B	A-6		1/22/2019 7:15:00 AM	1/22/2019
19010565-007A	A-7		1/22/2019 7:30:00 AM	1/22/2019
19010565-007B	A-7		1/22/2019 7:30:00 AM	1/22/2019
19010565-008A	A-8		1/22/2019 7:45:00 AM	1/22/2019
19010565-008B	A-8		1/22/2019 7:45:00 AM	1/22/2019
19010565-009A	A-9		1/22/2019 8:00:00 AM	1/22/2019
19010565-009B	A-9		1/22/2019 8:00:00 AM	1/22/2019
19010565-010A	A-10	•	1/22/2019 8:15:00 AM	1/22/2019
19010565-010B	A-10		1/22/2019 8:15:00 AM	1/22/2019
19010565-011A	A-11	•	1/22/2019 8:30:00 AM	1/22/2019
19010565-011B	A-11		1/22/2019 8:30:00 AM	1/22/2019
19010565-012A	A-12	,	1/22/2019 8:45:00 AM	1/22/2019
19010565-012B	A-12		1/22/2019 8:45:00 AM	1/22/2019
19010565-013A	A-13		1/22/2019 9:00:00 AM	1/22/2019
19010565-013B	A-13		1/22/2019 9:00:00 AM	1/22/2019
19010565-014A	A-14		1/22/2019 9:15:00 AM	1/22/2019
19010565-014B	A-14		1/22/2019 9:15:00 AM	1/22/2019
19010565-015A	A-15		1/22/2019 9:30:00 AM	1/22/2019
19010565-015B	A-15		1/22/2019 9:30:00 AM	1/22/2019
19010565-016A	A-16		1/22/2019 9:45:00 AM	1/22/2019
19010565-016B	A-16		1/22/2019 9:45:00 AM	1/22/2019
19010565-017A	A-17		1/22/2019 10:00:00 AM	1/22/2019
19010565-017B	A-17		1/22/2019 10:00:00 AM	1/22/2019

Date: February 01, 2019

CLIENT:

Environmental Group Services, Ltd.

Project:

Franklin-EB

Work Order:

19010565 Revision 1

CASE NARRATIVE

At the customer's request, sample A-13 (19010565-013) was re-digested and analyzed for Arsenic. Results of the re-digestion and analysis are contained in this report revision.

The total mercury Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample A-17 (19010565-017) had recovery outside control limits (74% (MSD) recovery, QC limits 75-125%). Recovery in the MS and Relative Percent Difference (RPD) between the MS and MSD were within control limits.

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB

19010565-001

Client Sample ID: A-1

Collection Date: 1/22/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 1/22/2019	Analyst: ER
Acetone	ND	0.078	mg/Kg-dry	1	1/23/2019
Benzene	ND	0.0052	mg/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0052	mg/Kg-dry	1 ,	1/23/2019
Bromoform	ND	0.0052	mg/Kg-dry	1	1/23/2019
Bromomethane	ND	0.010	mg/Kg-dry	1	1/23/2019
2-Butanone	ND	0.078	mg/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.052	mg/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0052	mg/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0052	mg/Kg-dry	1	1/23/2019
Chloroethane	ND	0.010	mg/Kg-dry	1	1/23/2019
Chloroform	ND	0.0052	mg/Kg-dry	1	1/23/2019
Chloromethane	ND	0.010	mg/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.020	mg/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.020	mg/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.010	mg/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	1/23/2019
Styrene	ND	0.0052	mg/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	1/23/2019
Toluene	ND	0.0052	mg/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0052	mg/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.016	mg/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/M	s swa	270C (SW3	550B) Prep	Date: 1/25/2019	Analyst: FP
Acenaphthene	ND	0.040	mg/Kg-dry	1	1/27/2019
Acenaphthylene	ND	0.040	mg/Kg-dry	1	1/27/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB 19010565-001

Client Sample ID: A-1

Collection Date: 1/22/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	.70C (SW	3550B)	Prep	Date: 1/25/201	9 Analyst: FP
Aniline	ND	0.40		mg/Kg-dry	1	1/27/2019
Anthracene	ND	0.040		mg/Kg-dry	1	1/27/2019
Benz(a)anthracene	ND	0.040	•	mg/Kg-dry	1	1/27/2019
Benzidine	ND	0.40		mg/Kg-dry	1	1/27/2019
Benzo(a)pyrene	ND	0.040		mg/Kg-dry	1	1/27/2019
Benzo(b)fluoranthene	ND	0.040		mg/Kg-dry	1	1/27/2019
Benzo(g,h,i)perylene	ND	0.040		mg/Kg-dry	1	1/27/2019
Benzo(k)fluoranthene	ND	0.040		mg/Kg-dry	1	1/27/2019
Benzoiç acid	ND	0.99		mg/Kg-dry	1	1/27/2019
Benzyl alcohol	ND	0.20		mg/Kg-dry	1	1/27/2019
Bis(2-chloroethoxy)methane	ND	0.20		mg/Kg-dry	1	1/27/2019
Bis(2-chloroethyl)ether	ND	0.20		mg/Kg-dry	1	1/27/2019
Bis(2-ethylhexyl)phthalate	ND	0.99		mg/Kg-dry	1	1/27/2019
4-Bromophenyl phenyl ether	ND	0.20		mg/Kg-dry	1	1/27/2019
Butyl benzyl phthalate	ND	0.20		mg/Kg-dry	1	1/27/2019
Carbazole	ND	0.20		mg/Kg-dry	1	1/27/2019
4-Chloroaniline	ND	0.20		mg/Kg-dry	1	1/27/2019
4-Chloro-3-methylphenol	ND	0.40		mg/Kg-dry	1	1/27/2019
2-Chloronaphthalene	ND	0.20		mg/Kg-dry	1	1/27/2019
2-Chlorophenol	ND	0.20		mg/Kg-dry	1	1/27/2019
4-Chlorophenyl phenyl ether	ND	0.20		mg/Kg-dry	1	1/27/2019
Chrysene	ND	0.040		mg/Kg-dry	1	1/27/2019
Dibenz(a,h)anthracene	ND	0.040		mg/Kg-dry	1	1/27/2019
Dibenzofuran	ND	0.20		mg/Kg-dry	1	1/27/2019
1,2-Dichlorobenzene	ND	0.20		mg/Kg-dry	1	1/27/2019
1,3-Dichlorobenzene	ND	0.20		mg/Kg-dry	1	1/27/2019
1,4-Dichlorobenzene	ND	0.20		mg/Kg-dry	1	1/27/2019
3,3'-Dichlorobenzidine	ND	0.20		mg/Kg-dry	1	1/27/2019
2,4-Dichlorophenol	ND	0.20		mg/Kg-dry	1	1/27/2019
Diethyl phthalate	ND	0.20		mg/Kg-dry	1	1/27/2019
2,4-Dimethylphenol	ND	0.20		mg/Kg-dry	1	1/27/2019
Dimethyl phthalate	ND	0.20		mg/Kg-dry	1	1/27/2019
4,6-Dinitro-2-methylphenol	ND	0.40		mg/Kg-dry	1	1/27/2019
2,4-Dinitrophenol	ND	0.99		mg/Kg-dry	1	1/27/2019
2,4-Dinitrotoluene	ND	0.040		mg/Kg-dry	1	, 1/27/2019
2,6-Dinitrotoluene	ND	0.040		mg/Kg-dry	1	1/27/2019
Di-n-butyl phthalate	ND	0.20		mg/Kg-dry	1	1/27/2019
Di-n-octyl phthalate	ND	0.20		mg/Kg-dry	1	1/27/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

Date Printed: February 01, 2019

Environmental Group Services, Ltd. Client:

Work Order: 19010565 Revision 1

Franklin-EB Project:

19010565-001 Lab ID:

ANA	$\mathbf{I}.\mathbf{Y}$	ri <i>c i</i>	M.R	ESI	II .'	TS
\mathbf{A}						. .

Client Sample ID: A-1

Collection Date: 1/22/2019 6:00:00 AM

Matrix: Soil

Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 1/25/2019 Analyst: FP	Analyses	Result	RL	Qualifie	r Units	DF	Date Analyzed
Fluorene	Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3	550B)	Prep	Date: 1/25/2019	Analyst: FP
Hexachlorobenzene ND			0.040	•	mg/Kg-dry	1	1/27/2019
Hexachlorobutadiene	Fluorene	ND	0.040		mg/Kg-dry	1	1/27/2019
Hexachlorocyclopentadiene	Hexachlorobenzene	ND	0.20		mg/Kg-dry	1	1/27/2019
Hexachloroethane	Hexachlorobutadiene	ND	0.20		mg/Kg-dry	1	1/27/2019
Indeno(1,2,3-cd)pyrene ND	Hexachlorocyclopentadiene	ND	0.20		mg/Kg-dry	1	1/27/2019
Isophorone	Hexachloroethane	ND	0.20		mg/Kg-dry	1	1/27/2019
2-Methylnaphthalene ND 0.20 mg/Kg-dry 1 1/27/2019 2-Methylphenol ND 0.20 mg/Kg-dry 1 1/27/2019 4-Methylphenol ND 0.20 mg/Kg-dry 1 1/27/2019 A-Methylphenol ND 0.20 mg/Kg-dry 1 1/27/2019 A-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 3-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrosonimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiin-propylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiin-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019	Indeno(1,2,3-cd)pyrene	ND	0.040	: '	mg/Kg-dry	1	1/27/2019
2-Methylphenol ND 0.20 mg/Kg-dry 1 1/27/2019 4-Methylphenol ND 0.20 mg/Kg-dry 1 1/27/2019 Naphthalene ND 0.040 mg/Kg-dry 1 1/27/2019 2-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 3-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrophenol ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrobenzene ND 0.40 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.20 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.00 mg/Kg-dry 1 1/27/2019	Isophorone	ND	0.20		mg/Kg-dry	1	1/27/2019
4-Methylphenol ND 0.20 mg/kg-dry 1 1/27/2019 Naphthalene ND 0.040 mg/kg-dry 1 1/27/2019 2-Nitroaniline ND 0.20 mg/kg-dry 1 1/27/2019 3-Nitroaniline ND 0.20 mg/kg-dry 1 1/27/2019 3-Nitroaniline ND 0.20 mg/kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/kg-dry 1 1/27/2019 2-Nitrophenol ND 0.20 mg/kg-dry 1 1/27/2019 4-Nitrophenol ND 0.20 mg/kg-dry 1 1/27/2019 4-Nitrobenzene ND 0.40 mg/kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.040 mg/kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.040 mg/kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.20 mg/kg-dry 1 1/27/2019 P-natchlorophenol ND 0.20 mg/kg-dry 1 1/27/2019 P-henathlorophenol ND 0.000 mg/kg-dry 1 1/27/2019 Phenathlorophenol ND 0.000 mg/kg-dry 1 1/27/2019 Phenol ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.020 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/kg-dry 1 1/27/2019 Pyrene ND 0.000 mg/k	2-Methylnaphthalene	ND	0.20		mg/Kg-dry	1	1/27/2019
Naphthalene ND 0.040 mg/Kg-dry 1 1/27/2019 2-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 3-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrophenol ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrophenol ND 0.40 mg/Kg-dry 1 1/27/2019 4-Nitrobenzene ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodin-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019	2-Methylphenol	ND	0.20		mg/Kg-dry	1	1/27/2019
2-Nitroaniline 3-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 3-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 2-Nitrophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2-Nitrophenol ND 0.40 mg/Kg-dry 1 1/27/2019 N-Nitrophenol ND 0.40 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.080 mg/Kg-dry 1 1/27/2019 Phenol ND 0.080 mg/Kg-dry 1 1/27/2019 Phenol ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.020 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.020 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.020 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.020 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254	4-Methylphenol	ND	0.20		mg/Kg-dry	1	1/27/2019
3-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 2-Nitrophenol ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrophenol ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrophenol ND 0.40 mg/Kg-dry 1 1/27/2019 Nitrobenzene ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodin-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.020 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.020 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.020 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.020 mg/Kg-dry 1 1/27/2019 1/24-Trichlorobenzene ND 0.020 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.020 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254	Naphthalene	ND	0.040		mg/Kg-dry	1	1/27/2019
4-Nitroaniline ND 0.20 mg/Kg-dry 1 1/27/2019 2-Nitrophenol ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrophenol ND 0.40 mg/Kg-dry 1 1/27/2019 Nitrobenzene ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodin-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 2, 2'-oxybis(1-Chloropropane) ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.080 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.20 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.095 mg/Kg-dry 1 1/27/2019 Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254	2-Nitroaniline	ND	0.20		mg/Kg-dry	1	1/27/2019
2-Nitrophenol ND 0.20 mg/Kg-dry 1 1/27/2019 4-Nitrophenol ND 0.40 mg/Kg-dry 1 1/27/2019 Nitrobenzene ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-nethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.080 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.0000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.0000 mg/Kg-dry 1 1/27/2019 P-entachlorophenol ND 0.0000 mg/Kg-dry 1 1/25/2019	3-Nitroaniline	ND	0.20		mg/Kg-dry	1	1/27/2019
4-Nitrophenol ND 0.40 mg/Kg-dry 1 1/27/2019 Nitrobenzene ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 2, 2'-oxybis(1-Chloropropane) ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.080 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	4-Nitroaniline	ND	0.20		mg/Kg-dry	1	1/27/2019
Nitrobenzene ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodi-n-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.040 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,	2-Nitrophenol	ND	0.20		mg/Kg-dry	1	1/27/2019
N-Nitrosodi-n-propylamine ND 0.040 mg/Kg-dry 1 1/27/2019 N-Nitrosodimethylamine ND 0.20 mg/Kg-dry 1 1/27/2019 N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 2, 2'-oxybis(1-Chloropropane) ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.080 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.092 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.00 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254	4-Nitrophenol	ND	0.40		mg/Kg-dry	1	1/27/2019
N-Nitrosodimethylamine N-Nitrosodimethylamine N-Nitrosodiphenylamine	Nitrobenzene	ND	0.040		mg/Kg-dry	1	1/27/2019
N-Nitrosodiphenylamine ND 0.20 mg/Kg-dry 1 1/27/2019 2, 2'-oxybis(1-Chloropropane) ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.080 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254	N-Nitrosodi-n-propylamine	ND	0.040		mg/Kg-dry	1	1/27/2019
2, 2'-oxybis(1-Chloropropane) ND 0.20 mg/Kg-dry 1 1/27/2019 Pentachlorophenol ND 0.080 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 <td>N-Nitrosodimethylamine</td> <td>ND</td> <td>0.20</td> <td></td> <td>mg/Kg-dry</td> <td>1</td> <td>1/27/2019</td>	N-Nitrosodimethylamine	ND	0.20		mg/Kg-dry	1	1/27/2019
Pentachlorophenol ND 0.080 mg/Kg-dry 1 1/27/2019 Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.0	N-Nitrosodiphenylamine	ND	0.20		mg/Kg-dry	1	1/27/2019
Phenanthrene ND 0.040 mg/Kg-dry 1 1/27/2019 Phenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 <td>2, 2'-oxybis(1-Chloropropane)</td> <td>ND</td> <td>0.20</td> <td></td> <td>mg/Kg-dry</td> <td>1</td> <td>1/27/2019</td>	2, 2'-oxybis(1-Chloropropane)	ND	0.20		mg/Kg-dry	1	1/27/2019
Phenol ND 0.20 mg/Kg-dry 1 1/27/2019 Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 <td>Pentachlorophenol</td> <td>ND</td> <td>0.080</td> <td></td> <td>mg/Kg-dry</td> <td>1</td> <td>1/27/2019</td>	Pentachlorophenol	ND	0.080		mg/Kg-dry	1	1/27/2019
Pyrene ND 0.040 mg/Kg-dry 1 1/27/2019 Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Phenanthrene	ND	0.040		mg/Kg-dry	1	1/27/2019
Pyridine ND 0.92 mg/Kg-dry 1 1/27/2019 1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Phenol	ND	0.20		mg/Kg-dry	1	1/27/2019
1,2,4-Trichlorobenzene ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Pyrene	ND	0.040		mg/Kg-dry	1	1/27/2019
2,4,5-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Pyridine	ND	0.92		mg/Kg-dry	1	1/27/2019
2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	1,2,4-Trichlorobenzene	ND	0.20		mg/Kg-dry	1	1/27/2019
2,4,6-Trichlorophenol ND 0.20 mg/Kg-dry 1 1/27/2019 PCBs SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GV Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	2,4,5-Trichlorophenol	ND	0.20		mg/Kg-dry	1	1/27/2019
Aroclor 1016 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	2,4,6-Trichlorophenol	ND	0.20		mg/Kg-dry	1	1/27/2019
Aroclor 1221 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	PCBs	SW8	082A (SW3	550B)	Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1232 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Aroclor 1016	ND	0.095		mg/Kg-dry	1	1/25/2019
Aroclor 1242 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Aroclor 1221	ND	0.095		mg/Kg-dry	1	1/25/2019
Aroclor 1248 ND 0.095 mg/Kg-dry 1 1/25/2019 Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Aroclor 1232	ND	0.095		mg/Kg-dry	1	
Aroclor 1254 ND 0.095 mg/Kg-dry 1 1/25/2019	Aroclor 1242	ND	0.095	•	mg/Kg-dry	1	1/25/2019
	Aroclor 1248	ND	0.095		mg/Kg-dry	1	1/25/2019
Aroclor 1260 ND 0.095 mg/Kg-dry 1 1/25/2019	Aroclor 1254	ND	0.095		mg/Kg-dry	1	1/25/2019
	Aroclor 1260	ND	0.095		mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

February 01, 2019 **Date Printed:**

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

19010565-001 Lab ID:

Client Sample ID: A-1 Collection Date: 1/22/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4´-DDD	ND	0.0019	mg/Kg-dry	1 -	1/25/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	1/25/2019
4,4'-DDT .	ND	0.0019	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0019	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.019	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	` ND	0.0019	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.039	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	13000	21	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.1	mg/Kg-dry	10	1/28/2019
Arsenic	4.0	1.0	mg/Kg-dry	10	1/28/2019
Barium	30	1.0	mg/Kg-dry	10	1/28/2019
Beryllium	0.80	0.52	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.52	mg/Kg-dry	10	1/28/2019
Calcium	69000	62	mg/Kg-dry	10	1/28/2019
Chromium	24	1.0	mg/Kg-dry	10	1/28/2019
Cobalt	. 11	1.0	mg/Kg-dry	10	1/28/2019
Copper	26	2.6	mg/Kg-dry	10	1/28/2019
Iron	23000	31	mg/Kg-dry	10	1/28/2019
Lead	14	· 0.52	mg/Kg-dry	10	1/28/2019
Magnesium	34000	31	mg/Kg-dry	10	1/28/2019
Manganese `	420	1.0	mg/Kg-dry	10	1/28/2019
Nickel	31	1.0	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB 19010565-001

Client Sample ID: A-1

Collection Date: 1/22/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	2900	31		mg/Kg-dry	10	1/28/2019
Selenium	1.0	1.0	ı	mg/Kg-dry	10	1/28/2019
Silver	ND	1.0	r	mg/Kg-dry	10	1/28/2019
Sodium	810	62	r	mg/Kg-dry	10	1/28/2019
Thallium	ND	1.0	r	mg/Kg-dry	10	1/28/2019
Vanadium	29	1.0		mg/Kg-dry	10	1/28/2019
Zinc	. 51	5.2	ı	mg/Kg-dry	10	1/28/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	•	mg/L	5	1/28/2019
Arsenic	ND	0.010	•	mg/L	5	1/28/2019
Barium	0.071	0.050		mg/L	5	1/28/2019
Beryllium ·	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.011	0.010		mg/L	5	1/28/2019
Copper	ND	0.10	•	mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	2.5	0.010		mg/L	5	1/28/2019
Nickel	0.025	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010	•	mg/L	5	1/28/2019
Thallium	` ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010	•	mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
TCLP Mercury	SW1:	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020	•	mg/L	1	1/27/2019
Mercury	SW7	171B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.023	0.020	r	ng/Kg-dry	1	1/27/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: CAB
Cyanide	ND	0.30	r	mg/Kg-dry	.1	1/25/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/24/2019	7
рН	7.60			pH Units	1	1/24/2019
Percent Moisture	. D297	4		Prep	Date: 1/23/2019	Analyst: RW
Percent Moisture	16.6	0.2	•	wt%	1	1/24/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Lab ID:

Franklin-EB

19010565-002

Client Sample ID: A-2

Collection Date: 1/22/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Unit	s DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	P	rep Date: 1/22/201	9 Analyst: ERI
Acetone	ND	0.082	mg/Kg-c	dry 1	1/23/2019
Benzene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Bromodichloromethane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Bromoform	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Bromomethane	ND	0.011	mg/Kg-c	dry 1	1/23/2019 .
2-Butanone	ND	0.082	mg/Kg-c	dry 1	1/23/2019
Carbon disulfide	ND	0.054	mg/Kg-c	dry 1	1/23/2019
Carbon tetrachloride	ND	0.0054	mg/Kg-c		1/23/2019
Chlorobenzene	ND	0.0054	mg/Kg-c	dry Î	1/23/2019
Chloroethane	ND	0.011	mg/Kg-c	dry 1	1/23/2019
Chloroform	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Chloromethane	ND	0.011	mg/Kg-c	dry 1	1/23/2019
Dibromochloromethane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
1,1-Dichloroethane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
1,2-Dichloroethane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
1,1-Dichloroethene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
1,2-Dichloropropane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-c	dry 1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-c	dry 1 '	1/23/2019
Ethylbenzene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
2-Hexanone	ND	0.021	mg/Kg-c	dry 1	1/23/2019
4-Methyl-2-pentanone	ND	0.021	mg/Kg-c	dry 1	1/23/2019
Methylene chloride	ND	0.011	mg/Kg-c	dry 1	1/23/2019
Methyl tert-butyl ether	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Styrene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Tetrachloroethene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Toluene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
1,1,1-Trichloroethane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
1,1,2-Trichloroethane	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Trichloroethene	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Vinyl chloride	ND	0.0054	mg/Kg-c	dry 1	1/23/2019
Xylenes, Total	ND	0.016	mg/Kg-c	dry 1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35		rep Date: 1/25/201	•
Acenaphthene	ND	0.041	mg/Kg-c		1/28/2019
Acenaphthylene	ND	0.041	mg/Kg-c	dry 1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-002

Client Sample ID: A-2

Collection Date: 1/22/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	.70C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	ND	0.41	ľ	ng/Kg-dry	1	1/28/2019
Anthracene	ND	0.041	· r	ng/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Benzidine	ND	0.41	r	ng/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041		ng/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0	r	ng/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	. 1.0	r	ng/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Carbazole	ND	0.21		ng/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21	n	ng/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.41	(i	ng/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.21	r	ng/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21	n	ng/Kg-dry	į ·	1/28/2019
Chrysene	ND	0.041	n	ng/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041	ri	ng/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.21	n	ng/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21	П	ng/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21	n	ng/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21	п	ng/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21	r	ng/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41	r	ng/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0	r	ng/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21	ri	ng/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-002

Client Sample ID: A-2

Collection Date: 1/22/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1 '	1/28/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1 .	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.083	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.96	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
PCBs .	SW80	82A (SW3550B)	Prep	Date: 1/25/2019	•
Aroclor 1016	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1 .	1/25/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.10	mg/Kg-dry	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-002

ANALYTICAL RESULTS

Client Sample ID: A-2

Collection Date: 1/22/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	· ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan İl	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	14000	23	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.3	mg/Kg-dry	10	1/28/2019
Arsenic	13	1.1	mg/Kg-dry	10	1/28/2019
Barium	48	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.91	0.57	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.57	mg/Kg-dry	10	1/28/2019
Calcium	64000	69	mg/Kg-dry	10	1/28/2019
Chromium	28	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	20	1.1	mg/Kg-dry	10	1/28/2019
Copper	29	2.9	mg/Kg-dry	10	1/28/2019
Iron	25000	34	mg/Kg-dry	10	1/28/2019
Lead	19	0.57	mg/Kg-dry	10	1/28/2019
Magnesium	33000	34	mg/Kg-dry	10	1/28/2019
Manganese	480	1.1	mg/Kg-dry	10	1/28/2019
Nickel	53	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

February 01, 2019

Environmental Group Services, Ltd. Client:

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-002

ANALYTICAL RESULTS

Client Sample ID: A-2

Collection Date: 1/22/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL Qua	alifier Units	DF	Date Analyzeo
Metals by ICP/MS	SW6	020A (SW3050	B) Prep	Date: 1/26/2019	Analyst: JG
Potassium	3700	`34	mg/Kg-dry	10	1/28/2019
Selenium	1.1	1.1	mg/Kg-dry	10	1/28/2019
Silver	ND	1.1	mg/Kg-dry	10	1/28/2019
Sodium	210	69	mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1	mg/Kg-dry	10	1/28/2019
Vanadium	30	1.1	mg/Kg-dry	10	1/28/2019
Zinc	58	5.7	mg/Kg-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A (SV	V3005A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	mg/L	5	1/28/2019
Arsenic	ND	0.010	· mg/L	5	1/28/2019
Barium	0.72	0.050	mg/L	5	1/28/2019
Beryllium	ND	0.0050	mg/L	5	1/28/2019
Cadmium	ND	0.0050	mg/L	5 ·	1/28/2019
Chromium	ND	0.010	mg/L	5	1/28/2019
Cobalt	0.031	0.010	mg/L	5	1/28/2019
Copper	ND	0.10	mg/L	5	1/28/2019
Iron	ND	0.25	mg/L	5	1/28/2019
Lead	ND	0.0050	mg/L	5	1/28/2019
Manganese	3.4	0.010	mg/L	5	1/28/2019
Nickel	0.062	0.020	mg/L	5	1/28/2019
Selenium	ND	0.010	mg/L	5	1/28/2019
Silver	ND	0.010	mg/L	5	1/28/2019
Thallium	ND	0.0050	mg/L	5	1/28/2019
Vanadium	ND	0.010	mg/L	5	1/28/2019
Zinc	ND	0.050	mg/L	5	1/28/2019
CLP Mercury	SW1	311/7470A	Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020	mg/L	1	1/27/2019
lercury	SW7	471B	Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.026	0.019	mg/Kg-dry	1	1/27/2019
yanide, Total		012A	•	Date: 1/25/2019	Analyst: CAI
Cyanide	ND	0.32	mg/Kg-dry	1	1/25/2019
H (25 °C)	SW9	045C	Prep	Date: 1/24/2019	Analyst: JT
рН	7.82		pH Units	1	1/24/2019
Percent Moisture	D297	' 4	Prep	Date: 1/23/2019	Analyst: RW
Percent Moisture	20.7	0.2	* wt%	1	1/24/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Project: Franklin-EB

19010565-003 Lab ID:

Client Sample ID: A-3

Collection Date: 1/22/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: ERF
Acetone	ND .	0.090	m	g/Kg-dry	1	1/23/2019
Benzene	ND	, 0.0060	m	g/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Bromoform	ND	0.0060	m	g/Kg-dry	1 .	1/23/2019
Bromomethane	ND	0.012	m	g/Kg-dry	1	1/23/2019
2-Butanone	ND	0.090	m	g/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.060	m	g/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Chloroethane	ND	0.012	_ m	g/Kg-dry	1	1/23/2019
Chloroform	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Chloromethane	ND	0.012	m	g/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0060	m	g/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0060	m	g/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0060	m	g/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0060	m	g/Kg-dry	- 1	1/23/2019
1,2-Dichloropropane	ND	0.0060	m	g/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0024	m	g/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0024	m	g/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.024	m	g/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.024	m	g/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.012	m	g/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Styrene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Toluene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	^ ND	0.0060	m	g/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0060	m	g/Kg-dry	1 .	1/23/2019
Trichloroethene	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0060	m	g/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.017	m	g/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35			Date: 1/25/2019	Analyst: FP
Acenaphthene	ND	0.041		g/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.041	m	g/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-003

Client Sample ID: A-3

Collection Date: 1/22/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	ND	0.41	n	ng/Kg-dry	1	1/28/2019
Anthracene	ND	0.041	. n	ng/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.041	· n	ng/Kg-dry	1	1/28/2019
Benzidine	ND	0.41	п	ng/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041	п	ng/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.041	n	ng/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.041	n	ng/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.041	n	ng/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0	n	ng/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21	n	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21	n	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21	n	ng/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	n	ng/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21	n	ng/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/28/2019
Carbazole	· ND	0.21	n	ng/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21	n	ng/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.41	n	ng/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.21	n	ng/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21	п	ng/Kg-dry	1 ·	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21	n	ng/Kg-dry	1	1/28/2019
Chrysene	ND	0.041	n	ng/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041	n	ng/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.21	п	ng/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21	п	ng/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21	п	ng/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21		ng/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21	п	ng/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND '	0.21	n	ng/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21		ng/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41	n	ng/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0		ng/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.041		ng/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.041		ng/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21		ng/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21		ng/Kg-dry	1	1/28/2019

Qualifiers: J

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB 19010565-003

Client Sample ID: A-3

Collection Date: 1/22/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifie	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3	550B)	Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.041	•	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	•	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21		mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21		mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	:	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041		mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21		mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21		mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21		mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.041		mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21		mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21		mg/Kg-dry	1	1/28/2019
2-Nitrophenol +	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41		mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.041		mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.041		mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21		mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	•	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND .	0.21		mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.083		mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041		mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21		mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.041		mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.96		mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
PCBs	SW80	82A (SW3	550B)	Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.098		mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.098		mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.098		mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.098		mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.098		mg/Kg-dry	, 1	1/25/2019
Aroclor 1254	ND	0.098	•	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.098		mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

February 01, 2019 Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Client Sample ID: A-3

Collection Date: 1/22/2019 6:30:00 AM

Matrix: Soil

Lab ID: 19010565-003	Matrix: Soil					
Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Pesticides	SW8	081B (SW	3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4´-DDD	ND	0.0020		mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	(mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	. (mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020		mg/Kg-dry	1	1/25/2019
alpha-BHC	· ND	0.0020	1	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	1	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020		mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	ı	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	Į	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	ı	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	1	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.040	ı	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW		•	Date: 1/26/2019	Analyst: JG
Aluminum	15000	22	1	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.2	1	mg/Kg-dry	10	1/28/2019
Arsenic	5.3	1.1	1	mg/Kg-dry	10	1/28/2019
Barium	120	1.1	1	mg/Kg-dry	10	1/28/2019
Beryllium	1.0	0.56	ı	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.56		mg/Kg-dry	10	1/28/2019
Calcium	68000	67	1	mg/Kg-dry	10	1/28/2019
Chromium	30	1.1	1	mg/Kg-dry	10	1/28/2019
Cobalt	14	1.1	1	mg/Kg-dry	10	1/28/2019
Copper	31	2.8	1	mg/Kg-dry	10	1/28/2019
Iron	30000	34	1	mg/Kg-dry	10	1/28/2019
Lead	15	0.56	(mg/Kg-dry	10	1/28/2019
Magnesium	35000	34	(mg/Kg-dry	10	1/28/2019
Manganese	540	1.1	1	mg/Kg-dry	10	1/28/2019
Nickel	42	1.1	(mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Environmental Group Services, Ltd. Client:

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-003

A	INVE	IICAL	KES	UL.	LO

Client Sample ID: A-3

Collection Date: 1/22/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyze
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	3600	34	•	mg/Kg-dry	10	1/28/2019
Selenium	ND	1.1	1	mg/Kg-dry	10	1/28/2019
Silver	ND	1.1	1	mg/Kg-dry	10	1/28/2019
Sodium	210	67	1	mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1	1	mg/Kg-dry	10	1/28/2019
Vanadium	· 30	1.1	1	mg/Kg-dry	10	1/28/2019
Zinc	57	5.6	I	mg/Kg-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015		mg/L	5	1/28/2019
Arsenic	ND	0.010	•	mg/L	5	1/28/2019
Barium	0.63	0.050		mg/L	5	1/28/2019
Beryllium	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.061	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	2.2	0.010		mg/L	5	1/28/2019
Nickel	0.15	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
lercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.022	0.019	1	mg/Kg-dry	1	1/27/2019
yanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: CA
Cyanide	ND	0.31	ı	mg/Kg-dry	1	1/25/2019
H (25 °C)	SW9	045C		Prep	Date: 1/24/2019	Analyst: JT
pH	7.98			pH Units	1	1/24/2019
ercent Moisture	D297	'4		Prep	Date: 1/23/2019	Analyst: RW
Percent Moisture	19.8	0.2	. •	wt%	1	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB

19010565-004

Client Sample ID: A-4

Collection Date: 1/22/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF,	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pre	p Date: 1/22/2019	•
Acetone	ND	0.087	mg/Kg-dry	•	1/23/2019
Benzene	ND	0.0058	mg/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
Bromoform	ND	0.0058	mg/Kg-dry	1 1	1/23/2019
Bromomethane	ND	0.012	mg/Kg-dry	, 1	1/23/2019
2-Butanone	ND	0.087	mg/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.058	mg/Kg-dry		1/23/2019
Carbon tetrachloride	ND	0.0058	mg/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
Chloroethane	ND	0.012	mg/Kg-dry	1	1/23/2019
Chloroform	ND	0.0058	mg/Kg-dry	<i>,</i> 1	1/23/2019
Chloromethane	ND	0.012	mg/Kg-dry	, 1	1/23/2019
Dibromochloromethane	ND	0.0058	mg/Kg-dry	<i>t</i> 1 °	1/23/2019
1,1-Dichloroethane	ND	0.0058	mg/Kg-dry	<i>,</i> 1	1/23/2019
1,2-Dichloroethane	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
1,1-Dichloroethene	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
cis-1,2-Dichloroethene	' ND	0.0058	mg/Kg-dry	, 1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
1,2-Dichloropropane	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
cis-1,3-Dichtoropropene	ND	0.0023	mg/Kg-dry	, 1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	, 1	1/23/2019
Ethylbenzene	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
2-Hexanone	ND	0.023	mg/Kg-dry	, 1	1/23/2019
4-Methyl-2-pentanone	ND	0.023	mg/Kg-dry	, 1	1/23/2019
Methylene chloride	ND	0.012	mg/Kg-dry	<i>r</i> 1	1/23/2019
Methyl tert-butyl ether	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
Styrene	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0058	mg/Kg-dry		1/23/2019
Tetrachloroethene	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
Toluene ,	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
1,1,1-Trichloroethane	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
1,1,2-Trichloroethane	ND	0.0058	mg/Kg-dry	, 1	1/23/2019
Trichloroethene	ND	0.0058	mg/Kg-dry		1/23/2019
Vinyl chloride	ND	0.0058	mg/Kg-dry		1/23/2019
Xylenes, Total	ND	0.018	mg/Kg-dry		1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) Pre	p Date: 1/25/2019	•
Acenaphthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.041	mg/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB

19010565-004

Client Sample ID: A-4

Collection Date: 1/22/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW		•	Date: 1/25/2019	•
Aniline	ND	0.41	-	g/Kg-dry	1	1/28/2019
Anthracene	ND	0.041	mg	g/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.041		g/Kg-dry	1	1/28/2019
Benzidine	ND	0.41	mg	g/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041	mg	g/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.041	mg	g/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.041	mg	g/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.041	mg	g/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0	mç	g/Kg-dry	1	1/28/2019
Benzył alcohol	ND	0.21	mç	g/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21	mç	g/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21	mç	g/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg	g/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21	mç	g/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.21	mg	g/Kg-dry	1	1/28/2019
Carbazole	ND	0.21	mg	g/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21	mg	g/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND ,	· 0.41	mg	g/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.21	mg	g/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21	mg	g/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg	g/Kg-dry	1	1/28/2019
Chrysene	ND	0.041	mg	g/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041	mg	g/Kg-dry	1	1/28/2019
Dibenzofuran ´	ND	0.21	mg	g/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21	mg	g/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21	mg	g/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21	mg	g/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21	mg	g/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21	mg	/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21	mg	/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21	mg	/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21	mg	/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mç	/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0		g/Kg-dry	· 1	1/28/2019
2,4-Dinitrotoluene	ND	0.041	-	/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.041	•	/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21		/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21	•	/Kg-dry	1	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-004 Client Sample ID: A-4

Collection Date: 1/22/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW8:	270C (SW3550E	B) Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Naphthalene ·	ND	0.041	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	1/28/2019
Nitrobenzene .	ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.083	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.95	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
PCBs	SW8	082A (SW3550E		Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.099	mg/Kg-dry	ុ1	1/25/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.099	· mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB 19010565-004

Client Sample ID: A-4

Collection Date: 1/22/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	, ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde ,	· ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	13000	22	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/28/2019
Arsenic	4.9	1.1	mg/Kg-dry	10	1/28/2019
Barium ·	78	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.84	0.55	mg/Kg-dry	10	1/28/2019
Cadmium	ND ·	0.55	mg/Kg-dry	10	1/28/2019
Calcium	66000	66	mg/Kg-dry	10	1/28/2019
Chromium	26	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	12	1.1	mg/Kg-dry	10	1/28/2019
Copper	23	2.8	mg/Kg-dry	10	1/28/2019
Iron .	24000	33	mg/Kg-dry	10	1/28/2019
Lead	12	0.55	mg/Kg-dry	10	1/28/2019
Magnesium	32000	33	mg/Kg-dry	10	1/28/2019
Manganese	480	1.1	mg/Kg-dry	10	1/28/2019
Nickel	36	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Project: Franklin-EB

19010565-004 Lab ID:

Client Sample ID: A-4

Collection Date: 1/22/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	3400	33	m	g/Kg-dry	10	1/28/2019
Selenium	1.3	1.1	m	g/Kg-dry	10	1/28/2019
Silver	ND	1.1	m	g/Kg-dry	10	1/28/2019
Sodium	190 `	66	m	g/Kg-dry	10	1/28/2019
Thallium	ND	1.1	m	g/Kg-dry	10	1/28/2019
Vanadium	26	1.1	m	g/Kg-dry	10	1/28/2019
Zinc	50	5.5	m	g/Kg-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	•	mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.82	0.050		mg/L	5	1/28/2019
Beryllium	. ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	· 5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.027	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	3.7	0.010		mg/L	5	1/28/2019
Nickel	0.059	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5 .	1/28/2019
Zinc	ND	0.050	į	mg/L	5	1/28/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
flercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.026	0.019	m	g/Kg-dry	1	1/27/2019
Cyanide, Total	SW9	012 A		Prep	Date: 1/25/2019	Analyst: CAB
Cyanide	ND	0.31	, m	g/Kg-dry	1	1/25/2019
oH (25 °C)	SW9	045C		Prep	Date: 1/24/2019	Analyst: JT
pH .	8.03		· p	H Units	1	1/24/2019
Percent Moisture	D297	74		Prep	Date: 1/23/2019	Analyst: RW
Percent Moisture	20.5	0.2	•	wt%	1	1/24/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-005

Client Sample ID: A-5

Collection Date: 1/22/2019 7:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier L	Jnits	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: ERI
Acetone	ND	0.071	· mg/	Kg-dry	1	1/23/2019
Benzene	ND	0.0047	, mg/	Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Bromoform	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Bromomethane	ND	0.0095	mg/	Kg-dry	1	1/23/2019
2-Butanone	ND	0.071	mg/	Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.047	mg/	Kg-dry	1 .	1/23/2019
Carbon tetrachloride	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Chloroethane	ND	0.0095	_ mg/	Kg-dry	1	1/23/2019
Chloroform	ND	0.0047	mg/	Kg-dry	1 ,	1/23/2019
Chloromethane	ND	0.0095		Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0047	mg/	Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0047	mg/	Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0047	mg/	Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0047	mg/	Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0047	mg/	Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0047	mg/	Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0047	mg/	Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0019	mg/	Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0019	mg/	Kg-dry	1	1/23/2019
Ethylbenzene	· ND ·	0.0047	mg/	Kg-dry	1	1/23/2019
2-Hexanone	ND	0.019	mg/	Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.019	mg/	Kg-dry	1	1/23/2019
Methylene chloride	ND	0.0095	mg/	Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Styrene	ND	0.0047	mg/	Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND '	0.0047	mg/	Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Toluene	ND	0.0047	. mg/	Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0047	mg/	Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0047		Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0047	mg/	Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.014	mg/	Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8:	270C (SW35	50B)	Prep	Date: 1/25/2019	Analyst: FP
Acenaphthene	· ND	0.041	mg/	Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.041	mg/	Kg-dry	1	1/28/2019

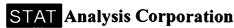
ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-005

Client Sample ID: A-5

Collection Date: 1/22/2019 7:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	ier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	ND	0.41	mg/Kg-dry	1	1/28/2019
Anthracene	ND	0.041	mg/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND .	0.041	mg/Kg-dry	1	1/28/2019
Benzidine	ND	0.41	mg/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	· 1	1/28/2019
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	.1	1/28/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	1/28/2019
Carbazole	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1 .	1/28/2019
2-Chlorophenol	` ND	0.21	mg/Kg-dry	1 .	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	1/28/2019
Chrysene	ND	0.041	mg/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	.1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	i	1/28/2019
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB 19010565-005

Client Sample ID: A-5

Collection Date: 1/22/2019 7:00:00 AM

Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3550E	B) Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.083	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Phenol	ND	· 0.21	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.95	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1 •	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
PCBs	SW8	082A (SW3550E	B) Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.099 ′	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Client Sample ID: A-5

ANALYTICAL RESULTS

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1 Collection Date: 1/22/2019 7:00:00 AM

Project: Franklin-EB Matrix: Soil
Lab ID: 19010565-005

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	. ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	. ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	15000	21	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.1	mg/Kg-dry	10	1/28/2019
Arsenic	6.4	1.0	mg/Kg-dry	10	1/28/2019 .
Barium	91	1.0	mg/Kg-dry	10	1/28/2019
Beryllium ·	1.0	0.52	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.52	mg/Kg-dry	10	1/28/2019
Calcium	63000	62	mg/Kg-dry	10	1/28/2019
Chromium	. 30	1.0	mg/Kg-dry	10	1/28/2019
Cobalt	12	1.0	mg/Kg-dry	10	1/28/2019
Copper	29	2.6	mg/Kg-dry	10	1/28/2019
Iron	33000	31	mg/Kg-dry	10	1/28/2019
Lead	14	0.52	mg/Kg-dry	10	1/28/2019
Magnesium	31000	31	mg/Kg-dry	10	1/28/2019
Manganese	500	1.0	mg/Kg-dry	10	1/28/2019
Nickel	38	1.0	mg/Kg-dry	10	1/28/2019

Qualifiers: J - Analyte det

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Lab ID:

Client Sample ID: A-5 19010565 Revision 1

Work Order: Collection Date: 1/22/2019 7:00:00 AM Franklin-EB **Project:**

Matrix: Soil 19010565-005

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	4000	31		mg/Kg-dry	10	1/28/2019
Selenium	1.1	1.0	1	mg/Kg-dry	10	1/28/2019
Silver	ND	1.0		mg/Kg-dry	10	1/28/2019
Sodium	210	62	1	mg/Kg-dry	10	1/28/2019
Thallium	ND	1.0		mg/Kg-dry	10	1/28/2019
Vanadium	31	1.0	, .	mg/Kg-dry	10	1/28/2019
Zinc	55	5.2	•	mg/Kg-dry	10	1/28/2019
TCLP Metals by ICP/MS	SW1:	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	• •	mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.62	0.050		mg/L	5	1/28/2019
Beryllium	. ND	0.0050		mg/L	5	1/28/2019
Cadmium	· ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.033	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	· ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	3.5	0.010		mg/L	5	1/28/2019
Nickel	0.071	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium ·	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5 .	1/28/2019
TCLP Mercury	SW1:	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
Mercury	SW74	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.026	0.021		mg/Kg-dry	1 .	1/27/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.31		mg/Kg-dry	1	1/25/2019
pH (25 °C)	SW9	045C	•	Prep	Date: 1/24/2019	Analyst: JT
рН	8.03		•	pH Units	1	1/24/2019
Percent Moisture	D297	4		Prep	Date: 1/23/2019	Analyst: RW
Percent Moisture	19.6	0.2	*	wt%	1	1/24/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19010

Project:

19010565 Revision 1

Lab ID:

Franklin-EB 19010565-006 Client Sample ID: A-6

Collection Date: 1/22/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW50	035/8260B		Prep	Date: 1/22/2019	Analyst: ERI
Acetone	ND	0.079	mę	g/Kg-dry	1	1/23/2019
Benzene	ND	0.0052	m	g/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0052	mę	g/Kg-dry	1	1/23/2019
Bromoform	ND	0.0052	mo	g/Kg-dry	1	1/23/2019
Bromomethane	ND	0.011	m	g/Kg-dry	1	1/23/2019
2-Butanone	ND	0.079	mç	g/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.052	m	g/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0052	m	g/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0052	, wé	g/Kg-dry	1	1/23/2019
Chloroethane	ND	0.011	mę	g/Kg-dry	1	1/23/2019
Chloroform .	ND	0.0052	m	g/Kg-dry	¹ 1	1/23/2019
Chloromethane	ND	0.011	mç	g/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0052	mç	g/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0052	mç	g/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0052	mę	g/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND .	0.0022	mę	g/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0022	mg	g/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0052	mę	g/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.022	mg	g/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.022	mg	g/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.011	mg	g/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
Styrene	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0052	mg	g/Kg-dry	1 .	1/23/2019
Tetrachloroethene	ND	0.0052	mg	g/Kg-dry	1,	1/23/2019
Toluene	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0052	mg	g/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.015	mç	g/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	50B)	Prep	Date: 1/25/2019	Analyst: FP
Acenaphthene	ND	0.042	mç	g/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.042	mç	g/Kg-dry	1	1/28/2019

ND - Not Detec

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-006

Client Sample ID: A-6

Collection Date: 1/22/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifie	r Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS		270C (SW	3550B)	•	Date: 1/25/2019	•
Aniline	ND	0.42		mg/Kg-dry	1	1/28/2019
Anthracene	ND	0.042		mg/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.042		mg/Kg-dry	1	1/28/2019
Benzidine	ND	0.42		mg/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.042		mg/Kg-dry	1.	1/28/2019
Benzo(b)fluoranthene	ND	0.042		mg/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.042		mg/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.042		mg/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0		mg/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane .	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0		mg/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
Carbazole	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.42		mg/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.21		mg/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Chrysene	ND	0.042		mg/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.042		mg/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.21		mg/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4-Dichtorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21	:	mg/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.42		mg/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0		mg/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.042	,	mg/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.042	•	mg/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

· E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB 19010565-006

Client Sample ID: A-6

Collection Date: 1/22/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW3550B) Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.042	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.042	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.042	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	. 0.21	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.042	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.42	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.042	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.042	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	✓ mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.084	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.042	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.042	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.97	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	· 1	1/28/2019
PCBs	SW80	82A (SW3550B) Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.10	mg/Kg-dry	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-006

Client Sample ID: A-6

Collection Date: 1/22/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	ier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4′-DDÈ	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	. ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	· ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	·ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.042	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	16000	21 .	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.1	mg/Kg-dry	10	1/28/2019
Arsenic	5.5	1.1	mg/Kg-dry	10	1/28/2019
Barium	100	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.97	0.53	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.53	mg/Kg-dry	10	1/28/2019
Calcium	74000	64	mg/Kg-dry	10	1/28/2019
Chromium	32	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	15	1.1	mg/Kg-dry	10	1/28/2019
· Copper	29	2.7	mg/Kg-dry	10	1/28/2019
Iron	27000	32	mg/Kg-dry	10	1/28/2019
Lead	15	0.53	mg/Kg-dry	10	1/28/2019
Magnesium	37000	32	mg/Kg-dry	10	1/28/2019
Manganese	· 540	1.1	mg/Kg-dry	10	1/28/2019
Ńickel	41	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Project: Lab ID:

19010565-006

Franklin-EB

Client Sample ID: A-6

Collection Date: 1/22/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW66)20A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	4100	32		mg/Kg-dry	10	1/28/2019
Selenium	1.4	1.1		mg/Kg-dry	10	1/28/2019
Silver	ND	1.1		mg/Kg-dry	10	1/28/2019
Sodium	220	64		mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1		mg/Kg-dry	10 [°]	1/28/2019
Vanadium	33	1.1		mg/Kg-dry	10	1/28/2019
Zinc	59	5.3		mg/Kg-dry	10	1/28/2019
TCLP Metals by ICP/MS	SW1:	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	·	mg/L	5 ,	1/28/2019
Arsenic	ND	0.010	•	mg/L	5	1/28/2019
Barium	0.82	0.050		mg/L	5	1/28/2019
Beryllium	ND	0.0050	•	mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010	•	mg/L	5	1/28/2019
Cobalt	0.014	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	3.0	0.010		mg/L	· 5	1/28/2019
Nickel	0.032	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
CLP Mercury	SW1:	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
flercury	SW74	171B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.028	0.021		mg/Kg-dry	1	1/27/2019
Cyanide, Total	SW90)12A		Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.32		mg/Kg-dry	1	1/25/2019
oH (25 °C)	SW90)45C		Prep	Date: 1/24/2019	Analyst: JT
pH	7.85			pH Units	1	1/24/2019
Percent Moisture	D297	4		Prep	Date: 1/23/2019	Analyst: RW
Percent Moisture	21.6	0.2	* •	wt%	1	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Environmental Group Services, Ltd. Client:

19010565 Revision 1 Work Order:

Project: Franklin-EB

19010565-007 Lab ID:

Client Sample ID: A-7

Collection Date: 1/22/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier U	Jnits	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: ERP
Acetone	ND	0.093	mg/	Kg-dry	1	1/23/2019
Benzene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0062	· mg/	Kg-dry	1	1/23/2019
Bromoform	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Bromomethane	ND	0.012	mg/	Kg-dry	1	1/23/2019
2-Butanone	ND	0.093	mg/	Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.062	mg/	Kg-dry	1 '	1/23/2019
Carbon tetrachloride	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Chloroethane	ND	0.012	mg/	Kg-dry	1	1/23/2019
Chloroform	ND .	0.0062	mg/	Kg-dry	1	1/23/2019
Chloromethane	ND	0.012	mg/	Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0062	mg/	Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0062	mg/	Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0062	mg/	Kg-dry	11	· 1/23/2019
1,1-Dichloroethene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0062	_ mg/	Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0025	mg/	Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0025	mg/	Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
2-Hexanone	ND	0.025	mg/	Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.025	mg/	Kg-dry	1	1/23/2019
Methylene chloride	ND	0.012	mg/	Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0062	mg/	Kg-dry	1 .	1/23/2019
Styrene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Toluene	ND	0.0062	mg/	Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0062	-	Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0062	. mg/	Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0062	mg/	Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.018		Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35	50B)	Prep	Date: 1/25/2019	•
Acenaphthene	ND	0.042	mg/	Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.042	mg/	Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-007

Client Sample ID: A-7
Collection Date: 1/22/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyze
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	ND	0.43	· n	ng/Kg-dry	1	1/28/2019
Anthracene	ND	0.042	· n	ng/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.042	n	ng/Kg-dry	1	1/28/2019
Benzidine	ND	0.42	n	ng/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.042	п	ng/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.042	п	ng/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.042	n	ng/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.042	п	ng/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.1	n	ng/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	n	ng/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.22		ng/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.22	m	ng/Kg-dry	1	1/28/2019
Carbazole	ND	0.22	. u	ng/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.22	n	ng/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.42	m	ng/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.22	m	ng/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.22	n	ng/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Chrysene	ND	0.042	'n	ng/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.042	n	ng/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.22	ır	ng/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.22	m	ng/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.22	rr	ng/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.22	m	ng/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.22	m	ng/Kg-dry	1 .	1/28/2019
2,4-Dichlorophenol	ND	0.22	m	ng/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.22	m	ng/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.22	m	ng/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.22	· m	ng/Kg-dry	1 .	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.42	m	ng/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.1	m	ng/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.042		ng/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.042	m	ng/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.22		ig/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.22		ig/Kg-dry	1	1/28/2019

Qualifiers: J - Ana

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

Lab ID:

19010565 Revision 1

Project:

19010565-007

Franklin-EB

Client Sample ID: A-7

Collection Date: 1/22/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifie	r Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.042	·	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.042		mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.22		mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.22		mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.22		mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.22		mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.042		mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.22		mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.22		mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.22		mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.22		mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.042		mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.22		mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.22		mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.22		mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.22		mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.42		mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.042		mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.042		mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.22		mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.22		mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.22		mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.086		mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.042		mg/Kg-dry	1	1/28/2019
Phenol	ND	0.22		mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.042		mg/Kg-dry	1 .	1/28/2019
Pyridine	ND	0.99		mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.22		mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.22		mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.22		mg/Kg-dry	1	1/28/2019
PCBs	SW80	082A (SW3	550B)	Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.10	-	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.10		mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.10		mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.10		mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.10		mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.10		mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.10		mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB

19010565-007

Client Sample ID: A-7

Collection Date: 1/22/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	\ ND	0.0021	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0021	mg/Kg-dry	1	1/25/2019
4,4´-DDT	ND	0.0021	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0021	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0021	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.021	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endosulfan I	, ND	0.0021	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0021	mg/Kg-dry	1 .	1/25/2019
Endrin	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endrin ketone	· ND	0.0021	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0021	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0021	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0021	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0021	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.043	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	17000	22	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/28/2019
Arsenic	5.1	1.1	mg/Kg-dry	10	1/28/2019
Barium	110	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	1.1	0.55	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.55	mg/Kg-dry	10	1/28/2019
Calcium	67000	66	mg/Kg-dry	10	1/28/2019
Chromium	35	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	16	1.1	mg/Kg-dry	10	1/28/2019
Copper	32	2.7	mg/Kg-dry	10	1/28/2019
Iron	34000	33	mg/Kg-dry	10	1/28/2019
Lead	15 ,	0.55	, mg/Kg-dry	10	1/28/2019
Magnesium	33000	33	mg/Kg-dry	10	1/28/2019
Manganese	540	1.1	mg/Kg-dry	10	1/28/2019
Nickel	47	1.1	mg/Kg-dry	10	1/28/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB 19010565-007

Client Sample ID: A-7

Collection Date: 1/22/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW30	9 50B) Pre	p Date: 1/26/2019	Analyst: JG
Potassium	4100	`33	mg/Kg-dr	y 10	1/28/2019
Selenium	1.3	1.1	mg/Kg-dr	y 10	1/28/2019
Silver	ND	1.1	mg/Kg-dr	y 10	1/28/2019
Sodium	230	66	mg/Kg-dr	y 10	1/28/2019
Thallium	ND	1.1	mg/Kg-dr	y 10	1/28/2019
Vanadium	34	1.1	mg/Kg-dr	y 10	1/28/2019
Zinc	62	5.5	mg/Kg-dr	y 10	1/28/2019
CLP Metals by ICP/MS	SW1:	311/6020A (SW3005A) Pre	p Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	mg/L	5	1/28/2019
Arsenic	ND	0.010	mg/L	5	1/28/2019
Barium	1.0	0.050	mg/L	5	1/28/2019
Beryllium	ND	0.0050	mg/L	5	1/28/2019
Cadmium	ND	0.0050	mg/L	5	1/28/2019
Chromium	ND	0.010	mg/L	5	1/28/2019
Cobalt	0.029	0.010	mg/L	5	1/28/2019
Copper	. · ND	0.10	mg/L	5	1/28/2019
Iron	ND	0.25	mg/L	5	1/28/2019
Lead	ND	0.0050	mg/L	5	1/28/2019
Manganese	4.0	0.010	mg/L	5	1/28/2019
Nickel	0.066	0.020	mg/L	5	1/28/2019
Selenium	ND	0.010	mg/L	5	1/28/2019
Silver	ND	0.010	mg/L	5	1/28/2019
Thallium	ND	0.0050	mg/L	5	1/28/2019
Vanadium	ND	0.010	mg/L	5	1/28/2019
Zinc	ND	0.050	mg/L	5	1/28/2019
CLP Mercury	SW1:	311/7470A	Pre	p Date: 1/27/2019	
Mercury .	ND	0.00020	mg/L	1	1/27/2019
lercury	SW7			p Date: 1/27/2019	•
Mercury	ND	0.024	mg/Kg-dr	y 1	1/27/2019
Syanide, Total	SW9			p Date: 1/25/2019	•
Cyanide	ND	0.32	mg/Kg-dr	y 1	1/25/2019
oH (25 °C)	SW9	045C	Pre	p Date: 1/24/2019	Analyst: JT
рН	7.84		pH Units	1	1/24/2019
Percent Moisture	D297	4	Pre	p Date: 1/23/2019	Analyst: RW
Percent Moisture	22.6	0.2	* wt%	1	1/24/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP 1L300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Project:

Lab ID:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Franklin-EB 19010565-008 Client Sample ID: A-8

Collection Date: 1/22/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pre	p Date: 1/22/2019	Analyst: ERI
Acetone	ND	0.10	mg/Kg-dry	1	1/23/2019
Benzene	ND	0.0068	mg/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0068	mg/Kg-dry	1	1/23/2019
Bromoform	ND	0.0068	mg/Kg-dry	1	1/23/2019
Bromomethane	ND	0.014	mg/Kg-dry	1	1/23/2019
2-Butanone	ND	0.10	mg/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.068	mg/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0068	mg/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0068	mg/Kg-dry	1	1/23/2019
Chloroethane	ND	0.014	mg/Kg-dry	1	1/23/2019
Chloroform	ND	0.0068	mg/Kg-dry	1	1/23/2019
Chloromethane	ND	0.014	mg/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0068	mg/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0068	mg/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0068	mg/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0068	mg/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0068	mg/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0068	mg/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0068	mg/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0028	mg/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0028	mg/Kg-dry	· , 1	1/23/2019
Ethylbenzene	ND	0.0068	mg/Kg-dry	[,] 1	1/23/2019
2-Hexanone	ND	0.028	mg/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.028	mg/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.014	mg/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0068	mg/Kg-dry	1	1/23/2019
Styrene	ND	0.0068	mg/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0068	mg/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0068	mg/Kg-dry	1	1/23/2019
Toluene	ND	0.0068	mg/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0068	mg/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0068	mg/Kg-dry		1/23/2019
Trichloroethene	ND	0.0068	mg/Kg-dry		1/23/2019
Vinyl chloride	ND	0.0068	mg/Kg-dry		1/23/2019
Xylenes, Total	ND	0.020	mg/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) Pre	p Date: 1/25/2019	Analyst: FP
Acenaphthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.041	mg/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019 ANALYTICAL RESULTS

Client:

Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Lab ID:

Franklin-EB

19010565-008

Client Sample ID: A-8

Collection Date: 1/22/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	ND	0.42	•	mg/Kg-dry	1	1/28/2019
Anthracene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzidine	ND	0.41		mg/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene .	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0		mg/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0		mg/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21		mg/Kg-dry	. 1	1/28/2019
Butyl benzyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
Carbazole	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.41		mg/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.21		mg/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Chrysene	ND	0.041		mg/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041		mg/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.21		mg/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21		mg/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41		mg/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	· ND	1.0		mg/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.041		mg/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.041		mg/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits-

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Project:

Lab ID:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Franklin-EB

19010565-008

Client Sample ID: A-8

Collection Date: 1/22/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35	50B)	Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.041	- 1	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	1	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	1	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	I	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	Į	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	ĺ	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.041	I	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	1	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	I	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	1	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41	I	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.041	1	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.041		mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	1	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.084	1	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041	Į	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21	ĺ	mg/Kg-dry	1	1/28/2019
Pyrene ·	ND	0.041	I	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.96	1	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	ĺ	mg/Kg-dry	1	1/28/2019
PCBs	SW8	082A (SW35			Date: 1/25/2019	•
Aroclor 1016	ND	0.099	1	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.099	1	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.099	1	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.099	1	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.099	1	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.099	1	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.099	1	mg/Kg-dry	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

19010565-008 Lab ID:

Client Sample ID: A-8

Collection Date: 1/22/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL Qualit	fier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4´-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	14000	22	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/28/2019
Arsenic	8.1	1.1	mg/Kg-dry	10	1/28/2019
Barium	59	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.83	0.56	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.56	mg/Kg-dry	10	1/28/2019
Calcium	60000	67	mg/Kg-dry	10	1/28/2019
Chromium	28	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	18	1.1	mg/Kg-dry	10 ·	1/28/2019
Copper	29	2.8	mg/Kg-dry	10	1/28/2019
Iron	24000	34	mg/Kg-dry	10	1/28/2019
Lead	16	0.56	mg/Kg-dry	10	1/28/2019
Magnesium	31000	34	mg/Kg-dry	10	1/28/2019
Manganese	470	1.1	mg/Kg-dry	10	1/28/2019
Nickel	46	1.1	mg/Kg-dry	10	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: Febr

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-008

Client Sample ID: A-8

Collection Date: 1/22/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	SW6020A (SW3050B) Prep Date: 1/26/20		Date: 1/26/2019	Analyst: JG	
Potassium	3700	34	· n	ng/Kg-dry	10	1/28/2019
Selenium :	1.4	1.1	n	ng/Kg-dry	10	1/28/2019
Silver	ND	1.1	n	ng/Kg-dry	10	1/28/2019
Sodium	190	67	п	ng/Kg-dry	10	1/28/2019
Thallium	ND	1.1	n	ng/Kg-dry	10	1/28/2019
Vanadium	28	1.1	n	ng/Kg-dry	10	1/28/2019
Zinc	56	5.6	n	ng/Kg-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005A	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	·	mg/L	5	1/28/2019
Arsenic	ND .	0.010	•	mg/L	5	1/28/2019
Barium	1.0	0.050		mg/L	5	1/28/2019
Beryllium	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050	•	mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.028	0.010		mg/L	5	1/28/2019
Copper	ND	0.10	•	mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	3.4	0.010		mg/L	5	1/28/2019
Nickel .	0.057	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
Mercury .	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.028	0.022	π	ng/Kg-dry	1	1/27/2019
Cyanide, Total	SW9	012A	-	Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.31	m	ng/Kg-dry	1	1/25/2019
oH (25 °C)	SW9	045C		Prep	Date: 1/24/2019	•
pH	7.78	•	1	pH Units	1	1/24/2019
Percent Moisture	D297	' 4		Prep	Date: 1/23/2019	
Percent Moisture	20.0	0.2	•	wt%	1	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-009

.

Collection Date: 1/22/2019 8:00:00 AM

Matrix: Soil

Client Sample ID: A-9

Analyses	Result	RL	Qualifier U	nits	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: ERI
Acetone	ND	0.079	. mg/l	Kg-dry	1	1/23/2019
Benzene	· ND	0.0053	mg/	Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Bromoform	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Bromomethane	ND	0.011	mg/	Kg-dry	1	1/23/2019
2-Butanone	ND	0.079	mg/	Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.053	mg/	Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Chloroethane	ND	0.011	mg/	Kg-dry	1	1/23/2019
Chloroform	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Chloromethane	ND	0.011	mg/l	Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0053	mg/	Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0053	mg/l	Kg-dry	1 .	1/23/2019
1,1-Dichloroethene	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0053	mg/	Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0053	mg/	Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0022	mg/l	Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0022	mg/l	Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
2-Hexanone	ND	0.022	· · · · · mg/l	Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.022	mg/	Kg-dry	1	1/23/2019
Methylene chloride	ND	0.011	mg/	Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
Styrene	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Toluene	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0053	mg/l	Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0053	mg/	Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.016	mg/	Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW	3550B)	Prep	Date: 1/25/2019	•
Acenaphthene	ND	0.039	mg/l	Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.039	mg/	Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Work Order: Environmental Group Services, Ltd.

19010565 Revision 1

Project: Lab ID:

Franklin-EB

19010565-009

Client Sample ID: A-9

Collection Date: 1/22/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	ND	0.39	m:	g/Kg-dry	1	1/28/2019
Anthracene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.039	m	g/Kg-dry	1 '	1/28/2019
Benzidine	ND	0.39	m	g/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Benzoic acid	ND	0.98	m	g/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.20	m _i	g/Kg-dry	1 ·	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.20	m	g/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.20	m	g/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	0.98	m	g/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.20	m;	g/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.20	m	g/Kg-dry	1	1/28/2019
Carbazole	ND	0.20	m	g/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.20	m _i	g/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.39	m	g/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.20	m	g/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.20	m	g/Kg-dry	·1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.20	m	g/Kg-dry	1	1/28/2019
Chrysene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.20	m	g/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1 .	1/28/2019
3,3'-Dichlorobenzidine	ND	0.20	m	g/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.20	m	g/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.20	m	g/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.20	m	g/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.20	m	g/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.39	m	g/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	0.98	m	g/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.039	m	g/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.039	m	g/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.20	m	g/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.20	m	g/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-009

Client Sample ID: A-9

Collection Date: 1/22/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Qual	lifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550E	•	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.039	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.039	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.20	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1 ,	1/28/2019
Isophorone	ND	0.20	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.20	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.20	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.039	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.20	mg/Kg-dry	1 '	1/28/2019
3-Nitroaniline ·	ND .	0.20	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.20	mg/Kg-dry	1 `	1/28/2019
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.039	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.20	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.079	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.039	mg/Kg-dry	1 .	1/28/2019
Phenol	ND	0.20	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.039	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.91	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	, 1	1/28/2019
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	1/28/2019
PCBs	SW80	82A (SW3550E	B) Prep	Date: 1/25/2019	•
Aroclor 1016	ND	0.095	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.095	mg/Kg-dry	1 .	1/25/2019
Aroclor 1232	ND	0.095	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.095	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND ·	0.095	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.095	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.095	mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-009

Client Sample ID: A-9

. Collection Date: 1/22/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8081B (SW3550B)		Prep Date: 1/25/2019		Analyst: GVC
4,4´-DDD	ND	0.0019	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	1/25/2019
Aldrin	. ND	0.0019	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.019	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1 `	1/25/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1 '	1/25/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	1/25/2019
Heptachlor	ND .	0.0019	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.039	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6020A (SW3050B)		Prep	Date: 1/26/2019	Analyst: JG
Aluminum	16000	22	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/28/2019
Arsenic	6.9	1.1	mg/Kg-dry	10	1/28/2019
Barium	95	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.97	0.54	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.54	mg/Kg-dry	10	1/28/2019
Calcium	76000	65	mg/Kg-dry	10	1/28/2019
Chromium	30	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	16	1.1	mg/Kg-dry	10	1/28/2019
Copper	· 31	2.7	mg/Kg-dry	10 .	1/28/2019
Iron	27000	33	mg/Kg-dry	10	1/28/2019
Lead	15	0.54	mg/Kg-dry	10	1/28/2019
Magnesium	38000	33	mg/Kg-dry	10	1/28/2019
Manganese	540	1.1	mg/Kg-dry	10	1/28/2019
Nickel	42	1.1	mg/Kg-dry	10	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Environmental Group Services, Ltd. Client:

19010565 Revision 1 Work Order:

Franklin-EB Project:

Lab ID: 19010565-009

Client Sample ID: A-9 Collection Date: 1/22/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyze
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	4100	33	·	mg/Kg-dry	10	1/28/2019
Selenium	1.3	1.1		mg/Kg-dry	10	1/28/2019
Silver	ND	1.1		mg/Kg-dry	10	1/28/2019
Sodium	230	65		mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1		mg/Kg-dry	10	1/28/2019
Vanadium	33	1.1		mg/Kg-dry	10	1/28/2019
Zinc	58	5.4		mg/Kg-dry	⁻ 10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015		mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.91	0.050	•	mg/L	5	1/28/2019
Beryllium	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.042	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	0.78	0.25		mg/L	5	1/28/2019
Lead	0.010	0.0050	,	mg/L	5	1/28/2019
Manganese	7.0	0.010	•	mg/L	5	1/28/2019
Nickel	0.065	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5 ·	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5 .	1/28/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
ercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.021		mg/Kg-dry	1	1/27/2019
yanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.30		mg/Kg-dry	1	1/25/2019
H (25 °C)		045C			Date: 1/24/2019	•
pH .	7.74			pH Units	1	1/24/2019
ercent Moisture	D297			•	Date: 1/23/2019	•
Percent Moisture	16.6	0.2	*	wt%	1	1/24/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Project:

Lab ID:

Franklin-EB 19010565-010

Client Sample ID: A-10

Collection Date: 1/22/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		ep Date: 1/22/2019	9 Analyst: ERF
Acetone	0.17	0.11	mg/Kg-d		1/23/2019
Benzene	ND	0.0071	mg/Kg-d	y 1	1/23/2019
Bromodichloromethane	ND	0.0071	mg/Kg-dı	y 1	1/23/2019
Bromoform	ND	0.0071	mg/Kg-di	y 1′	1/23/2019
Bromomethane	ND	0.014	mg/Kg-di	y 1	1/23/2019
2-Butanone	ND	0.11	mg/Kg-d	y 1	1/23/2019
Carbon disulfide	ND	0.071	mg/Kg-di	y 1	1/23/2019
Carbon tetrachloride	ND	0.0071	mg/Kg-di	y 1	1/23/2019
Chlorobenzene	ND	0.0071	mg/Kg-di	y 1	1/23/2019
Chloroethane	ND	0.014	mg/Kg-di	y 1	1/23/2019
Chloroform	ND	0.0071	mg/Kg-di	y 1	1/23/2019
Chloromethane	ND	0.014	mg/Kg-di	y 1	1/23/2019
Dibromochloromethane	ND	0.0071	mg/Kg-di	y 1	1/23/2019
1,1-Dichloroethane	ND	0.0071	mg/Kg-di	y 1	1/23/2019
1,2-Dichloroethane	ND	0.0071	mg/Kg-di	y 1	1/23/2019
1,1-Dichloroethene	ND	0.0071	mg/Kg-di	y 1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0071	mg/Kg-di	y 1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0071	mg/Kg-di	y 1	1/23/2019
1,2-Dichloropropane	ND	0.0071	mg/Kg-di	y 1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0028	mg/Kg-di	y 1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0028	mg/Kg-di	y 1	1/23/2019
Ethylbenzene	ND .	0.0071	mg/Kg-di	y 1	1/23/2019
2-Hexanone	ND	0.028	mg/Kg-dı	y 1	1/23/2019
4-Methyl-2-pentanone	ND	0.028	mg/Kg-dı	y 1	1/23/2019
Methylene chloride	ND	0.014	mg/Kg-di	y 1	1/23/2019
Methyl tert-butyl ether	ND	0.0071	mg/Kg-dı	y 1	1/23/2019
Styrene	ND	0.0071	mg/Kg-di	y 1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0071	mg/Kg-dı	y 1	1/23/2019
Tetrachloroethene	ND	0.0071	mg/Kg-di	y 1	1/23/2019
Toluene	ND	0.0071	mg/Kg-di	y 1	1/23/2019
1,1,1-Trichloroethane	ND	0.0071	mg/Kg-dı	y 1	1/23/2019
1,1,2-Trichloroethane	ND	0.0071	mg/Kg-dı	y 1	1/23/2019
Trichloroethene	ND	0.0071	mg/Kg-dı	y 1	1/23/2019
Vinyl chloride	ND	0.0071	mg/Kg-dı	y 1	1/23/2019
Xylenes, Total	ND	0.021	mg/Kg-dı	y 1	1/23/2019
Semivolatile Organic Compounds by GC/M		270C (SW35	•	ep Date: 1/25/2019	
Acenaphthene	ND	0.041	mg/Kg-di	•	1/28/2019
Acenaphthylene	ND	0.041	mg/Kg-dı	y 1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB 19010565-010

Client Sample ID: A-10

Collection Date: 1/22/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	ND	0.41	ſ	ng/Kg-dry	1	1/28/2019
Anthracene .	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.041	Г	ng/Kg-dry	1	1/28/2019
Benzidine ·	ND	0.41	Ţ	ng/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041	·	ng/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene .	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.041	r	ng/Kg-dry	1 .	1/28/2019
Benzo(k)fluoranthene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0	r	ng/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0		ng/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.21	٠r	ng/Kg-dry	1	1/28/2019
Carbazole	ND	0.21	r	ng/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21	, r	ng/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.41	r	ng/Kg-dry	1 -	1/28/2019
2-Chloronaphthalene .	ND	0.21	r	ng/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21	г	ng/Kg-dry	1	1/28/2019
Chrysene	ND	0.041	. r	ng/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041	г	ng/Kg-dry	1 .	1/28/2019
Dibenzofuran	ND	0.21	ŕ	ng/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21	r	ng/Kg-dry	1 '	1/28/2019
1,4-Dichlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21	r	ng/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21	ı	ng/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21	r	ng/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21	ri	ng/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41	r	ng/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0	n	ng/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.041	r	ng/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.041	n	ng/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21	П	ng/Kg-dry	1	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Project: Franklin-EB

Lab ID: 19010565-010 Client Sample ID: A-10

Collection Date: 1/22/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW355	50B)	Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.041	m	g/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	m	g/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21	m	g/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21	m	g/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	m	g/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	m	g/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	m	g/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	m	g/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	m	g/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	m	g/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	m	g/Kg-dry	1	1/28/2019
Naphthalene	ND	0.041	, w	g/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	m	g/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	m	g/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	m	g/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	m	g/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41	m	g/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.041	m	g/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.041	m	g/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	m	g/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	m	g/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	m	g/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.083	m	g/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041	m	g/Kg-dry	1	1/28/2019
Phenol	ND	0.21	m	g/Kg-dry	1	1/28/2019
Pyrene	ND	0.041	. m	g/Kg-dry	1	1/28/2019
Pyridine	ND	0.96	m	g/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	m	g/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	m	g/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	m	g/Kg-dry	1	1/28/2019
PCBs		082A (SW355	50B)	Prep	Date: 1/25/2019	•
Aroclor 1016	ND	0.10		g/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.10	m	g/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Client Sample ID: A-10

Collection Date: 1/22/2019 8:15:00 AM

Matrix: Soil

Lab	ID:	19010565-010

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	√ ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC .	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane '	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	İ	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	· ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	13000	23	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.3	mg/Kg-dry	10	1/28/2019
Arsenic	3.9	1.1	mg/Kg-dry	10	1/28/2019
Barium	71	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.81	0.57	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.57	mg/Kg-dry	10	1/28/2019
Calcium	61000	68	mg/Kg-dry	10	1/28/2019
Chromium	26	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	10	1.1	mg/Kg-dry	10	1/28/2019
Copper	25	2.8	mg/Kg-dry	10	1/28/2019
Iron	24000	34	mg/Kg-dry	10	1/28/2019
Lead	12	0.57	mg/Kg-dry	10	1/28/2019
Magnesium	31000	34	mg/Kg-dry	10	1/28/2019
Manganese	390	1.1	mg/Kg-dry	10	1/28/2019
Nickel	31	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP 1L300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-010

Client Sample ID: A-10

Collection Date: 1/22/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	3300	34	r	ng/Kg-dry	10	1/28/2019
Selenium	1.4	1.1	r	ng/Kg-dry	10	1/28/2019
Silver	ND	1.1	r	ng/Kg-dry	10	1/28/2019
Sodium	190	68	r	ng/Kg-dry	10	1/28/2019
Thallium	ND	1.1	r	ng/Kg-dry	10	1/28/2019
Vanadium -	29	1.1	r	ng/Kg-dry	10	1/28/2019
Zinc	53	5.7	r	ng/Kg-dry	10	1/28/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005/	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	•	mg/L	5 ·	1/28/2019
Arsenic	ND	0.010	•	mg/L	5	1/28/2019
Barium	1.1	0.050		mg/L	5	1/28/2019
Beryllium	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.047	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	0.25	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	2.9	0.010		mg/L	5	1/28/2019
Nickel	0.10	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
TCLP Mercury	SW1	311/7470A	•	Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020	•	mg/L	1	1/27/2019
Mercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.023	n	ng/Kg-dry	1	1/27/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.32	ri	ng/Kg-dry	1	1/25/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/24/2019	•
pН	7.93			pH Units	1	1/24/2019
Percent Moisture	D297	'4		Prep	Date: 1/23/2019	Analyst: RW
Percent Moisture	20.7	0.2	•	wt%	1	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Lab ID:

Franklin-EB

19010565-011

Client Sample ID: A-11

Collection Date: 1/22/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier 1	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: ERF
Acetone	0.15	0.092	mg	/Kg-dry	1	1/23/2019
Benzene	ND	0.0062	. · mg	/Kg-dry	1	. 1/23/2019
Bromodichloromethane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Bromoform	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Bromomethane	ND	0.012	mg	/Kg-dry	1	1/23/2019
2-Butanone	ND	0.092	mg	/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.062	· mg	/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Chloroethane	ND	0.012	mg	/Kg-dry	1	1/23/2019
Chloroform	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Chloromethane	ND	0.012	mg	/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0024	mg	/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0024	mg	/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.024	mg	/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.024	mg	/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.012	mg	/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Styrene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Toluene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0062	mg	/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.018	mg	/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B)	Prep	Date: 1/25/2019	Analyst: FP
Acenaphthene	ND	0.042	mg	/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.042	mg	/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-011

Client Sample ID: A-11

Collection Date: 1/22/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: FP
Aniline	. ND	0.43	n	g/Kg-dry	1	1/28/2019
Anthracene	ND	0.042	m	g/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.042	rr	ig/Kg-dry	1	1/28/2019
Benzidine	ND	0.42	rr	g/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.042	rr	ig/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.042		g/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.042		ig/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.042	rr	ig/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.1	m	ig/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.22	m	ig/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.22	m	g/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.22	m	ig/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	m	g/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.22	m	ig/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.22	m	ig/Kg-dry	1	1/28/2019
Carbazole	ND	0.22	rr	ig/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.22	m	ig/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.42	. u	g/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.22	m	g/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.22	m	ig/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.22	m	g/Kg-dry	1	1/28/2019
Chrysene	ND	0.042	m	g/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.042	m	g/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.22	m	g/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.22	m	g/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.22	m	g/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.22	m	g/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND '	0.22	m	g/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.22	m	g/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.22	m	g/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.42	m	g/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.1	n	g/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.042	m	g/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.042		g/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	• 0.22	m	g/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND .	0.22	m	g/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: Fe

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-011

Client Sample ID: A-11

Collection Date: 1/22/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW355	0B) Prep	Date: 1/25/2019	Analyst: FP
Fluoranthene	ND	0.042	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.042	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.22	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.22	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene ·	ND	0.22	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.22	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.042	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.22	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.22	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.22	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.22	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.042	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.22	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.22	mg/Kg-dry	1 .	1/28/2019
4-Nitroaniline	ND	0.22	mg/Kg-dry	1	1/28/2019
2-Nitrophenot	ND	0.22	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.42	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.042	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.042	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.22	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.22	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.22	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.086	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.042	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.22	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.042	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.99	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.22	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.22	mg/Kg-dry	1	. 1/28/2019
2,4,6-Trichlorophenol	ND	0.22	mg/Kg-dry	1	1/28/2019
PCBs	SW80	82A (SW355)B) Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	, 1	1/25/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.10	mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

 ${\bf Qualifiers:}$

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

Date Trinted: 1 Coldary 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-011

ANALYTICAL RESULTS

Client Sample ID: A-11

Collection Date: 1/22/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1 '	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	· ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.042	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	13000	23	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.3	mg/Kg-dry	10	1/28/2019
Arsenic	7.2	1.1	mg/Kg-dry	10	1/28/2019
Barium	60	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.81	0.56	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.56	mg/Kg-dry	10	1/28/2019
Calcium	64000	68	mg/Kg-dry	10	1/28/2019
Chromium	26	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	14	1.1	mg/Kg-dry	10	1/28/2019
Copper	28	2.8	mg/Kg-dry	10	1/28/2019
Iron	26000	34	mg/Kg-dry	10	1/28/2019
Lead	16	0.56	mg/Kg-dry	10	1/28/2019
Magnesium	32000	34	mg/Kg-dry	10	1/28/2019
Manganese	450	1.1	mg/Kg-dry	10	1/28/2019
Nickel	39	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers: J - Analyte

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Franklin-EB **Project:**

Lab ID: 19010565-011

Client Sample ID: A-11

Collection Date: 1/22/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	3100	34	m	ng/Kg-dry	10	1/28/2019
Selenium	1.3	1.1	m	ng/Kg-dry	10	1/28/2019
Silver	ND	1.1	m	ng/Kg-dry	10	1/28/2019
Sodium	190	68	m	ng/Kg-dry	10	1/28/2019
Thallium	ND	1.1	n	ng/Kg-dry	10	1/28/2019
Vanadium	28	1.1	m	ng/Kg-dry	10	1/28/2019
Zinc	54	5.6	m	ng/Kg-dry	10	1/28/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A	() Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	•	mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.92	0.050		mg/L	5	1/28/2019
Beryllium	· ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.085	0.010		mg/L	.5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	0.014	0.0050		mg/L	5	1/28/2019
Manganese	5.5	0.010		mg/L	5	1/28/2019
Nickel	0.12	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	0.054	0.050		mg/L	5	1/28/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
Mercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.025	0.023	m	ng/Kg-dry	1	1/27/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.32	m	ng/Kg-dry	1	1/25/2019
pH (25 °C)	SW9 7.96	045C		PrepoH Units	Date: 1/24/2019	Analyst: JT 1/24/2019
	•		,		•	
Percent Moisture	D297			•	Date: 1/23/2019	•
Percent Moisture	22.1	0.2	•	wt%	1	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-012

Client Sample ID: A-12

Collection Date: 1/22/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	, Pr	ep Date: 1/22/	2019 Analyst: AET
Acetone	ND	0.085	mg/Kg-d	ry 1	1/23/2019
Benzene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Bromodichloromethane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Bromoform	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Bromomethane	ND	0.011	mg/Kg-d	ry 1 ·	1/23/2019
2-Butanone	ND	0.085	mg/Kg-d	ry 1	1/23/2019
Carbon disulfide	ND	0.058	mg/Kg-d	ry 1	1/23/2019
Carbon tetrachloride	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Chlorobenzene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Chloroethane	ND	0.011	mg/Kg-d	ry 1	1/23/2019
Chloroform	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Chloromethane	ND	0.011	mg/Kg-d	ry 1	1/23/2019
Dibromochloromethane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
1,1-Dichloroethane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
1,2-Dichloroethane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
1,1-Dichloroethene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
1,2-Dichloropropane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0023	mg/Kg-d	ry 1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-d	ry 1	1/23/2019
Ethylbenzene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
2-Hexanone	ND	0.023	mg/Kg-d	ry 1,	1/23/2019
4-Methyl-2-pentanone	ND	0.023	mg/Kg-d	ry 1	1/23/2019
Methylene chloride	ND	0.011	mg/Kg-d	ry 1	1/23/2019
Methyl tert-butyl ether	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Styrene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Tetrachloroethene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Toluene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
1,1,1-Trichloroethane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
1,1,2-Trichloroethane	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Trichloroethene	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Vinyl chloride	ND	0.0058	mg/Kg-d	ry 1	1/23/2019
Xylenes, Total	ND	0.018 .	mg/Kg-d	ry 1	1/23/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35	•	ep Date: 1/25/	*
Acenaphthene	ND	0.041	mg/Kg-d	*	1/28/2019
Acenaphthylene	ND	0.041	mg/Kg-d	ry 1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB
Lab ID: 19010565-012

Franklin-EB

Collection Date: 1/22/2019 8:45:00 AM

Matrix: Soil

Client Sample ID: A-12

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3	550B)	Prep	Date: 1/25/2019	Analyst: DM
Aniline	ND	0.42	_	/Kg-dry	1	1/28/2019
Anthracene	ND	0.041	mg	/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.041		/Kg-dry	1	1/28/2019
Benzidine	ND	0.41	mg	/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041	mg	/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.041	mg	/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.041	mg	/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.041	mg	/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0	mg	/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21	mg	/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg	/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21	mg	/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg	/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21	mg	/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.21	mg	/Kg-dry	1	1/28/2019
Carbazole	ND	0.21	mg	/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.21	mg	/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.41	mg	/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.21	mg	/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21	mg	/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg	/Kg-dry	1	1/28/2019
Chrysene	ND	0.041	mg	/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041	mg	/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.21	mg	/Kg-dry	. 1	1/28/2019
1,2-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21	mg	/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21	mg	/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21	•	/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21	_	/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.21	-	/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41	-	/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0	-	/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.041	-	/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.041	-	/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21	_	/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21	-	/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB

19010565-012

Client Sample ID: A-12

Collection Date: 1/22/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3550B)	Prep	Date: 1/25/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1 (1/28/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	1/28/2019
Nitrobenzene .	ND	0.041`	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND 、	0.21	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.084	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.96	mg/Kg-dry	. 1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019 .
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1 .	1/28/2019
PCBs	SW8	082A (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND .	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND .	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1254	. ND	0.099	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1 ,	1/25/2019

, ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits.

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Lab ID:

19010565 Revision 1 Client Sample ID: A-12

Work Order: 19010565 Revision 1

Project: Franklin-EB

Collection Date: 1/22/2019 8:45:00 AM

Matrix: Soil 19010565-012

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	NĎ	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	· ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ŃD	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	15000	22	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/28/2019
Arsenic	9.1	1.1	mg/Kg-dry	10	1/28/2019
Barium	100	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.91	0.56	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.56	mg/Kg-dry	10	1/28/2019
Calcium	81000	67	mg/Kg-dry	10	1/28/2019
Chromium	30	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	15	1.1	mg/Kg-dry	10	1/28/2019
Copper	29	2.8	mg/Kg-dry	10	1/28/2019
Iron	30000	33	mg/Kg-dry	10	1/28/2019
Lead	15	0.56	mg/Kg-dry	10	1/28/2019
Magnesium	39000	· 33	mg/Kg-dry	10	1/28/2019
Manganese	560	1.1	mg/Kg-dry	10	1/28/2019
Nickel	41	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, 1L 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported:

February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-012

Client Sample ID: A-12

Collection Date: 1/22/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	3600	33	·	mg/Kg-dry	10	1/28/2019
Selenium	1.4	1.1		mg/Kg-dry	10	1/28/2019
Silver	· ND	1.1		mg/Kg-dry	10	1/28/2019
Sodium	210	67		mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1		mg/Kg-dry	10	1/28/2019
Vanadium	31	1.1		mg/Kg-dry	10	1/28/2019
Zinc	58	5.6		mg/Kg-dry	10	1/28/2019
TCLP Metals by ICP/MS	SW1:	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	·	mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.98	0.050		mg/L	5	1/28/2019
Beryllium	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND ·	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.021	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	0.31	0.25	•	mg/L	5	1/28/2019
Lead	ND.	0.0050		mg/L	5 .	1/28/2019
Manganese	3.5	0.010		mg/L	5	1/28/2019
Nickel	0.052	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mġ/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
TCLP Mercury	SW1:	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
Mercury	SW74	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.020		mg/Kg-dry	1	1/27/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.31		mg/Kg-dry	1	1/25/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/24/2019	
рН	7.99			pH Units	1	1/24/2019
Percent Moisture	D297	4		Prep	Date: 1/23/2019	•
Percent Moisture	20.4	0.2	*	wt%	1	1/24/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Project: Franklin-EB

Lab ID: 19010565-013 Client Sample ID: A-13

Collection Date: 1/22/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: AET
Acetone	ND	0.076	n	ng/Kg-dry	1	1/23/2019
Benzene	ND	0.0050	. п	ng/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0050	п	ng/Kg-dry	1	1/23/2019
Bromoform	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
Bromomethane	ND	0.010	n	ng/Kg-dry	1 .	1/23/2019
2-Butanone	ND	0.076	n	ng/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.050	n	ng/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0050		ng/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
Chloroethane	ND	0.010	n	ng/Kg-dry	1	1/23/2019
Chloroform	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
Chloromethane	ND	0.010	n	ng/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0050	п	ng/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0020	n	ng/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND .	0.0020	n	ng/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.020	n	ng/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.020	n	ng/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.010	n	ng/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
Styrene	ND	0.0050	п	ng/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
Toluene	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0050	п	ng/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0050	n	ng/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0050	п	ng/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0050	п	ng/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.015	п	ng/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35	•	•	Date: 1/25/2019	-
Acenaphthene	ND	0.040	п	ng/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.040	n	ng/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis .

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Fran

Project: Lab ID: Franklin-EB 19010565-013 Client Sample ID: A-13

Collection Date: 1/22/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Un	its DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35		Prep Date:	1/25/2019 Analyst: DM
Aniline	ND	0.41	mg/K	g-dry 1	1/28/2019
Anthracene	ND	0.040	mg/K	g-dry 1	1/28/2019
Benz(a)anthracene	ND	0.040	mg/K	g-dry 1	1/28/2019
Benzidine	ND	0.40	mg/K	g-dry 1	1/28/2019
Benzo(a)pyrene	ND	0.040	mg/K	g-dry 1	1/28/2019
Benzo(b)fluoranthene	ND	0.040	mg/K	g-dry 1	1/28/2019
Benzo(g,h,i)perylene	ND	0.040	mg/K	g-dry 1	1/28/2019
Benzo(k)fluoranthene	ND	0.040	mg/K	g-dry 1	1/28/2019
Benzoic acid	ND	1.0	mg/K	g-dry 1	1/28/2019
Benzyl alcohol	ND	0.21	mg/K	g-dry 1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.21	.mg/Kg	g-dry 1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg	g-dry 1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg	g-dry 1	1/28/2019
4-Bromophenyl phenyl ether	NĎ	0.21	mg/Kg	g-dry 1	1/28/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg	g-dry 1	1/28/2019
Carbazole	ND	0.21	mg/K	g-dry 1	1/28/2019
4-Chloroaniline	ND	0.21	mg/Kg	g-dry 1	1/28/2019
4-Chloro-3-methylphenol ⁴	ND	0.40	mg/Kg	g-dry 1	1/28/2019
2-Chloronaphthalene	ND	0.21	mg/Kg	g-dry 1	1/28/2019
2-Chlorophenol	ND	0.21	mg/K	g-dry 1	. 1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg	g-dry 1	1/28/2019
Chrysene	ND	0.040	mg/Kg	g-dry 1	1/28/2019
Dibenz(a,h)anthracene	ND	0.040	mg/Kg	g-dry 1	1/28/2019
Dibenzofuran	ND	0.21	mg/Kg		1/28/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg	g-dry 1	1/28/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg	g-dry 1	1/28/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg	g-dry 1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg	g-dry 1	1/28/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg	•	1/28/2019
Diethyl phthalate	ND	0.21	mg/Kg	•	1/28/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg	g-dry 1	1/28/2019
Dimethyl phthalate	ND	0.21	mg/Kg	-	. 1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg	• •	1/28/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg		1/28/2019
2,4-Dinitrotoluene	ND	0.040	mg/Kg	•	1/28/2019
2,6-Dinitrotoluene	ND	0.040	mg/Kg		1/28/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg	,,	1/28/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg		1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client: Work Order: Environmental Group Services, Ltd.

19010565 Revision 1

Project: Lab ID:

Franklin-EB

19010565-013

Client Sample ID: A-13

Collection Date: 1/22/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35	50B)	Prep	Date: 1/25/2019	Analyst: DM
Fluoranthene	ND	0.040		mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.040	(mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.21		mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	1	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	ļ	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	I	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	ĺ	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.040	1	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	1	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	1	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	. 1	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.40	I	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.040	1	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.040	1	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	1	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	ĺ	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.082	1	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.040	1	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21	1	mg/Kg-dry	1 '	1/28/2019
Pyrene	ND	0.040	1	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.94	1	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	1	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	I	mg/Kg-dry	1	1/28/2019
PCBs	SW80	082A (SW35	50B)	Prep	Date: 1/25/2019	-
Aroclor 1016	ND	0.098	1	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.098	I	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND .	0.098	1	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.098	1	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.098	1	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.098	1	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.098	1	mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-013 Client Sample ID: A-13

Collection Date: 1/22/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL (ualifier Units	DF	Date Analyzee
Pesticides	SW8	081B (SW35	50B) Prep	Date: 1/25/2019	Analyst: GV(
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4´-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1 ,	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin .	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	, ND	0.041	mg/Kg-dry	1 .	1/25/2019
Metals by ICP/MS	SW6	020A (SW30	50B) Prep	Date: 1/26/2019	Analyst: JG
Aluminum	14000	21	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.1	mg/Kg-dry	10 .	1/28/2019
Arsenic	12	1.1	mg/Kg-dry	10	1/31/2019
Barium	120	1.1	mg/Kg-dry	10	1/28/2019 .
Beryllium	0.94	0.54	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.54	mg/Kg-dry	10	1/28/2019
Calcium	76000	64	mg/Kg-dry	10	1/28/2019
Chromium	29	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	16	1.1	mg/Kg-dry	10	1/28/2019
Copper	39	2.7	mg/Kg-dry	10	1/28/2019
Iron	33000	32	mg/Kg-dry	10	1/28/2019
Lead	18	0.54	mg/Kg-dry	10	1/28/2019
Magnesium	40000	32	mg/Kg-dry	10	1/28/2019
Manganese	580	1.1	mg/Kg-dry	10	1/28/2019
Nickel	45	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Date Filiteu: February 01

Client: E

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB 19010565-013 Client Sample ID: A-13

Collection Date: 1/22/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier U	nits	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep D	ate: 1/26/2019	Analyst: JG
Potassium	3800	32	•	(g-dry	10	1/28/2019
Selenium	1.6	1.1	mg/l	(g-dry	10	1/28/2019
Silver	ND	1.1	mg/l	(g-dry	10	1/28/2019
Sodium	200	64	mg/l	(g-dry	10	1/28/2019
Thallium	ND	. 1.1	mg/l	(g-dry	10	1/28/2019
Vanadium	31	1.1	mg/l	(g-dry	10	1/28/2019
Zinc	63	5.4	mg/l	(g-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005A)	Prep D	ate: 1/28/2019	Analyst: JG
Antimony	ND	0.015	m	g/L	5	1/28/2019
Arsenic	ND	0.010	m	g/L	5	1/28/2019
Barium	0.89	0.050	m	g/L	5	1/28/2019
Beryllium	ND	0.0050	m	g/L	5	1/28/2019
Cadmium	ND	0.0050	m	g/L	5	1/28/2019
Chromium	ND	0.010	m	g/L	5	1/28/2019
Cobalt	0.026	0.010	· m	g/L	5	1/28/2019
Copper	ND	0.10	m	g/L	5	1/28/2019
Iron	ND	0.25	m	g/L	5	1/28/2019
Lead	ND	0.0050	m	g/L	5	1/28/2019
Manganese	3.6	0.010	m	g/L	5	1/28/2019
Nickel	0.058	0.020		g/L	5	1/28/2019
Selenium	ND	0.010	m	g/L	5	1/28/2019
Silver	ND/	0.010	m	g/L	5	1/28/2019
Thallium	ND	0.0050	m	g/L	5	1/28/2019
Vanadium	ND	0.010	m	g/L	5	1/28/2019
Zinc	ND	0.050	m	g/L	5	1/28/2019
CLP Mercury	SW1	311/7470A		Prep D	ate: 1/27/2019	Analyst: LB
Mercury	ND	0.00020	m	g/L	1	1/27/2019
flercury		471B			ate: 1/27/2019	Analyst: LB
Mercury	0.025	0.020	mg/l	(g-dry	1	1/27/2019
yanide, Total		012A		•	ate: 1/25/2019	Analyst: MD
Cyanide	ND	0.31	mg/l	(g-dry	1	1/25/2019
oH (25 °C)	SW9	045C		Prep D	ate: 1/24/2019	Analyst: JT
pH ·	7.95		рН	Units	1	1/24/2019
Percent Moisture	D297				ate: 1/23/2019	Analyst: RW
Percent Moisture	19.8	0.2	* w	t%	1	1/24/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-014

Client Sample ID: A-14

Collection Date: 1/22/2019 9:15:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier 1	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: AE1
Acetone	ND	0.078	mg	/Kg-dry	1	1/23/2019
Benzene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Bromoform	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Bromomethane	ND	0.011	mg	/Kg-dry	1	1/23/2019
2-Butanone	ND	0.078	mg	/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.052	mg	/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Chloroethane '	ND	0.011	mg	/Kg-dry	1	1/23/2019
Chloroform	ND	0.0052	. mg	/Kg-dry	1	1/23/2019
Chloromethane	ND	0.011	mg	/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0052	, mg	/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0052	mg	/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0052	mg	/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND .	0.0052	mg	/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0052	mg	/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0021	mg	/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0021	mg	/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0052	. mg	/Kg-dry	1	1/23/2019
2-Hexanone	ND -	0.021	mg	/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.021	mg	/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.011	mg	/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Styrene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0052	. mg	/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Toluene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0052	mg	/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0052	mg	/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.016		/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B)	Prep	Date: 1/25/2019	Analyst: DM
Acenaphthene	ND	0.043	mg	/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.043	mg	/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Environmental Group Services, Ltd. **Client:**

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-014

Client Sample ID: A-14 Collection Date: 1/22/2019 9:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW3	550B)	Prep	Date: 1/25/2019	Analyst: DM
Aniline	ND	0.43	٠ ١	mg/Kg-dry	1	1/28/2019
Anthracene	ND	0.043	٠ ١	mg/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.043	ı	mg/Kg-dry	1	1/28/2019
Benzidine	ND	0.43		mg/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.043	ı	mg/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.043	ı	mg/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.043	ı	mg/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.043	ا ر	mg/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.1	· 1	mg/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.22	1	mg/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.22	ı	mg/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.22		mg/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	1	mg/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.22		mg/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.22		mg/Kg-dry	1	1/28/2019
Carbazole	ND	0.22	1	mg/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.22	1	mg/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.43	1	mg/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.22		mg/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.22	, 1	mg/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.22		mg/Kg-dry	1	1/28/2019
Chrysene	ND	0.043	ı	mg/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.043		mg/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.22	ı	mg/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.22	1	mg/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.22		mg/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.22		mg/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.22	ı	mg/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.22		mg/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.22		mg/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.22		mg/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.22		mg/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.43		mg/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.1		mg/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.043		ng/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.043		ng/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.22		mg/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.22		mg/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP 1L300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Client Sample ID: A-14 19010565 Revision 1

Work Order: Collection Date: 1/22/2019 9:15:00 AM Project: Franklin-EB

Matrix: Soil Lab ID: 19010565-014

Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	550B)	Prep	Date: 1/25/2019	Analyst: DM
Fluoranthene	ND	0.043		g/Kg-dry	1	1/28/2019
Fluorene	ND	0.043	m	g/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.22	m	g/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND	0.22	m	g/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.22	m	g/Kg-dry	1	1/28/2019 .
Hexachloroethane	ND	0.22	m	g/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.043	m	g/Kg-dry	1	1/28/2019
Isophorone	ND	0.22	m	g/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.22	m	g/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
Naphthalene	ND	0.043	m	g/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.22	m	g/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.22	m	g/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.22	m	g/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.43	m	g/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.043	m	g/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.043	m	g/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine .	ND	0.22	m	g/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.22	m	g/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.22	m	g/Kg-dry	1	1/28/2019
Pentachlorophenol C	ND	0.086	m	g/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.043	m	g/Kg-dry	1	1/28/2019
Phenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
Pyrene	ND	0.043	m	g/Kg-dry	1	1/28/2019
Pyridine	ND	0.99	m	g/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.22	m	g/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.22	m	g/Kg-dry	1	1/28/2019
PCBs	SW8	082A (SW3	550B)	Prep	Date: 1/25/2019	Analyst: GV C
Aroclor 1016	ND	0.10		g/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.10	m	g/Kg-dry	,1	1/25/2019
Aroclor 1248	ND	0.10	m	g/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.10	m	g/Kg-dry	, 1	1/25/2019
Aroclor 1260	ND	0.10	m	g/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19010565 Revision

Project: Lab ID: Franklin-EB 19010565-014

19010565 Revision 1

Collection Date: 1/22/2019 9:15:00 AM

Matrix: Soil

Client Sample ID: A-14

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4´-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4´-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.042	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	. SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	12000	22	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/28/2019
Arsenic	6.3	1.1	mg/Kg-dry	10	1/28/2019
Barium	33	1.1	mg/Kg-dry	10	1/28/2019
Beryllium	0.70	0.56	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.56	mg/Kg-dry	10	1/28/2019
Calcium	61000	67	mg/Kg-dry	10	1/28/2019
Chromium	23	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	9.6	1.1	mg/Kg-dry	10	1/28/2019
Copper	27	2.8	mg/Kg-dry	10	1/28/2019
Iron	27000	33	mg/Kg-dry	10	1/28/2019
Lead .	14	0.56	mg/Kg-dry	10	1/28/2019
Magnesium	31000	33	mg/Kg-dry	10	1/28/2019
Manganese	420	1.1	mg/Kg-dry	10	1/28/2019
Nickel	30	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

· HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID: Franklin-EB

19010565-014

Client Sample ID: A-14

Collection Date: 1/22/2019 9:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	2800	33		mg/Kg-dry	10	1/28/2019
Selenium ·	1.7	1.1	1	mg/Kg-dry	10	1/28/2019
Silver	ND	1.1	1	mg/Kg-dry	10	1/28/2019
Sodium	170	67	1	mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1	1	mg/Kg-dry	10 ·	1/28/2019
Vanadium	29	1.1	1	mg/Kg-dry	10	1/28/2019
Zinc	53	5.6	1	mg/Kg-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	·	mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.058	0.050		mg/L	5	1/28/2019
Beryllium	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	, ND	0.010		mg/L	5	1/28/2019
Cobalt	ND	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron .	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	2.3	0.010		mg/L	5	1/28/2019
Nickel	ND	0.020		mg/L	5 .	1/28/2019
Selenium	ND	0.010		mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
Mercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury ,	0.027	0.020	1	mg/Kg-dry	1	1/27/2019
Cyanide, Total .		012A			Date: 1/25/2019	•
Cyanide	ND	0.32	1	mg/Kg-dry	1	1/25/2019
oH (25 °C)		045C		•	Date: 1/24/2019	•
рН	7.85			pH Units	1 .	1/24/2019
Percent Moisture	D297			- •	Date: 1/23/2019	•
Percent Moisture	22.9	0.2	*	wt%	1	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

19 ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB
Lab ID: 19010565-015

Collection Date: 1/22/2019 9:30:00 AM

Matrix: Soil

Client Sample ID: A-15

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: AE
Acetone	0.084	0.083	mg	/Kg-dry	1	1/23/2019
Benzene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0055	mg	/Kg-dry	1 ,	1/23/2019
Bromoform	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Bromomethane	ND	0.011	mg	/Kg-dry	1	1/23/2019
2-Butanone	ND	0.083	mg	/Kg-dry	1	1/23/2019
Carbon disulfide	, ND	0.055	mg	/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Chloroethane	ND	0.011	mg	/Kg-dry	1	1/23/2019
Chloroform	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Chloromethane	ND	0.011	mg	/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0055	mg	/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0055	mg	/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0055	mg	/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0055	mg	/Kg-dry	1 .	1/23/2019
1,2-Dichloropropane	ND	0.0055	mg	/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0022	mg	/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0022	mg	/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.022	mg	/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.022		/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.011	mg	/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Styrene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0055		/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Toluene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0055	mg	/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0055		/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0055	mg	/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0055		/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.017	mg	/Kg-dry	1 .	1/23/2019
semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B)	Prep	Date: 1/25/2019	•
Acenaphthene	ND	0.043	mg	/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.043	mg	/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

Project:

19010565 Revision 1 Franklin-EB

Lab ID:

19010565-015

Client Sample ID: A-15

Collection Date: 1/22/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	s SW82	.70C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: DM
Aniline	ND	0.44	n	ng/Kg-dry	1	1/28/2019
Anthracene	ND	0.043	n	ng/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.043	n	ng/Kg-dry	1	1/28/2019
Benzidine	ND	0.43	n	ng/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.043	п	ng/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.043	n	ng/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.043	n	ng/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.043	n	ng/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.1	m	ng/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	n	ng/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.22	m	ng/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Carbazole	ND	0.22	п	ng/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.22	m	ng/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.43	n	ng/Kg-dry	1	1/28/2019
2-Chloronaphthalene	ND	0.22	n	ng/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.22	п	ng/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Chrysene	ND	0.043		ng/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.043		ng/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.22	m	ng/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.22		ng/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.22		ng/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.22		ng/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.22		ng/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.22	n	ng/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.22		ng/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.22		ng/Kg-dry	1	1/28/2019
Dimethyl phthalate	ND	0.22		ng/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.43		ng/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.1		ng/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.043		ng/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.043		ng/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.22		ng/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.22		ng/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported:

February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Client Sample ID: A-15

Collection Date: 1/22/2019 9:30:00 AM

Matrix: Soil

19010565-015 Lab ID: Result **RL** Qualifier Units DF **Date Analyzed Analyses** Analyst: DM Semivolatile Organic Compounds by GC/MS SW8270C (SW3550B) Prep Date: 1/25/2019 1/28/2019 Fluoranthene ND 0.043 mg/Kg-dry ND 0.043 mg/Kg-dry 1/28/2019 Fluorene 1 ND 0.22 1/28/2019 Hexachlorobenzene mg/Kg-dry 1 Hexachlorobutadiene ND 0.22 mg/Kg-dry 1/28/2019 Hexachlorocyclopentadiene ND 0.22 mg/Kg-dry 1 1/28/2019 Hexachloroethane ND 0.22 mg/Kg-dry 1/28/2019 Indeno(1,2,3-cd)pyrene ND 0.043 mg/Kg-dry 1/28/2019 Isophorone ND 0.22 mg/Kg-dry 1 1/28/2019 ND 0.22 mg/Kg-dry 1/28/2019 2-Methylnaphthalene 2-Methylphenol ND 0.22 mg/Kg-dry 1/28/2019 4-Methylphenol ND 0.22 mg/Kg-dry 1/28/2019 Naphthalene ND 0.043 1/28/2019 mg/Kg-dry 2-Nitroaniline ND 0.22 1/28/2019 mg/Kg-dry 3-Nitroaniline ND 0.22 mg/Kg-dry 1/28/2019 ND 0.22 1/28/2019 4-Nitroaniline mg/Kg-dry ND 0.22 1/28/2019 2-Nitrophenol mg/Kg-dry ND 0.43 1/28/2019 4-Nitrophenol mg/Kg-dry ND 0.043 Nitrobenzene mg/Kg-dry 1/28/2019 ND 0.043 1/28/2019 N-Nitrosodi-n-propylamine mg/Kg-dry ND 0.22 mg/Kg-dry 1/28/2019 N-Nitrosodimethylamine ND 0.22 N-Nitrosodiphenylamine mg/Kg-dry 1/28/2019 2, 2'-oxybis(1-Chloropropane) ND 0.22 1/28/2019 mg/Kg-dry Pentachlorophenol ND 0.088 1/28/2019 mg/Kg-dry Phenanthrene ND 0.043 mg/Kg-dry 1/28/2019 Phenol ND 0.22 mg/Kg-dry 1/28/2019 ND 0.043 1/28/2019 Pyrene mg/Kg-dry **Pyridine** ND 1.0 mg/Kg-dry 1/28/2019 1,2,4-Trichlorobenzene ND 0.22 mg/Kg-dry 1/28/2019 2,4,5-Trichlorophenol ND 0.22 1/28/2019 mg/Kg-dry 2,4,6-Trichlorophenol ND 0.22 mg/Kg-dry 1/28/2019 **PCBs** SW8082A (SW3550B) Prep Date: 1/25/2019 Analyst: GVC Aroclor 1016 ND 0.10 mg/Kg-dry 1/25/2019 Aroclor 1221 ND 0.10 mg/Kg-dry 1/25/2019 1 ND 0.10 1/25/2019 Aroclor 1232 mg/Kg-dry 1 Aroclor 1242 ND 0.10 mg/Kg-dry 1/25/2019 Aroclor 1248 ND 0.10 mg/Kg-dry 1/25/2019 ND 0.10 1/25/2019 Aroclor 1254 mg/Kg-dry ND 1/25/2019 Aroclor 1260 0.10 mg/Kg-dry

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP 1L300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Environmental Group Services, Ltd. **Client:**

19010565 Revision 1

Work Order: Project:

Lab ID:

Franklin-EB 19010565-015

Client Sample ID: A-15

Collection Date: 1/22/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0021	mg/Kg-dry	1	1/25/2019
4,4´-DDE	ND	0.0021	mg/Kg-dry	1	1/25/2019
4,4´-DDT	ND	. 0.0021	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0021	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0021	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.021	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endrin	' ND	0.0021	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	ND	0.0021	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0021	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0021	mg/Kg-dry	· 1	1/25/2019
Heptachlor	ND	0.0021	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0021	mg/Kg-dry	1	/ 1/25/2019
Methoxychlor	ND	0.0021	mg/Kg-dry	1 .	1/25/2019
Toxaphene	ND	0.043	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/26/2019	Analyst: JG
Aluminum	14000	24	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.4	mg/Kg-dry	10	1/28/2019
Arsenic	4.4	1.2	mg/Kg-dry	10	1/28/2019
Barium	51	1.2	mg/Kg-dry	10	1/28/2019
Beryllium	0.79	0.60	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.60	mg/Kg-dry	10 ·	1/28/2019
Calcium	56000	72	mg/Kg-dry	10	1/28/2019
Chromium	27	1.2	mg/Kg-dry	10	1/28/2019
Cobalt	16	1.2	mg/Kg-dry	10	1/28/2019
Copper	21	3.0	mg/Kg-dry	10	1/28/2019
Iron	23000	36	mg/Kg-dry	10	1/28/2019
Lead	13	0.60	mg/Kg-dry	10	1/28/2019
Magnesium	26000	36	mg/Kg-dry	10	1/28/2019
Manganese	400	1.2	mg/Kg-dry	10	1/28/2019
Nickel	41	1.2	mg/Kg-dry	10	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-015

Client Sample ID: A-15

Collection Date: 1/22/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	3400	36		mg/Kg-dry	10	1/28/2019
Selenium	1.5	1.2		mg/Kg-dry	10	1/28/2019
Silver	ND	1.2	1	mg/Kg-dry	10	1/28/2019
Sodium	170	72	1	mg/Kg-dry	10	1/28/2019
Thallium ,	ND	1.2	٠	mg/Kg-dry	10	1/28/2019
Vanadium	27	1.2	1	mg/Kg-dry	10	1/28/2019
Zinc	55	6.0	1	mg/Kg-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	·	mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.65	0.050		mġ/L	5	1/28/2019
Beryllium	ND	0.0050	•	mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	· 5	1/28/2019
Cobalt	0.046	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	2.7	0.010		mg/L	5	1/28/2019
Nickel	0.090	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010		mg/L	· 5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
lercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.025	0.024	ı	mg/Kg-dry	1	1/27/2019
yanide, Total	SW9	012A		Prep	Date: 1/25/2019	Analyst: MD
Cyanide	ND	0.33	r	mg/Kg-dry	1	1/25/2019
oH (25 °C)	SW9	045C		Prep	Date: 1/24/2019	Analyst: JT
рН	8.26			pH Units	1	1/24/2019
Percent Moisture	D297			-•	Date: 1/23/2019	Analyst: RW
Percent Moisture	24.2	0.2	•	wt%	1	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

= 3

Client:

Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Lab ID: Franklin-EB 19010565-016 Client Sample ID: A-16

Collection Date: 1/22/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	<u>Qualifier</u>	Units	DF .	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: AET
Acetone	ND	0.082	m	g/Kg-dry	1	1/23/2019
Benzene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Bromoform	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Bromomethane	ND	0.011	m	g/Kg-dry	1	1/23/2019
2-Butanone	ND	0.082	m	g/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.054	m	g/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Chloroethane	ND	0.011	· m	g/Kg-dry	1	1/23/2019
Chloroform	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Chloromethane	ND	0.011	m	g/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0022	m	g/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0022	m	g/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.022	m	g/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.022	m	g/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.011	m	g/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Styrene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Tetrachloroethene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Toluene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0054	m	g/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.017	m	g/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B)	Prep	Date: 1/25/2019	Analyst: DM
Acenaphthene	ND	0.043	m	g/Kg-dry	1	1/28/2019
Acenaphthylene	ND '	0.043	m	g/Kg-dry	1	1/28/2019

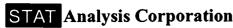
ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB

19010565-016

Client Sample ID: A-16

Collection Date: 1/22/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: DM
Aniline	ND	0.43		mg/Kg-dry	1	1/28/2019
Anthracene	ND	0.043	(mg/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.043	•	mg/Kg-dry	1 .	1/28/2019
Benzidine	ND	0.43	4	mg/Kg-dry	1	1/28/2019 ,
Benzo(a)pyrene	ND	0.043	1	mg/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.043		mg/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.043	I	mg/Kg-dry	1	1/28/2019
Benzo(k)fluoranthene	ND	0.043	Į	mg/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.1	ı	mg/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.22	Į	mg/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	0.22	ļ	mg/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.22	1	mg/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	Į	mg/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.22	(mg/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.22	Į	mg/Kg-dry	1	1/28/2019
Carbazole	ND	0.22	ı	mg/Kg-dry	1	1/28/2019
4-Chloroaniline	ND	0.22	Į	mg/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.43	ţ	mg/Kg-dry	1	1/28/2019
2-Chloronaphthalene	, ND	0.22	1	mg/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.22	ı	mg/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.22	Į	mg/Kg-dry	1	1/28/2019
Chrysene	ND .	0.043	ı	mg/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.043		mg/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.22	1	mg/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.22	4	mg/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.22	4	mg/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.22	1	mg/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	' ND	0.22	1	mg/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.22	1	mg/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.22	1	mg/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.22	4	mg/Kg-dry	1 .	1/28/2019
Dimethyl phthalate	ND	0.22	4	mg/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.43	•	mg/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.1	(mg/Kg-dry	1 .	1/28/2019
2,4-Dinitrotoluene	ND	0.043	(mg/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.043	4	mg/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.22	ĺ	mg/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.22	4	mg/Kg-dry	1	1/28/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

19010565 Revision 1 Work Order: Franklin-EB

Project: Lab ID: 19010565-016 Client Sample ID: A-16

Collection Date: 1/22/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550	B) Prep	Date: 1/25/2019	Analyst: DM
Fluoranthene	ND	0.043	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.043	mg/Kg-dry	1	1/28/2019
Hexachlorobenzene	ND	0.22	mg/Kg-dry	1	1/28/2019
Hexachlorobutadiene	ND .	0.22	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.22	mg/Kg-dry	· 1	1/28/2019
Hexachloroethane	ND	0.22	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.043	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.22	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.22	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.22	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.22	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.043	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.22	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.22	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.22	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND .	0.22	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.43	mg/Kg-dry	1 .	1/28/2019
Nitrobenzene	ND	0.043	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	ND	0.043	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.22	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.22	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.22	mg/Kg-dry	1 '	1/28/2019
Pentachlorophenol	ND	0.086	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.043	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.22	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.043	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.99	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.22	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.22	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.22	mg/Kg-dry	1	1/28/2019
PCBs	SW80	82A (SW3550	B) Prep	Date: 1/25/2019	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.10	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.10	mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Client Sample ID: A-16

Collection Date: 1/22/2019 9:45:00 AM

Matrix: Soil

Lab ID: 19010565-016	Matrix: Soil					
Analyses	Result	RL (Qualifier Units	DF	Date Analyzed	
Pesticides	SW8	081B (SW3	550B) Prep	Date: 1/25/2019	Analyst: GVC	
4,4'-DDD	ND	0.0021	mg/Kg-dry	1	1/25/2019	
4,4'-DDE	ND	0.0021	mg/Kg-dry	1	1/25/2019	
4,4'-DDT	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Aldrin	, ND	0.0021	mg/Kg-dry	1	1/25/2019	
alpha-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019	
alpha-Chlordane	ND	0.0021	mg/Kg-dry	1	1/25/2019	
beta-BHC	ND	0.0021	mg/Kg-dry	, 1	1/25/2019	
Chlordane	ND	0.021	mg/Kg-dry	1	1/25/2019	
delta-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Dieldrin	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Endosulfan I	. ND	0.0021	mg/Kg-dry	1	1/25/2019	
Endosulfan II	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Endosulfan sulfate	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Endrin	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Endrin aldehyde	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Endrin ketone	ND	0.0021	mg/Kg-dry	1	1/25/2019	
gamma-BHC	ND	0.0021	mg/Kg-dry	1	1/25/2019	
gamma-Chlordane	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Heptachlor	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Heptachlor epoxide	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Methoxychlor	ND	0.0021	mg/Kg-dry	1	1/25/2019	
Toxaphene	ND	0.043	mg/Kg-dry	1	1/25/2019	
Metals by ICP/MS	SW6	020A (SW3	050B) Prep	Date: 1/26/2019	Analyst: JG	
Aluminum	12000	23	mg/Kg-dry	10	1/28/2019	
Antimony	ND	2.3	mg/Kg-dry	10	1/28/2019	
Arsenic	7.0	1.1	mg/Kg-dry	10	1/28/2019	
Barium	31	1.1	mg/Kg-dry	10	1/28/2019	
Beryllium	0.73	0.57	mg/Kg-dry	10	1/28/2019	
Cadmium	ND	0.57	mg/Kg-dry	10	1/28/2019	
Calcium	71000	69	mg/Kg-dry	10	1/28/2019	
Chromium	24	1.1	mg/Kg-dry	10	1/28/2019	
Cobalt	9.9	1.1	mg/Kg-dry	10	1/28/2019	
Copper	30	2.9	mg/Kg-dry	10	1/28/2019	
Iron	26000	34	mg/Kg-dry	10	1/28/2019	
Lead	16	0.57	mg/Kg-dry	10	1/28/2019	
Magnesium	39000	34	mg/Kg-dry	10	1/28/2019	
Manganese	. 450	1.1	mg/Kg-dry	10	1/28/2019	
Nickel	31	1.1	mg/Kg-dry	10	1/28/2019	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-016

Client Sample ID: A-16

Collection Date: 1/22/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/26/2019	Analyst: JG
Potassium	2700	34		mg/Kg-dry	10	1/28/2019
Selenium	1.4	1.1		mg/Kg-dry	10	1/28/2019
Silver	ND	1.1		mg/Kg-dry	10 '	1/28/2019
Sodium	180	69		mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1		mg/Kg-dry	10	1/28/2019
Vanadium .	29	1.1		mg/Kg-dry	10	1/28/2019
Zinc	55	5.7		mg/Kg-dry	10	1/28/2019
TCLP Metals by ICP/MS	sw1	311/6020A	(SW3005	A) Prep	Ďate: 1/28/2019	Analyst: JG
Antimony	ND	0.015	,	mg/L	5	1/28/2019
Arsenic	ND	0.010		mg/L	5	1/28/2019
Barium	0.20	0.050		mg/L	5	1/28/2019
Beryllium	ND	0.0050		mg/L	5	1/28/2019
Cadmium	ND	0.0050		mg/L	5	1/28/2019
Chromium	ND	0.010		mg/L	5	1/28/2019
Cobalt	0.010	0.010		mg/L	5	1/28/2019
Copper	ND	0.10		mg/L	5	1/28/2019
Iron	ND	0.25		mg/L	5	1/28/2019
Lead	ND	0.0050		mg/L	5	1/28/2019
Manganese	2.3	0.010		mg/L	5	1/28/2019
Nickel	0.024	0.020		mg/L	5	1/28/2019
Selenium	ND	0.010	•	mg/L	5	1/28/2019
Silver	ND	0.010		mg/L	5	1/28/2019
Thallium	ND	0.0050		mg/L	5	1/28/2019
Vanadium	ND	0.010		mg/L	5	1/28/2019
Zinc	ND	0.050		mg/L	5	1/28/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/27/2019
Mercury	SW7	471B		Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.030	0.023		mg/Kg-dry	1	1/27/2019
Cyanide, Total	SW9	012A	•	Prep	Date: 1/25/2019	Analyst: MD
Cyanide	0.59	0.32		mg/Kg-dry	1	1/25/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/24/2019	•
рН	8.12			pH Units	1	1/24/2019
Percent Moisture	D297	74		Prep	Date: 1/23/2019	-
Percent Moisture	22.9	0.2	•	wt%	1 .	1/24/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010565 Revision 1 Work Order:

Project: Franklin-EB

19010565-017 Lab ID:

Client Sample ID: A-17

Collection Date: 1/22/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/22/2019	Analyst: AET
Acetone	ND	0.076	r	ng/Kg-dry	1	1/23/2019
Benzene	ND	0.0051	n	ng/Kg-dry	1	1/23/2019
Bromodichloromethane	ND	0.0051	n	ng/Kg-dry	1	1/23/2019
Bromoform	ND	0.0051	m	ng/Kg-dry	1	1/23/2019
Bromomethane	ND	0.010	m	ng/Kg-dry	1	1/23/2019
2-Butanone	ND	0.076	m	ng/Kg-dry	1	1/23/2019
Carbon disulfide	ND	0.051	m	ng/Kg-dry	1	1/23/2019
Carbon tetrachloride	ND	0.0051	n	ng/Kg-dry	1	1/23/2019
Chlorobenzene	ND	0.0051	m	ng/Kg-dry	1	1/23/2019
Chloroethane	ND	0.010	m	ng/Kg-dry	1	1/23/2019
Chloroform	ND	0.0051	, m	ig/Kg-dry	1	1/23/2019
Chloromethane	ND	0.010	m	g/Kg-dry	1	1/23/2019
Dibromochloromethane	ND	0.0051	m	ıg/Kg-dry	1	1/23/2019
1,1-Dichloroethane	ND	0.0051	m	ig/Kg-dry	1	1/23/2019
1,2-Dichloroethane	ND	0.0051	r	ig/Kg-dry	1	1/23/2019
1,1-Dichloroethene	ND	0.0051	m	ıg/Kg-dry	1	1/23/2019
cis-1,2-Dichloroethene	ND	0.0051	m	ıg/Kg-dry	1	1/23/2019
trans-1,2-Dichloroethene	ND	0.0051	m	ig/Kg-dry	1	1/23/2019
1,2-Dichloropropane	ND	0.0051	· m	ig/Kg-dry	1	1/23/2019
cis-1,3-Dichloropropene	ND	0.0020	m	ıg/Kg-dry	1	1/23/2019
trans-1,3-Dichloropropene	ND	0.0020	m	g/Kg-dry	1	1/23/2019
Ethylbenzene	ND	0.0051	m	g/Kg-dry	1	1/23/2019
2-Hexanone	ND	0.020	m	g/Kg-dry	1	1/23/2019
4-Methyl-2-pentanone	ND	0.020	m	g/Kg-dry	1	1/23/2019
Methylene chloride	ND	0.010	. m	g/Kg-dry	1	1/23/2019
Methyl tert-butyl ether	ND	0.0051	m	g/Kg-dry	1	1/23/2019
Styrene	ND	0.0051	m	ıg/Kg-dry	1	1/23/2019
1,1,2,2-Tetrachloroethane	ND	0.0051	· m	ıg/Kg-dry	1 '	1/23/2019
Tetrachloroethene	ND	0.0051	m	ıg/Kg-dry	1	1/23/2019
Toluene	ND	0.0051	m	g/Kg-dry	1	1/23/2019
1,1,1-Trichloroethane	ND	0.0051	m	ıg/Kg-dry	1	1/23/2019
1,1,2-Trichloroethane	ND	0.0051	m	ig/Kg-dry	1	1/23/2019
Trichloroethene	ND	0.0051	m	g/Kg-dry	1	1/23/2019
Vinyl chloride	ND	0.0051	m	g/Kg-dry	1	1/23/2019
Xylenes, Total	ND	0.015	m	g/Kg-dry	1	1/23/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35		•	Date: 1/25/2019	Analyst: DM
Acenaphthene	ND	0.041		g/Kg-dry	1	1/28/2019
Acenaphthylene	ND	0.041	m	g/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project: Lab ID:

Franklin-EB 19010565-017

Client Sample ID: A-17

Collection Date: 1/22/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW	3550B)	Prep	Date: 1/25/2019	Analyst: DM
Aniline	ND	0.41		mg/Kg-dry	1	1/28/2019
Anthracene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benz(a)anthracene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzidine	ND	0.41		mg/Kg-dry	1	1/28/2019
Benzo(a)pyrene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzo(b)fluoranthene	ND	0.041		mg/Kg-dry	1	1/28/2019
Benzo(g,h,i)perylene	ND	0.041		mg/Kg-dry	1	. 1/28/2019
Benzo(k)fluoranthene	ND	0.041	•	mg/Kg-dry	1	1/28/2019
Benzoic acid	ND	1.0		mg/Kg-dry	1	1/28/2019
Benzyl alcohol	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-chloroethoxy)methane	ND	, 0.21		mg/Kg-dry	1	1/28/2019
Bis(2-chloroethyl)ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Bis(2-ethylhexyl)phthalate	ND	1.0		mg/Kg-dry	1	1/28/2019
4-Bromophenyl phenyl ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Butyl benzyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
Carbazole	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chloroaniline	, ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chloro-3-methylphenol	ND	0.41		mg/Kg-dry	1	1/28/2019
2-Chioronaphthalene	ND	0.21	•	mg/Kg-dry	1	1/28/2019
2-Chlorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
4-Chlorophenyl phenyl ether	ND	0.21		mg/Kg-dry	1	1/28/2019
Chrysene	ND	0.041		mg/Kg-dry	1	1/28/2019
Dibenz(a,h)anthracene	ND	0.041		mg/Kg-dry	1	1/28/2019
Dibenzofuran	ND	0.21		mg/Kg-dry	1	1/28/2019
1,2-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
1,3-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
1,4-Dichlorobenzene	ND	0.21		mg/Kg-dry	1	1/28/2019
3,3'-Dichlorobenzidine	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4-Dichlorophenol	ND	0.21		mg/Kg-dry	1	1/28/2019
Diethyl phthalate	ND	0.21		mg/Kg-dry	1	1/28/2019
2,4-Dimethylphenol	ND	0.21	!	mg/Kg-dry	1.	1/28/2019
Dimethyl phthalate	ND	0.21	I	mg/Kg-dry	1	1/28/2019
4,6-Dinitro-2-methylphenol	ND	0.41	1	mg/Kg-dry	1	1/28/2019
2,4-Dinitrophenol	ND	1.0		mg/Kg-dry	1	1/28/2019
2,4-Dinitrotoluene	ND	0.041	1	mg/Kg-dry	1	1/28/2019
2,6-Dinitrotoluene	ND	0.041	1	mg/Kg-dry	1	1/28/2019
Di-n-butyl phthalate	ND	0.21	1	mg/Kg-dry	1	1/28/2019
Di-n-octyl phthalate	ND	0.21	I	mg/Kg-dry	1	1/28/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010565 Revision 1

Project:

Franklin-EB

Lab ID:

19010565-017

Client Sample ID: A-17

Collection Date: 1/22/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW355	50B) Pre	Date: 1/25/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	1/28/2019
Fluorene	ND	0.041	mg/Kg-dry		1/28/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1 '	1/28/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/28/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/28/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	1/28/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/28/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	1/28/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodi-n-propylamine	, ND	0.041	mg/Kg-dry	1	1/28/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/28/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/28/2019
Pentachlorophenol	ND	0.083	mg/Kg-dry	1	1/28/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/28/2019
Pyrene	ND	0.041	mg/Kg-dry	1	1/28/2019
Pyridine	ND	0.95	mg/Kg-dry	1	1/28/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/28/2019
PCBs	SW80	082A (SW355	i 0B) Prej	Date: 1/25/2019	•
Aroclor 1016	ND	0.098	mg/Kg-dry	1	1/25/2019
Aroclor 1221	ND	0.098	mg/Kg-dry	1	1/25/2019
Aroclor 1232	ND	. 0.098	mg/Kg-dry	1	1/25/2019
Aroclor 1242	ND	0.098	mg/Kg-dry	1	1/25/2019
Aroclor 1248	ND	0.098	mg/Kg-dry	1	1/25/2019
Aroclor 1254	ND	0.098	mg/Kg-dry	1	1/25/2019
Aroclor 1260	ND	0.098	mg/Kg-dry	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

· RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-017

Client Sample ID: A-17

Collection Date: 1/22/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550)	B) Prep	Date: 1/25/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/25/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/25/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/25/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin aldehyde	· ND	0.0020	mg/Kg-dry	1	1/25/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/25/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1 .	1/25/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/25/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	1/25/2019
Metals by ICP/MS	SW6	020A (SW3050I	B) Prep	Date: 1/26/2019	Analyst: JG
Aluminum	13000	21	mg/Kg-dry	10	1/28/2019
Antimony	ND	2.1	mg/Kg-dry	10	1/28/2019
Arsenic	5.0	1.1	mg/Kg-dry	10	1/28/2019
Barium	60	1.1	mg/Kg-dry	.10	1/28/2019
Beryllium	0.82	0.53	mg/Kg-dry	10	1/28/2019
Cadmium	ND	0.53	mg/Kg-dry	10	1/28/2019
Calcium	65000	63	mg/Kg-dry	10	1/28/2019
Chromium	26	1.1	mg/Kg-dry	10	1/28/2019
Cobalt	12	1.1	mg/Kg-dry	10 ·	1/28/2019
Copper	30	2.6	mg/Kg-dry	10	1/28/2019
Iron	27000	32	mg/Kg-dry	10	1/28/2019
Lead	14	0.53	mg/Kg-dry	10	1/28/2019
Magnesium	34000	32	mg/Kg-dry	10	1/28/2019
Manganese	470	1.1	mg/Kg-dry	10	1/28/2019
Nickel	36	1.1	mg/Kg-dry	10	1/28/2019

Qualifiers: J - Ana

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010565 Revision 1

Project: Franklin-EB

Lab ID: 19010565-017

Client Sample ID: A-17
Collection Date: 1/22/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyze
Metals by ICP/MS	SW6	020A (SW3	050B) Prep	Date: 1/26/2019	Analyst: JG
Potassium	3100	32	mg/Kg-dry	10	1/28/2019
Selenium	1.4	1.1	mg/Kg-dry	10	1/28/2019
Silver	ND	1.1	mg/Kg-dry	10	1/28/2019
Sodium	180	63	mg/Kg-dry	10	1/28/2019
Thallium	ND	1.1	mg/Kg-dry	10	1/28/2019
Vanadium	28	1.1	mg/Kg-dry	10	1/28/2019
Zinc	58	5.3	mg/Kg-dry	10	1/28/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005A) Prep	Date: 1/28/2019	Analyst: JG
Antimony	ND	0.015	mg/L	5	1/28/2019
Arsenic	ND	0.010	mg/L	5	1/28/2019
Barium	0.90	0.050	mg/L	5	1/28/2019
Beryllium	ND	0.0050	mg/L	5	1/28/2019
Cadmium	ND	0.0050	mg/L	5	1/28/2019
Chromium	ND	0.010	mg/L	_. 5	1/28/2019
Cobalt	0.015	0.010	mg/L	5	1/28/2019
Copper	ND	0.10	mg/L	5	1/28/2019
Iron	ND	0.25	mg/L	` 5	1/28/2019
Lead	ND	0.0050	mg/L	5	1/28/2019
Manganese	3.3	0.010	mg/L	5	1/28/2019
Nickel	0.032	0.020	mg/L	5	1/28/2019
Selenium	ND	0.010	mg/L	5	1/28/2019
Silver	ND	0.010	mg/L	5 ·	1/28/2019
Thallium	ND	0.0050	mg/L	5	1/28/2019
Vanadium	ND	0.010	mg/L	5	1/28/2019
Zinc	ND	0.050	mg/L	5	1/28/2019
CLP Mercury	SW1	311/7470A	Prep	Date: 1/27/2019	Analyst: LB
Mercury	ND	0.00020	mg/L	1	1/27/2019
ercury	SW7	471B	Prep	Date: 1/27/2019	Analyst: LB
Mercury	0.022	0.021	mg/Kg-dry	1	1/28/2019
yanide, Total	SW9	012A	Prep	Date: 1/25/2019	Analyst: MD
Cyanide	1.1	0.31	mg/Kg-dry	1	1/25/2019
H (25 °C)	• • • • • • • • • • • • • • • • • • • •	045C		Date: 1/24/2019	Analyst: JT
рН	8.13		pH Units	1	1/24/2019
ercent Moisture	D297	•	•	Date: 1/23/2019	Analyst: RW
Percent Moisture '	19.3	0.2	* wt%	1	1/24/2019

Qualifiers:	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Company: EGSL					CH/	711	OF CU	ST	ODY	RE	COR	D	_]	Nº	•				D .		
Project Number:								P.	O. No	.:		T				-				Page:		of
Project Name: FRANKLIN - FB			Client	Trac	king N	lo.:]_								7	_	_	777			
Project Location:								Qı	uote N	o.:		7		1	//	//	//	/	///	//,	//.	
Sampler(s):								1	- 3			ı	,	⟨ ⟨\}	//	//	//	//	///	//.	//.	
Report To: Bill EGAL -COM								Т			Tel.		/>	Χ,	//	//	//	//		//	//	/
		_Phone:						1				A!	35 /	/,	/,	//	//	//	///	//	//	
QC Level: 1 2 3		Fax:						1			LV	9/		/	/,	/,	//	//	///			Around:
QC Level: 1 2 3	4	e-mail:						1		1			/		/	/,	/,	//	///	///	4-1	Around:
Client Sample Number/Description:	Date Taken	Time	gix	ڼ	٩	ž	No. of	1	/c	/_ \	"/	/	/	/	/	/,	//	//	///	/+		Needed.
A-1		Taken	Matrix	Сошр.	है	Preserv	Containers	1,	/\S	"/	//	/	/	/	/	/,	/,	//	///	<i>'</i> ,		
A-2	1/22	0606	5		7	7	4	K	\leftarrow	4			4		_	_		//	//-	Remarks	7	am/pm
A-3	+	0615		1-1	4	+		弋	1	-	+	4	4	_						- cemanks		
A-4	+	0630	\Box		71	十		H	+-1	\dashv	+	+	4	+-	_							
A-5		0645			71	ナ	$\neg \vdash$	†-{	+	-+		+	+-	┼	 			$oxed{oxed}$			-	
1-6		0700	\mathcal{I}		71	十	_	†+	╂╼┥	┰		+	+-	+				J				
A-7	+	כות			\top	$ extstyle ag{7}$		╆╅	╅╼┫	+		+	+-	┿	-		\bot	$oxed{T}$				
A-8	+	0730		П	11	\top	_	††	╅╌┤	-+		+	-	_				\Box				
A-9	 	0745			11	十		††	╁╌┧	-+	-	-						T				- <u>* * 'c'</u>
A-10	 	0800			1	十		╁┼	╁╌┤	\dashv		4		╀-				\top			一 樂	
A-11	+	0815			++-	+		╁┼	╀╌┤	-		4		1_				T	-		L SAPER	三 三 道
A-12	+	0830			11	十		††	╂╾╂	+		+	-	 				T			W TO S	
A-B	 	0845			1	十		†+	╂╼╌╂	+		4	-	╀—	Ш			T	1			
A-14		6900	$\Box \Box$		71	+		#	╂╼╌┼	-+	+-	4	4_	↓_			\Box	T			U &	
A-15	+	0915			1	十	+	╁╁	╂╾╂	-+		╇	┵	1_								
A-16	 	0930			1	+	+	++	╀╼╂	+		+	+-	 								
A-17	+	0445			T	\top	1	╁	╀╾┼	+		╀	+	-			$oldsymbol{\perp}$	\prod			-	
	Y	1000	V		V	\top	$\overline{}$	1	╆╅	+		+-	-	1			$oxed{oxed}$	\mathbb{T}				
	 				\Box	T			\vdash	\dashv	+-	┿	+-	-		_		$oxed{\Box}$				
	 				$\Box T$	T				╌┼		+-	+-	-								
elinquished by: (Signature) //						J	,		 	\dashv	+-	+-	+	\vdash			\perp					
eccived by: (Signature)	,		Date/T	ime:	1/2	a/i	9 1630		<u>-</u>								\perp	$oldsymbol{\mathbb{I}}$				ارج پید
elinquished by: (Signature)		b	Date/T	ime:/	/22/	19	1635	-	ments:			\wedge	1.	/	TA	7			in the same	1. 1. 1. 1.		~ - IX.
eccived by: (Signature)		<u> </u>	Date/T				1705	L		L	1 -	\mathcal{V}_{l}	$\langle \gamma(\cdot) \rangle$	(1/1	• /		1			745	
	-in 11		Date/T				9 17	١, .			/-	•	1.	74	(A 1)	K	XO!	ノ・				
elinquished by: (Signature) eccived by: (Signature)			Date/T	ime:	 9 -4	₽ ₩	A 11												(1 -14 - 17 - 11 (1) - 12 - 12 - 13 - 13 - 13 - 13 - 13 - 13	111 g		Ale Car
oy. (Oikiistins)			Date/T					res	ervatio	n Cod	e: A =	- Non	e B	= HN	in (C = Na G = 0	~··				of the second	

Sample Receipt Checklist

Client Name EGSL				Date and Tin	ne Received:	1/22/2019 5:05:00 PM
Work Order Number 1	9010565			Received by	: EAA	
Checklist completed by:	Signature) Date	22/19	_ Reviewed by	Initials	1/23/19 Date
Matrix:	·	Carrier name	STAT Analysis			(
Shipping container/cooler	in good condition?		Yes 🗹	No 🗌	Not Present	•
Custody seals intact on si	hippping container/cooler	?	Yes 🔲	No 🗀	Not Present	
Custody seals intact on sa	ample bottles?		Yes 🗌	No 🗆 .	Not Present 🗹	
Chain of custody present?	?		Yes 🗹	· No 🗆		
Chain of custody signed v	when relinquished and rec	æived?	Yes 🗹	No 🗆		• .
Chain of custody agrees v	with sample labels/contain	ners?	Yes 🗹	No 🗌		
Samples in proper contain	ner/bottle?		Yes 🗹	No 🗆		
Sample containers intact?	· · ·	•	Yes 🗹	No 🗆		
Sufficient sample volume	for indicated test?		Yes 🗹	No 🗆		
All samples received within	in holding time?		Yes 🗹	No 🗆		
Container or Temp Blank	temperature in complianc	æ?	Yes 🗹	No 🗆	Temperature	3.4 °C
Water - VOA vials have ze	ero headspace?	No VOA vials subn	nitted 🔀	Yes 🖾	No 🔯	
Water - Samples pH chec	ked?	•	Yes 🔯	No 🐯	Checked by:	
Water - Samples properly	preserved?	•	Yes 🖾	No 😰	pH Adjusted?	
Any No response must be	detailed in the comments	s section below.		=====		
Comments:						
			,			
		,				
Client / Personcontacted:	Da	te contacted:		Conta	acted by:	
Response:						
		•				

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

February 01, 2019

Environmental Group Services, Ltd. 557 W. Polk Chicago, IL 60610

Telephone: (312) 447-1200

(312) 447-0922 Fax:

Analytical Report for STAT Work Order: 19010622 Revision 1

RE: Franklin - EB

Dear Bill Lennon:

STAT Analysis received 17 samples for the referenced project on 1/24/2019 9:38:00 AM. The analytical results are presented in the following report.

This report is revised to reflect changes made after the last report revision.

All analyses were performed in accordance with the requirements of 35 IAC part 186 / NELAP standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Craig Chawla

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: February 01, 2019

Client:

Environmental Group Services, Ltd.

Project:

Franklin - EB

Work Order: 19010622 Revision 1

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
19010622-001A	A-18		1/23/2019 6:00:00 AM	1/24/2019
19010622-001B	A-18		1/23/2019 6:00:00 AM	1/24/2019
19010622-002A	A-19 `		1/23/2019 6:15:00 AM	1/24/2019
19010622-002B	A-19		1/23/2019 6:15:00 AM	1/24/2019
19010622-003A	A-20		1/23/2019 6:30:00 AM	1/24/2019
19010622-003B	A-20		1/23/2019 6:30:00 AM	1/24/2019
19010622-004A	A-21		1/23/2019 6:45:00 AM	1/24/2019
19010622-004B	A-21		1/23/2019 6:45:00 AM	1/24/2019
19010622-005A	A-22		1/23/2019 7:00:00 AM	1/24/2019
19010622-005B	A-22		1/23/2019 7:00:00 AM	1/24/2019
19010622-006A	A-23		1/23/2019 7:15:00 AM	1/24/2019
19010622-006B	A-23		1/23/2019 7:15:00 AM	1/24/2019
19010622-007A	A-24		1/23/2019 7:30:00 AM	1/24/2019
19010622-007B	A-24		1/23/2019 7:30:00 AM	1/24/2019
19010622-008A	A-25		1/23/2019 7:45:00 AM	1/24/2019
19010622-008B	A-25		1/23/2019 7:45:00 AM	1/24/2019
19010622-009A	A-26		1/23/2019 8:00:00 AM	1/24/2019
19010622-009B	A-26		1/23/2019 8:00:00 AM	1/24/2019
19010622-010A	A-27		1/23/2019 8:15:00 AM	1/24/2019
19010622-010B	A-27		1/23/2019 8:15:00 AM	1/24/2019
19010622-011A	A-28		1/23/2019 8:30:00 AM	1/24/2019
19010622-011B	A-28		1/23/2019 8:30:00 AM	1/24/2019
19010622-012A	A-29		1/23/2019 8:45:00 AM	1/24/2019
19010622-012B	A-29		1/23/2019 8:45:00 AM	1/24/2019
19010622-013A	A-30		1/23/2019 9:00:00 AM	1/24/2019
19010622-013B	A-30		1/23/2019 9:00:00 AM	1/24/2019
19010622-014A	A-31		1/23/2019 9:15:00 AM	1/24/2019
19010622-014B	A-31		1/23/2019 9:15:00 AM	1/24/2019
19010622-015A	A-32		1/23/2019 9:30:00 AM	1/24/2019
19010622-015B	A-32		1/23/2019 9:30:00 AM	1/24/2019
19010622-016A	A-33		1/23/2019 9:45:00 AM	1/24/2019
19010622-016B	A-33		1/23/2019 9:45:00 AM	1/24/2019
19010622-017A	A-34		1/23/2019 10:00:00 AM	1/24/2019
19010622-017B	A-34	•	1/23/2019 10:00:00 AM	1/24/2019

Date: February 01, 2019

CLIENT:

Environmental Group Services, Ltd.

Project:

Franklin - EB

Work Order:

19010622 Revision 1

CASE NARRATIVE

At the customer's request, samples A-30 (19010622-013) and A-33 (19010622-016) were re-digested and analyzed for Arsenic. Results of the re-digestion and analysis are contained in this report revision.

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-001 Client Sample ID: A-18

Collection Date: 1/23/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pro	ep Date: 1/24/2019	Analyst: MJI
Acetone	ND	0.070	mg/Kg-dı	y 1	1/25/2019
Benzene	ND	0.0046	mg/Kg-dı	y 1	1/25/2019
Bromodichloromethane	ND	0.0046	mg/Kg-di	y 1	1/25/2019
Bromoform	ND	0.0046	mg/Kg-dı	y 1	1/25/2019
Bromomethane	ND	0.0093	mg/Kg-dı	y 1	1/25/2019 .
2-Butanone	ND	0.070	`mg/Kg-dı	y 1	1/25/2019
Carbon disulfide	ND	0.046	mg/Kg-dı	y 1	1/25/2019
Carbon tetrachloride	ND	0.0046	mg/Kg-di	y 1	1/25/2019
Chlorobenzene	ND	0.0046	mg/Kg-dı	y 1	1/25/2019
Chloroethane	ND	0.0093	mg/Kg-dı	y 1	1/25/2019
Chloroform	ND	0.0046	mg/Kg-dı	y 1	1/25/2019
Chloromethane	ND	0.0093	mg/Kg-dı	y 1'	1/25/2019
Dibromochloromethane	ND	0.0046	mg/Kg-dı	y 1	1/25/2019
1,1-Dichloroethane	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
1,2-Dichloroethane	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
1,1-Dichloroethene	ND	0.0046	mg/Kg-di	y 1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0046	mg/Kg-di	y 1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
1,2-Dichloropropane	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0019	mg/Kg-dr	y 1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0019	mg/Kg-dr	y 1	1/25/2019
Ethylbenzene	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
2-Hexanone	ND	0.019	mg/Kg-dr	y 1	1/25/2019
4-Methyl-2-pentanone	ND	0.019	mg/Kg-dr	y 1	1/25/2019
Methylene chloride	ND	0.0093	mg/Kg-dr	y 1	1/25/2019
Methyl tert-butyl ether	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
Styrene	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
Tetrachloroethene	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
Toluene	ND	0.0046	mg/Kg-dr	y 1.	1/25/2019
1,1,1-Trichloroethane	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
1,1,2-Trichloroethane	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
Trichloroethene	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
Vinyl chloride	ND	0.0046	mg/Kg-dr	y 1	1/25/2019
Xylenes, Total	ND	0.014	mg/Kg-dr	y 1	1/25/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW355	50B) Pre	ep Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.039	mg/Kg-dr	y 1	1/29/2019
Acenaphthylene	ND	0.039	mg/Kg-dr	y 1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Lab ID: 19010622-001

ANALI HEAL RESULTS

Client Sample ID: A-18

Collection Date: 1/23/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.40	m	g/Kg-dry	1	1/29/2019
Anthracene	ND	0.039	. m	g/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.039	m;	g/Kg-dry	1	1/29/2019
Benzidine	ND	0.39	m	g/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.039	m;	g/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Benzoic acid	ND	0.99	m;	g/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.20	m;	g/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.20	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.20	m	g/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	0.99	m	g/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.20	m	g/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.20	m	g/Kg-dry	1	1/29/2019
Carbazole	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.39	m	g/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.20	m	g/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.20	m	g/Kg-dry	1	1/29/2019
Chrysene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.20	m	g/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.20	m	g/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.20	m	g/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.20	m	g/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.39	m	g/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	0.99	· mg	g/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.039	m	g/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.20		g/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.20	m	g/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-001

Client Sample ID: A-18

Collection Date: 1/23/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3	550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Fluorene	ND	0.039	· m	g/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.20	m	g/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.20	m	g/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.20	m	g/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Isophorone	ND	0.20	m	g/Kg-dry	1	1/29/2019
2-Methylnaphthalene	0.29	0.20	m	g/Kg-dry	1	1/29/2019
2-Methylphenoi	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
Naphthalene	0.41	0.039	m ₂	g/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.20	m	g/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.20	m	g/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.39	m	g/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.039	m	g/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.039	m:	g/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.20	m	g/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.20	m:	g/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20	m:	g/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.080	m	g/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.039	1 m	g/Kg-dry	1	1/29/2019
Phenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
Pyrene	ND	0.039	m	g/Kg-dry	1	1/29/2019
Pyridine	ND	0.80	m	g/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
PCBs	SW8	082A (SW3	550B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.097	m	g/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.097	m	g/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.097		g/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.097	m	g/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.097	m	g/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.097	m	g/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.097	m	g/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Date Frinted: February 01, 20

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB **Lab ID:** 19010622-001

Client Sample ID: A-18

Collection Date: 1/23/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0019	mg/Kg-dry	1 `	1/29/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.019	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	13000	20	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.0	mg/Kg-dry	10	1/26/2019
Arsenic	4.7	1.0	mg/Kg-dry	10	1/26/2019
Barium	30	1.0	mg/Kg-dry	10	1/26/2019
Beryllium	0.70	0.51	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.51	mg/Kg-dry	10	1/26/2019
Calcium	77000	61	mg/Kg-dry	10	1/26/2019
Chromium	24	1.0	mg/Kg-dry	10	1/26/2019
Cobalt	11	1.0	mg/Kg-dry	10	1/26/2019
Copper	30	2.5	mg/Kg-dry	10	1/26/2019
Iron	24000	30	mg/Kg-dry	10	1/26/2019
Lead	14	0.51	mg/Kg-dry	10	1/26/2019
Magnesium	38000	30	mg/Kg-dry	10	1/26/2019
Manganese	480	1.0	mg/Kg-dry	10	1/26/2019
Nickel	33	1.0	mg/Kg-dry	10	1/26/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

....

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-001

ANALYTICAL RESULTS

Client Sample ID: A-18

Collection Date: 1/23/2019 6:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier U	nits I	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW:	3050B)	Prep Da	te: 1/25/2019	Analyst: MDT
Potassium	2900	30		•	0	1/26/2019
Selenium	ND	1.0			0	1/26/2019
Silver	ND	1.0	mg/	Kg-dry 1	0	1/26/2019
Sodium	180	61	mg/	Kg-dry 1	0	1/26/2019
Thallium	ND	1.0	mg/	Kg-dry 1	0	1/26/2019
Vanadium	. 29	1.0	mg/	Kg-dry 1	0	1/26/2019
Zinc	56	5.1	mg/	Kg-dry 1	0	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A)	Prep Da	te: 1/29/2019	Analyst: JG
Antimony	ND	0.015	m	ng/L 5	5	1/29/2019
Arsenic	ND	0.010	n	ng/L 5	;	1/29/2019
Barium	0.054	0.050	n	ng/L 5	;	1/29/2019
Beryllium ,	ND	0.0050	m	ng/L 5	;	1/29/2019
Cadmium	ND	0.0050	m	ng/L 5	;	1/29/2019
Chromium	ND	0.010	n	ng/L 5	;	1/29/2019
Cobalt	0.025	0.010	m	ng/L 5	;	1/29/2019
Copper	ND	0.10	m	ng/L 5	, ·	1/29/2019
Iron	1.2	0.25	m	ng/L 5	;	1/29/2019
Lead	0.014	0.0050	rr	ng/L 5	;	1/29/2019
Manganese	5.0	0.010	rr	ng/L 5	;	1/29/2019
Nickel	0.040	0.020	rr	ng/L 5	;	1/29/2019
Selenium	ND	0.010	m	ng/L 5	;	1/29/2019
Silver	ND	0.010	m	ng/L 5	;	1/29/2019
Thallium	ND	0.0050	m	ng/L 5	;	1/29/2019
Vanadium	ND	0.010	m	ng/L 5	i	1/29/2019
Zinc	ND	0.050	m	ng/L 5	j	1/29/2019
TCLP Mercury	SW1	311/7470A		Prep Dat	te: 1/29/2019	Analyst: LB
Mercury	0.00025	0.00020	m	ng/L 1		1/29/2019
Mercury	SW7	471B		Prep Dat	te: 1/29/2019	Analyst: LB
Mercury	ND	0.021	mg/	Kg-dry 1		1/29/2019
Cyanide, Total	SW9	012A			te: 1/27/2019	Analyst: MD
Cyanide	ND	0.30	mg/	Kg-dry 1		1/27/2019
pH (25 °C)	SW9	045C	,	Prep Dat	te: 1/25/2019	Analyst: JT
pH	7.83		рН	Units 1		1/25/2019
Percent Moisture	D297	4		Prep Da	te: 1/24/2019	Analyst: RW
Percent Moisture	17.9	0.2	* v	vt% 1		1/25/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-002

Client:

ANALYTICAL RESULTS

Client Sample ID: A-19

Collection Date: 1/23/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 1/24/2019	Analyst: MJI
Acetone	0.097	0.097	mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0064	mg/Kg-dry	1	1/25/2019
Bromomethane	ND	0.013	mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.097	mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.064	mg/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0064	mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Chloroethane	ND	0.013	mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0064	mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.013	mg/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	. ND	0.0064	mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0064	mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0064	mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.026	mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.026	mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.013	mg/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0064	mg/Kg-dry	1	1/25/2019
Styrene	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0064	mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.019	mg/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) Prej	Date: 1/28/2019	•
Acenaphthene	ND	0.043	mg/Kg-dry	1 .	1/29/2019
Acenaphthylene	ND	0.043	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-002 Client Sample ID: A-19

Collection Date: 1/23/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.43	·	ng/Kg-dry	1	1/29/2019
Anthracene	ND	0.043	п	ng/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.043	n	ng/Kg-dry	1	1/29/2019
Benzidine	ND	0.43	n	ng/Kg-dry		1/29/2019
Benzo(a)pyrene	ND	0.043	n	ng/Kg-dry	. 1 .	1/29/2019
Benzo(b)fluoranthene	ND	0.043	п	ng/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.043	n	ng/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.043	n	ng/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.1	п	ng/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.22	n	ng/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.22	r	ng/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND,	0.22	n	ng/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	n	ng/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.22	n	ng/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.22	n	ng/Kg-dry	1	1/29/2019
Carbazole	ND	0.22	, п	ng/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.22	п	ng/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.43	п	ng/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.22	n	ng/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.22	n	ng/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.22	n	ng/Kg-dry	1	1/29/2019
Chrysene	ND	0.043	n	ng/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.043	п	ng/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.22	n	ng/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.22	n	ng/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.22	n	ng/Kg-dry	1	1/29/2019
1,4-Dichtorobenzene	ND	0.22	n	ng/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.22	n	ng/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.22	n	ng/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.22	n	ng/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.22	n	ng/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.22	n	ng/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.43	n	ng/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.1	n	ng/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.043	n	ng/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.043	п	ng/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.22	n	ng/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.22	п	ng/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

. R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Environmental Group Services, Ltd.

19010622 Revision 1 Work Order:

Project: Franklin - EB 19010622-002

Lab ID:

Client Sample ID: A-19

Collection Date: 1/23/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	· RL Qu	alifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW355	0B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.043	mg	g/Kg-dry	1	1/29/2019
Fluorene	ND	0.043	mg	g/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.22	mg	/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.043	mg	g/Kg-dry	1	. 1/29/2019
Isophorone	ND	0.22	, mg	g/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.22	mg	g/Kg-dry	1	1/29/2019
2-Methylphenol	ND.	0.22	mg	g/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Naphthalene	ND	0.043	mg	g/Kg-dry	1	1/29/2019
2-Nitroaniline	ND ·	0.22	mg	g/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.22	mg	g/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.22	mg	g/Kg-dry	1	1/29/2019
2-Nitrophenol	· ND	0.22	mg	g/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.43	· mg	g/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.043	mg	g/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.043	mg	/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.22	mg	g/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.22	mg	g/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.086	mg	g/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.043	mg	J/Kg-dry	1	1/29/2019
Phenol	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Pyrene	ND	0.043	mg	J/Kg-dry	1	1/29/2019
Pyridine	ND	0.86	mg	J/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.22	mg	g/Kg-dry	1 '	1/29/2019
2,4,5-Trichlorophenol	ND	0.22	mg	g/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.22	mg	g/Kg-dry	1	1/29/2019
PCBs	SW8	082A (SW3556	0B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.10	mg	g/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.10	mg	g/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.10	mg	g/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.10	· mg	g/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.10	mg	g/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.10	mg	g/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.10	mg	/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-002 Client Sample ID: A-19

Collection Date: 1/23/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4´-DDD	ND	0.0021	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0021	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0021	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0021	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0021	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.021	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan II	· ND	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0021	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0021	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0021	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0021	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0021	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.043	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	15000 .	24	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.4	mg/Kg-dry	10	1/26/2019
Arsenic	4.3	1.2	mg/Kg-dry	10	1/26/2019
Barium	60	1.2	mg/Kg-dry	10	1/26/2019
Beryllium	0.80	0.59	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.59	mg/Kg-dry	10	1/26/2019
Calcium	52000	71	mg/Kg-dry	10	1/26/2019
Chromium	28	1.2	mg/Kg-dry	10	1/26/2019
Cobalt	17	1.2	mg/Kg-dry	10	1/26/2019
Copper	26	2.9	mg/Kg-dry	10	1/26/2019
Iron	26000	35	mg/Kg-dry	10	1/26/2019
Lead	15	0.59	mg/Kg-dry	10	1/26/2019
Magnesium	25000	35	mg/Kg-dry	10	1/26/2019
Manganese	380	1.2	mg/Kg-dry	10	1/26/2019
Nickel	47	1.2	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB

19010622-002

Client Sample ID: A-19

Collection Date: 1/23/2019 6:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyze
Metals by ICP/MS	SW6	020A (SW3	050B)	Prep	Date: 1/25/2019	Analyst: MD
Potassium	3400	35		mg/Kg-dry	10	1/26/2019
Selenium	ND	1.2		mg/Kg-dry	10	1/26/2019
Silver	ND	1.2		mg/Kg-dry	10	1/26/2019
Sodium	150	71		mg/Kg-dry	10	1/26/2019
Thallium	ND	1.2		mg/Kg-dry	10	1/26/2019
Vanadium	27	1.2		mg/Kg-dry	10	1/26/2019
Zinc	56	5.9	•	mg/Kg-dry	10	1/26/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/29/2019	Analyst: JG
Antimony	ND	0.015		mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5 .	1/29/2019
Barium	0.73	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010	•	mg/L	5	1/29/2019
Cobalt	0.053	0.010	•	mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5	1/29/2019
Iron	ND	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	4.5	0.010		mg/L	5	1/29/2019
Nickel	0.067	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	. ND	0.050		mg/L	5	1/29/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
lercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.029	0.025	1	mg/Kg-dry	1	1/29/2019
yanide, Total	SW9	012A		Prep	Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.33	I	mg/Kg-dry	1	1/27/2019
oH (25 °C)	SW9	045C		Prep	Date: 1/25/2019	Analyst: JT
рН	7.70			pH Units	1	1/25/2019
Percent Moisture	D297	'4		Prep	Date: 1/24/2019	Analyst: RW
Percent Moisture	23.7	0.2	*	wt%	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-003 Client Sample ID: A-20

Collection Date: 1/23/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019	Analyst: MJK
Acetone	0.17	0.078		mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0052		mg/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0052		mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0052		mg/Kg-dry	1	1/25/2019
Bromomethane	ND	0.010		mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.078		mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.052		mg/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0052		mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0052		mg/Kg-dry	1	1/25/2019
Chloroethane '	ND	0.010		mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0052		mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.010		mg/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0052		mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0052		mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0052		mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0052		mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0052		mg/Kg-dry	1 ,	1/25/2019
trans-1,2-Dichloroethene	ND	0.0052		mg/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0052		mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0021		mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0021		mg/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0052		mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.021		mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.021 [.]		mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.010		mg/Kg-dry	1.	1/25/2019
Methyl tert-butyl ether	ND	0.0052		mg/Kg-dry	1	1/25/2019
Styrene	ND	0.0052		mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0052		mg/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0052		mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0052		mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0052		mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0052		mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0052		mg/Kg-dry	1	1/25/2019
Vinyl chloride .	ND	0.0052		mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.016		mg/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B)	Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.043		mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.043		mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Client:

Lab ID: 19010622-003

ANALYTICAL RESULTS

Client Sample ID: A-20

Collection Date: 1/23/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW:	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.43	m	g/Kg-dry	1	1/29/2019
Anthracene	ND	0.043	m	g/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.043	m	g/Kg-dry	1	1/29/2019
Benzidine	ND	0.43	m	g/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.043	m	g/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.043	m	g/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.043	m	g/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.043	m	g/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.1	m	g/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.22	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	` ND	0.22	· mg	g/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	me	g/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.22	mę	g/Kg-dry	1	1/29/2019
Carbazole	ND	0.22	mg	g/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.22	mg	g/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.43	mg	g/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.22	· mg	g/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.22	mg	g/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.22	mg	g/Kg-dry	1	1/29/2019
Chrysene	ND	0.043		g/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.043		g/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.22	mg	g/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.22	mg	/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.22	mg	g/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.22	mg	g/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.22	mg	g/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.22	mg	g/Kg-dry	. 1	1/29/2019
Diethyl phthalate	ND	0.22		g/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.22		g/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.22		g/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	. ND	0.43	•	g/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.1		/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.043	•	/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.043	-	/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.22	•	/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.22		g/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-003

Client Sample ID: A-20 Collection Date: 1/23/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW8:	270C (SW:	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.043		mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.043		mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.22		mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.22		mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.22		mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.22		mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.043		mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.22		mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.22		mg/Kg-dry	1 ,	1/29/2019
2-Methylphenol	ND	0.22		mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.22		mg/Kg-dry	1	1/29/2019
Naphthalene	ND	0.043		mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.22		mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.22		mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.22		mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.22		mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.43		mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.043		mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.043		mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.22		mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.22		mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.22		mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.087		mg/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.043		mg/Kg-dry	1	1/29/2019
Phenol	ND	0.22		mg/Kg-dry	1	1/29/2019
Pyrene	ND	0.043		mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.87		mg/Kg-dry	1 .	1/29/2019
1,2,4-Trichlorobenzene	ND	0.22		mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.22		mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.22		mg/Kg-dry	1	1/29/2019
PCBs	SW8	082A (SW3	3550B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.10		mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.10		mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.10		mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.10		mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.10		mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.10		mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.10		mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010622 Revision 1 Work Order:

Franklin - EB Project:

Lab ID: 19010622-003

Client Sample ID: A-20 Collection Date: 1/23/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0021	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0021	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0021	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0021	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0021	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.021	mg/Kg-dry	1	1/29/2019
delta-BHC	· ND	0.0021	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND ·	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin	· ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0021	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0021	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0021	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0021	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0021	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.043	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	14000	23	mg/Kg-dry	10	1/26/2019
Antimony	· ND	2.3	mg/Kg-dry	10	1/26/2019
Arsenic	3.9	1.2	mg/Kg-dry	10	1/26/2019
Barium	71	1.2	mg/Kg-dry	10	1/26/2019
Beryllium	0.82	0.58	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.58	mg/Kg-dry	10	1/26/2019
Catcium	47000	70	mg/Kg-dry	10	1/26/2019
Chromium	28	1.2	mg/Kg-dry	10	1/26/2019
Cobalt	15	1.2	mg/Kg-dry	10	1/26/2019
Copper	24	2.9	mg/Kg-dry	10	1/26/2019
Iron	25000	35	mg/Kg-dry	10	1/26/2019
Lead	14	0.58	mg/Kg-dry	10	1/26/2019
Magnesium	22000	35	mg/Kg-dry	10	1/26/2019
Manganese	350	1.2	mg/Kg-dry	10	1/26/2019
Nickel	43	1.2	mg/Kg-dry	10	1/26/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-003 Client Sample ID: A-20

Collection Date: 1/23/2019 6:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	3300	35	'n	g/Kg-dry	10	1/26/2019
Selenium	ND	1.2	m	ig/Kg-dry	10	1/26/2019
Silver	ND	1.2	m	ıg/Kg-dry	10	1/26/2019
Sodium	140	70	m	ıg/Kg-dry	10	1/26/2019
Thallium	ND	1.2	m	g/Kg-dry	10	1/26/2019
Vanadium	27	1.2	m	ıg/Kg-dry	10	1/26/2019
Zinc	56	5.8	m	g/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A) Prep	Date: 1/29/2019	Analyst: JG
Antimony	ND	0.015	·	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.72	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.099	0.010		mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5 .	1/29/2019
Iron	ND	0.25		mg/L	5	1/29/2019
Lead	0.0089	0.0050		mg/L	5	1/29/2019
Manganese	4.7	0.010		mg/L	5	1/29/2019
Nickel	0.16	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5 .	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	0.055	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1:	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
Mercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.027	0.024	m	ig/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A	•	Prep	Date: 1/27/2019	Analyst: MD
Cyanide	. ND	0.33	m	ig/Kg-dry	1	1/27/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/25/2019	·
pH	7.94		ı	H Units	1	1/25/2019
Percent Moisture	D297			•	Date: 1/24/2019	* · · · · · · · · · · · · · · · · · · ·
Percent Moisture	23.3	0.2	•	wt%	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-004 Client Sample ID: A-21

Collection Date: 1/23/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 1/24/2019	Analyst: MJK
Acetone	0.12	0.087	mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0058	mg/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0058	mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0058	mg/Kg-dry	1 .	1/25/2019
Bromomethane	ND	0.012	mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.087	mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.058	mg/Kg-dry	1	1/25/2019
· Carbon tetrachloride	ND	0.0058	mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0058	mg/Kg-dry	1	1/25/2019
Chloroethane	ND	0.012	mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0058	mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.012	mg/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0058	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0058	mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0058	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0058	mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0058	mg/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0058	mg/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0058	mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0058	mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.023	mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.023	mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.012	mg/Kg-dry	1 '	1/25/2019
Methyl tert-butyl ether	ND	0.0058	mg/Kg-dry	1	1/25/2019
Styrene	ND	0.0058	mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0058	mg/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0058	mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0058	mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0058	mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0058	mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0058	mg/Kg-dry	· 1	1/25/2019
Vinyl chloride	ND	0.0058	mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.017	mg/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35	•	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.041	mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.041	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit '

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Lab ID:

19010622-004

Client Sample ID: A-21

Collection Date: 1/23/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier U	nits D	F	Date Analyzed
Semivolatile Organic Compounds by GC/MS	s SW82	270C (SW3	3550B)	Prep Dat	e: 1/28/2019	Analyst: FP
Aniline	ND	0.42	•	(g-dry 1		1/29/2019
Anthracene	ND	0.041		(g-dry 1		1/29/2019
Benz(a)anthracene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Benzidine	ND	0.41	mg/K	(g-dry 1		1/29/2019
Benzo(a)pyrene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Benzo(b)fluoranthene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Benzo(g,h,i)perylene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Benzo(k)fluoranthene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Benzoic acid	. ND	1.0	mg/K	(g-dry 1		1/29/2019
Benzyl alcohol	ND	0.21	mg/K	(g-dry 1		1/29/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/K	(g-dry 1		1/29/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/K	(g-dry 1		1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/K	(g-dry 1		1/29/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/K	(g-dry 1		1/29/2019
Butyl benzyl phthalate	ND	0.21	mg/K	(g-dry 1		1/29/2019
Carbazole	ND	0.21	mg/K	(g-dry 1		1/29/2019
4-Chloroaniline	ND	0.21	mg/K	(g-dry 1		1/29/2019
4-Chloro-3-methylphenol	ND	0.41	mg/K	(g-dry 1		1/29/2019
2-Chloronaphthalene	ND	0.21	mg/K	(g-dry 1		1/29/2019
2-Chlorophenol	ND	0.21	mg/K	(g-dry 1		1/29/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/K	(g-dry 1		1/29/2019
Chrysene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Dibenz(a,h)anthracene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Dibenzofuran	ND	0.21	mg/K	(g-dry 1		1/29/2019
1,2-Dichlorobenzene	ND	0.21	mg/k	(g-dry 1		1/29/2019
1,3-Dichlorobenzene	ND	0.21	mg/K	(g-dry 1		1/29/2019
1,4-Dichlorobenzene	ND	0.21	mg/K	(g-dry 1		1/29/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/k	(g-dry 1		1/29/2019
2,4-Dichlorophenol	ND	0.21	mg/k	(g-dry 1		1/29/2019
Diethyl phthalate	ND	0.21	mg/k	(g-dry 1		1/29/2019
2,4-Dimethylphenol	ND	0.21	mg/K	(g-dry 1		1/29/2019
Dimethyl phthalate	ND	0.21	mg/K	(g-dry 1		1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/K	(g-dry 1	,	1/29/2019
2,4-Dinitrophenol	ND	1.0	mg/K	(g-dry 1	-	1/29/2019
2,4-Dinitrotoluene	ND	0.041	mg/K	(g-dry 1		1/29/2019
2,6-Dinitrotoluene	ND	0.041	mg/K	(g-dry 1		1/29/2019
Di-n-butyl phthalate	ND	0.21	mg/K	(g-dry 1		1/29/2019
Di-n-octyl phthalate	ND	0.21	mg/K	(g-dry 1		1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

February 01, 2019 **Date Printed:**

Client:

Environmental Group Services, Ltd.

19010622 Revision 1 Work Order:

Project:

Franklin - EB

Lab ID:

19010622-004

Client Sample ID: A-21

Collection Date: 1/23/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL Ç	Qualifier (Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW35	550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.041		ng/Kg-dry	1	1/29/2019
Fluorene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.21	r	ng/Kg-dry	1 '	1/29/2019
Hexachlorocyclopentadiene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Isophorone	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2-Methylphenol	ND .	0.21	r	ng/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	· r	ng/Kg-dry	1	1/29/2019
Naphthalene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	r	ng/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	г	ng/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.21	r	ng/Kg-dry	. 1	1/29/2019
4-Nitrophenol	ND	0.41	r	ng/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.041	г	ng/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.041	r	ng/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	r	ng/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.084	Г	ng/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Phenol	ND	0.21	· п	ng/Kg-dry	1	1/29/2019
Pyrene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Pyridine	ND	0.84	r	ng/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	п	ng/Kg-dry	1	1/29/2019
PCBs	SW80)82A (SW35	50B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.099	n	ng/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.099		ng/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.099	r	ng/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.099	п	ng/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.099	п	ng/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.099	п	ng/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.099	П	ng/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Franklin - EB

Client Sample ID: A-21

Collection Date: 1/23/2019 6:45:00 AM

Matrix: Soil

Lab ID: 19010622-004	Matrix: Soil					
Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed	
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC	
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/29/2019	
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/29/2019	
4,4´-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Aldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019	
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019	
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019	
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Chlordane	ND	0.020	mg/Kg-dry	1	1/29/2019	
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Dieldrin	ND	0.0020	mg/Kg-dry	1 ′	1/29/2019	
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Endosulfan II	. ND	0.0020	mg/Kg-dry	1 /	1/29/2019	
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Endrin	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/29/2019	
gamma-BHC	ND	0.0020	mg/Kg-dry	'1	1/29/2019	
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Methoxychior	ND	0.0020	mg/Kg-dry	1	1/29/2019	
Toxaphene	ND	0.041	mg/Kg-dry	1	1/29/2019	
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019		
Aluminum .	13000	22	mg/Kg-dry	10	. 1/26/2019	
Antimony	ND	2.2	mg/Kg-dry	10	1/26/2019	
Arsenic	5.2	1.1	mg/Kg-dry	10	1/26/2019	
Barium	74	1.1	mg/Kg-dry	10	1/26/2019	
Beryllium	0.70	0.56	mg/Kg-dry	10	1/26/2019	
Cadmium	ND	0.56	mg/Kg-dry	10	1/26/2019	
Calcium	70000	67	mg/Kg-dry	10	1/26/2019	
Chromium	26	1.1	mg/Kg-dry	10	1/26/2019	
Cobalt	19	1.1	mg/Kg-dry	10	1/26/2019	
Copper	30	2.8	mg/Kg-dry	10	1/26/2019	
Iron	25000	33	mg/Kg-dry	10	1/26/2019	
Lead	15	0.56	mg/Kg-dry	10	1/26/2019	
Magnesium	34000	33	mg/Kg-dry	10	1/26/2019	
Manganese	510	1.1	mg/Kg-dry	10	1/26/2019	
Nickel	45	1.1	mg/Kg-dry	10	1/26/2019	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB

19010622-004

Client Sample ID: A-21

Collection Date: 1/23/2019 6:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SWe	6020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	3100	33	, u	ng/Kg-dry	10	1/26/2019
Selenium	ND	1.1	m	ng/Kg-dry	10	1/26/2019
Silver	ND	1.1	п	ng/Kg-dry	10	1/26/2019
Sodium	150	67	m	ng/Kg-dry	10	1/26/2019
Thallium	ND	1.1	m	ng/Kg-dry	10	1/26/2019
Vanadium	26	1.1	m	ng/Kg-dry	10	1/26/2019
Zinc	56	5.6	m	ng/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	1311/6020A	(SW3005A	() Prep	Date: 1/29/2019	Analyst: JG
Antimony	ND	0.015	•	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.74	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.080	0.010		mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5	1/29/2019
Iron	ND	0.25		mg/L	5	1/29/2019
Lead	0.0069	0.0050		mg/L	5	1/29/2019
Manganese	4.3	0.010		mg/L	5	1/29/2019
Nickel	0.15	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1	1311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	0.00020	0.00020		mg/L	1	1/29/2019
Mercury	SW	471B		Pren	Date: 1/28/2019	Analyst: LB
Mercury	0.024	0.023	m	ng/Kg-dry	1	1/29/2019
Cyanide, Total	sws	0012A		Prep	Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.31	m	ng/Kg-dry	1	1/27/2019
pH (25 °C)	SWS	0045C		Prep	Date: 1/25/2019	
рН	7.90		ı	oH Units	1	1/25/2019
Percent Moisture	D29	74		Prep	Date: 1/24/2019	-
Percent Moisture	20.0	0.2	•	wt%	1 .	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Date Finited: Febluar

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Lab ID: 19010622-005

T WT	177	 101		\mathbf{v}	

Client Sample ID: A-22

Collection Date: 1/23/2019 7:00:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 1/24/2019	Analyst: MJK
Acetone	0.10	0.089	mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0059	mg/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0059	mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0059	mg/Kg-dry	1	1/25/2019
Bromomethane	ND	0.012	mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.089	mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.059	mg/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0059	. mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0059	mg/Kg-dry	1	1/25/2019
Chloroethane	ND	0.012	mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0059	mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.012	mg/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0059	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0059	mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0059	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	· ND	0.0059	mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0059	mg/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0059	mg/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0059	mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0059	mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.024	mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.024	mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.012	, mg/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0059	mg/Kg-dry	1	1/25/2019
Styrene	ND	0.0059	mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0059	mg/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0059	mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0059	mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane ·	ND	0.0059	mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0059	mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0059	mg/Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0059	mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.018	mg/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS	s swa	270C (SW35	550B) Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.041	mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.041	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019 ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-005 Client Sample ID: A-22

Collection Date: 1/23/2019 7:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.42	r	ng/Kg-dry	1	1/29/2019
Anthracene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Benzidine	ND	0.41	r	ng/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.0	r	ng/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	r	mg/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.21	r	mg/Kg-dry	1	1/29/2019
Carbazole	ND	0.21	r	ng/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.21	r	ng/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.41	r	ng/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.21	r	ng/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Chrysene ·	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.041	г	ng/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.21	r	ng/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.21	ľ	ng/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.21	ſ	ng/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.21	r	ng/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.41	r	ng/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.0	r	ng/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.041	ſ	ng/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.21	r	ng/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB

Client Sample ID: A-22 Collection Date: 1/23/2019 7:00:00 AM

Matrix: Soil

19010622-005

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS		270C (SW35		•	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.041		ng/Kg-dry	1	1/29/2019
Fluorene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.21		ng/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.21	r	ng/Kg-dry	1	1/29/2019
indeno(1,2,3-cd)pyrene	ND	. 0.041	r	ng/Kg-dry	1	1/29/2019
Isophorone	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.21	r	ng/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Naphthalene	ND	0.041	r	ng/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	r	ng/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	r	ng/Kg-dry	1 ,	1/29/2019
4-Nitroaniline	ND	0.21	r	ng/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.21	r	ng/Kg-dry	1	.1/29/2019
4-Nitrophenol	ND	0.41	Г	ng/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.041	г	ng/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.041	r	ng/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	n	ng/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.21	n	ng/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	r	ng/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.084	n	ng/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.041	n	ng/Kg-dry	1	1/29/2019
Phenol	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Pyrene	ND	0.041	n	ng/Kg-dry	1	1/29/2019
Pyridine	ND	0.84	n	ng/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	n	ng/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	n	ng/Kg-dry	1	1/29/2019
PCBs .	SW80)82A (SW35	50B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.099	n	ng/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.099	n	ng/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.099	п	ng/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.099	п	ng/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.099	n	ng/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.099	n	ng/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.099	n	ng/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010622 Revision 1 Work Order:

Project: Franklin - EB

19010622-005 Lab ID:

Client Sample ID: A-22 Collection Date: 1/23/2019 7:00:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550)B) Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Chlordane .	ND	0.020	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050	B) Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	18000	`22	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/26/2019
Arsenic	11	1.1	mg/Kg-dry	10	1/26/2019
Barium	76	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	1.0	0.54	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.54	mg/Kg-dry	10	1/26/2019
Calcium	76000	65	mg/Kg-dry	10	1/26/2019
Chromium	35	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	21	1.1	mg/Kg-dry	10	1/26/2019
Copper	39	2.7	mg/Kg-dry	10	1/26/2019
Iron	. 33000	33	mg/Kg-dry	10	1/26/2019
Lead	17	0.54	mg/Kg-dry	10	1/26/2019
Magnesium	37000	33	mg/Kg-dry	10	1/26/2019
Manganese	600	1.1	mg/Kg-dry	10	1/26/2019
Nickel	- 56	1.1	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Franklin - EB

Lab ID:

19010622-005

Client Sample ID: A-22

Collection Date: 1/23/2019 7:00:00 AM

Matrix: Soil

Metals by ICP/MS SW6020A (SW3050B) Prep Date: 1/25/2019 Analyst: MDT Potassium 4700 33 mg/Kg-dry 10 1/26/2019 Selenium ND 1.1 mg/Kg-dry 10 1/26/2019 Silver ND 1.1 mg/Kg-dry 10 1/26/2019 Sodium 200 65 mg/Kg-dry 10 1/26/2019 Vanadium 36 1.1 mg/Kg-dry 10 1/26/2019 Vanadium 36 1.1 mg/Kg-dry 10 1/26/2019 Zinc 69 5.4 mg/Kg-dry 10 1/26/2019 Antemory ND 0.015 mg/L 5 1/29/2019 Antemory ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Barium 0.83 0.550 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019	Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Selenium	Metals by ICP/MS	SW60)20A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Silver ND 1.1 mg/Kg-dry 10 1/26/2019 Sodium 200 65 mg/Kg-dry 10 1/26/2019 Thallium ND 1.1 mg/Kg-dry 10 1/26/2019 Vanadium 36 1.1 mg/Kg-dry 10 1/26/2019 Zinc 69 5.4 mg/Kg-dry 10 1/26/2019 TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG Antimory ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 Barium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29	•	4700	33	m	g/Kg-dry	10	1/26/2019
Sodium 200 65 mg/Kg-dry 10 1/26/2019 Thallium ND 1.1 mg/Kg-dry 10 1/26/2019 Vanadium 36 1.1 mg/Kg-dry 10 1/26/2019 Zinc 69 5.4 mg/Kg-dry 10 1/26/2019 TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG Antimory ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.052 0.010 mg/L 5 1/29/2019 Cobalt 0.052 0.010 mg/L 5 1/	Selenium	ND	1.1	m	g/Kg-dry	10	1/26/2019
Thallium	Silver	ND	1.1	m	g/Kg-dry	10	1/26/2019
Vanadium Zinc 36 1.1 mg/Kg-dry 10 1/26/2019 Zinc 69 5.4 mg/Kg-dry 10 1/26/2019 TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG Antimony ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Choalt 0.052 0.010 mg/L 5 1/29/2019 Chobalt 0.052 0.010 mg/L 5 1/29/2019 Iron ND 0.10 mg/L 5 1/29/2019 Iron ND 0.052 mg/L 5 1/29/201	Sodium	200	65	m	g/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS Antimony ND 0.015 Mg/L 5 1/29/2019 Analyst: JG Antimony ND 0.015 Mg/L 5 1/29/2019 Analyst: JG Antimony ND 0.010 Mg/L 5 1/29/2019 Beryllium ND 0.050 Mg/L 5 1/29/2019 Beryllium ND 0.0050 Mg/L 5 1/29/2019 Cadmium ND 0.0050 Mg/L 5 1/29/2019 Cobalt Cobalt 0.052 0.010 Mg/L 5 1/29/2019 Copper ND 0.010 Mg/L 5 1/29/2019 Copper ND 0.010 Mg/L 5 1/29/2019 Copper ND 0.052 0.010 Mg/L 5 1/29/2019 Copper ND 0.050 Mg/L 5 1/29/2019 Copper ND 0.010 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 No No 0.077 0.0050 Mg/L 5 1/29/2019 No No 0.0077 0.0050 Mg/L 5 1/29/2019 No No 0.0070 Mg/L 5 1/29/2019 No No 0.0070 Mg/L 5 1/29/2019 No No 0.010 Mg/L 5 1/29/2019 No No 0.010 Mg/L 5 1/29/2019 No No 0.010 Mg/L 5 1/29/2019 Thallium ND 0.010 Mg/L 5 1/29/2019 Thallium ND 0.010 Mg/L 5 1/29/2019 Thallium ND 0.010 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Tourn Tourn ND 0.0050 Mg/L 5 1/29/2019 Analyst: LB Mercury ND 0.0020 Mg/Kg-dry 1 1/29/2019 Analyst: LB Mercury ND 0.031 Mg/Kg-dry 1 1/29/2019 Analyst: LB Mercury ND 0.031 Mg/Kg-dry 1 1/25/2019 Analyst: LB Mercury ND 0.031 Mg/Kg-dry 1 1/25/2019 Analyst: DD pH (25 °C) pH Units 1 1/25/2019 Analyst: DD pH Units 1 1/25/2019 Analyst: DD pH Units 1 1/25/2019 Analyst: RW	Thallium	ND	1.1	m	g/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG Antimony ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.052 0.010 mg/L 5 1/29/2019 Copper ND 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Iron ND 0.025 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 <td>Vanadium</td> <td>. 36</td> <td>1.1</td> <td>m</td> <td>g/Kg-dry</td> <td>10</td> <td>1/26/2019</td>	Vanadium	. 36	1.1	m	g/Kg-dry	10	1/26/2019
Antimony Arsenic ND 0.015 mg/L 5 1/29/2019 Arsenic Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 Mg/L 5 1/29/2019 Chromium ND 0.010 Mg/L 5 1/29/2019 Cobalt 0.052 0.010 Mg/L 5 1/29/2019 Copper ND 0.10 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.050 Mg/L 5 1/29/2019 Manganese 6.5 0.010 Mg/L 5 1/29/2019 Mickel 0.072 0.0020 Mg/L 5 1/29/2019 Selenium ND 0.010 Mg/L 5 1/29/2019 Selenium ND 0.010 Mg/L 5 1/29/2019 Silver ND 0.010 Mg/L 5 1/29/2019 Silver ND 0.010 Mg/L 5 1/29/2019 Thallium ND 0.0050 Mg/L 5 1/29/2019 Thallium ND 0.0050 Mg/L 5 1/29/2019 TCLP Mercury ND 0.050 Mg/L 5 1/29/2019 TCLP Mercury ND 0.00020 Mg/L 5 1/29/2019 TCLP Mercury ND 0.00020 Mg/L 1 1/29/2019 Mercury ND 0.00020 Mg/L 1 1/29/2019 Mercury ND 0.00020 Mg/L 1 1/29/2019 Mercury ND 0.0020 Mg/L 1 1/29/2019 Mercury ND 0.0020 Mg/L 1 1/29/2019 Analyst: LB Mgrcury ND 0.0020 Mg/Kg-dry 1 1/28/2019 Analyst: LB Mgrcury ND 0.0020 Mg/Kg-dry 1 1/28/2019 Analyst: LB Mgrcury ND 0.031 Mg/Kg-dry 1 1/28/2019 Analyst: LB Mgrcury ND 0.031 Mg/Kg-dry 1 1/28/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: RW	Zinc	69	5.4	m	g/Kg-dry	10	1/26/2019
Antimony Arsenic ND 0.015 mg/L 5 1/29/2019 Arsenic Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 Mg/L 5 1/29/2019 Chromium ND 0.010 Mg/L 5 1/29/2019 Cobalt 0.052 0.010 Mg/L 5 1/29/2019 Copper ND 0.10 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.050 Mg/L 5 1/29/2019 Manganese 6.5 0.010 Mg/L 5 1/29/2019 Mickel 0.072 0.0020 Mg/L 5 1/29/2019 Selenium ND 0.010 Mg/L 5 1/29/2019 Selenium ND 0.010 Mg/L 5 1/29/2019 Silver ND 0.010 Mg/L 5 1/29/2019 Silver ND 0.010 Mg/L 5 1/29/2019 Thallium ND 0.0050 Mg/L 5 1/29/2019 Thallium ND 0.0050 Mg/L 5 1/29/2019 TCLP Mercury ND 0.050 Mg/L 5 1/29/2019 TCLP Mercury ND 0.00020 Mg/L 5 1/29/2019 TCLP Mercury ND 0.00020 Mg/L 1 1/29/2019 Mercury ND 0.00020 Mg/L 1 1/29/2019 Mercury ND 0.00020 Mg/L 1 1/29/2019 Mercury ND 0.0020 Mg/L 1 1/29/2019 Mercury ND 0.0020 Mg/L 1 1/29/2019 Analyst: LB Mgrcury ND 0.0020 Mg/Kg-dry 1 1/28/2019 Analyst: LB Mgrcury ND 0.0020 Mg/Kg-dry 1 1/28/2019 Analyst: LB Mgrcury ND 0.031 Mg/Kg-dry 1 1/28/2019 Analyst: LB Mgrcury ND 0.031 Mg/Kg-dry 1 1/28/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: RW	TCLP Metals by ICP/MS	SW13	311/6020A	(SW3005A) Prep	Date: 1/29/2019	Analyst: JG
Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.0010 mg/L 5 1/29/2019 Cobalt 0.052 0.010 mg/L 5 1/29/2019 Copper ND 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.0077 0.0050 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.050 mg/L 5 1/29/2019	•			•			
Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.0010 mg/L 5 1/29/2019 Cobalt 0.052 0.010 mg/L 5 1/29/2019 Copper ND 0.10 mg/L 5 1/29/2019 Iron ND 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.0077 0.0050 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0010 mg/L 5 1/29/2019 <th< td=""><td>Arsenic</td><td>ND</td><td>0.010</td><td></td><td>mg/L</td><td>5</td><td>1/29/2019</td></th<>	Arsenic	ND	0.010		mg/L	5	1/29/2019
Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.052 0.010 mg/L 5 1/29/2019 Copper ND 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.050 mg/L 5 1/29/2019 TC	Barium	0.83	0.050		mg/L	5	1/29/2019
Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.052 0.010 mg/L 5 1/29/2019 Copper ND 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.0077 0.0050 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury <td>Beryllium</td> <td>ND</td> <td>0.0050</td> <td></td> <td>mg/L</td> <td>5</td> <td>1/29/2019</td>	Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cobalt 0.052 0.010 mg/L 5 1/29/2019 Copper ND 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.0077 0.0050 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Silver ND 0.0050 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury	Cadmium	ND	0.0050		mg/L	5	1/29/2019
Copper ND 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.0077 0.0050 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.0020 mg/L 1 1/29/2019 Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, T	Chromium	ND	0.010		mg/L	5	1/29/2019
Iron	Cobalt	0.052	0.010		mg/L	5	1/29/2019
Lead ℓ 0.0077 0.0050 mg/L 5 1/29/2019 Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.0020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide FC) SW9	Copper .	ND	0.10		mg/L	5	1/29/2019
Manganese 6.5 0.010 mg/L 5 1/29/2019 Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND <td>Iron</td> <td>ND</td> <td>0.25</td> <td></td> <td>mg/L</td> <td>5</td> <td>1/29/2019</td>	Iron	ND	0.25		mg/L	5	1/29/2019
Nickel 0.072 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/25/2019 PH 8.05	Lead !	0.0077	0.0050		mg/L	5	1/29/2019
Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury ND 0.050 mg/L 5 1/29/2019 Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury ND 0.00020 mg/Kg-dry 1 1/29/2019 Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: RW	Manganese	6.5	0.010		mg/L	5	1/29/2019
Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury ND 0.0022 mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) pH SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Nickel	0.072	0.020		mg/L	5	1/29/2019
Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 PH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH 8.05 PH Units 1 1/25/2019 Percent Moisture	Selenium	ND	0.010		mg/L	5 `	1/29/2019
Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH 8.05 pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Silver	ND	0.010		mg/L	5	1/29/2019
Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Thallium	ND	0.0050		mg/L	5	1/29/2019
TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB mg/L 1 Analyst: LB 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB mg/Kg-dry 1 Analyst: LB mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A Prep Date: 1/27/2019 Analyst: MD mg/Kg-dry 1 Analyst: MD mg/Kg-dry 1 1/27/2019 PH (25 °C) pH SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 Analyst: JT pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Vanadium	ND	0.010		mg/L	5	1/29/2019
Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A ND Prep Date: 1/27/2019 Analyst: MD Mg/Kg-dry 1 1/27/2019 PH (25 °C) Prep Date: 1/25/2019 PH Units SW9045C PH Units Prep Date: 1/25/2019 PH Units Analyst: JT Mg/Kg-dry Analyst: JT Mg/Kg-dry PH Units Prep Date: 1/24/2019 Analyst: RW	Zinc	ND	0.050		mg/L	5	1/29/2019
Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A ND Prep Date: 1/27/2019 Analyst: MD Mg/Kg-dry 1 1/27/2019 PH (25 °C) Prep Date: 1/25/2019 PH Units SW9045C PH Units Prep Date: 1/25/2019 PH Units Analyst: JT Mg/Kg-dry Analyst: JT Mg/Kg-dry PH Units Prep Date: 1/24/2019 Analyst: RW	TCLP Mercury	SW13	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A ND Prep Date: 1/27/2019 Analyst: MD 1/27/2019 pH (25 °C) pH SW9045C PH Units Prep Date: 1/25/2019 Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	<u>-</u>	ND	0.00020		•		
Mercury ND 0.022 mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A ND Prep Date: 1/27/2019 Analyst: MD 1/27/2019 pH (25 °C) pH SW9045C PH Units Prep Date: 1/25/2019 Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Mercury	SW74	171B		Pren	Date: 1/28/2019	Analyst: LB
Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	•	-		m	•		
pH (25 °C) SW9045C Prep Date: 1/25/2019 PH Units 1 Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Prep Date: 1/24/2019 Analyst: RW	Cyanide, Total	SW90	12A		Prep	Date: 1/27/2019	Analyst: MD
pH 8.05 pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Cyanide	ND	0.31	m	g/Kg-dry	1	1/27/2019
Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	pH (25 °C)	SW90	45C		Prep	Date: 1/25/2019	-
· · · · · · · · · · · · · · · · · · ·	рН	8.05		р	H Units	1	1/25/2019
Percent Moisture 20.2 0.2 * wt% 1 1/25/2019	Percent Moisture	D2974	4		Prep	Date: 1/24/2019	Analyst: RW
	Percent Moisture	20.2	0.2	•	wt%	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

19010622 Revision 1 Work Order:

Franklin - EB Project:

Lab ID: 19010622-006

Client Sample ID: A-23 Collection Date: 1/23/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 1/24/2019	Analyst: MJ
Acetone	0.18	0.085	mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0057	mg/Kg-dry	1	1/25/2019
Bromodichloromethane .	ND	0.0057	mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0057	mg/Kg-dry	1	1/25/2019
Bromomethane	ND	0.011	mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.085	mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.057	mg/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0057	mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0057	mg/Kg-dry	1	1/25/2019
Chloroethane	ND	0.011	mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0057	mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.011	mg/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0057	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0057	mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0057	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND -	0.0057	mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0057	mg/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0057	mg/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0057	mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0057	mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.023	mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.023	.mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.011	mg/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0057	mg/Kg-dry	1	1/25/2019
Styrene	ND .	0.0057	mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0057	mg/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0057	mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0057	mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0057	mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0057	mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0057	mg/Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0057	mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.017	mg/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW355	50B) Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.043	mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.043	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Franklin - EB

Lab ID:

19010622-006

Client Sample ID: A-23

Collection Date: 1/23/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	s SW82	270C (SW3	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.43	· mg	/Kg-dry	1	1/29/2019
Anthracene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Benzidine	ND	0.43	mg	/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.1	mg	/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.22	mg	/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.22	· mg	/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.22	mg	/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	mg	/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND ND	0.22	mg	/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.22	mg	/Kg-dry	1	1/29/2019
Carbazole	ND	0.22	mg	/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.22	mg	/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.43	mg	/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.22	mg	/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.22	mg	/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.22	mg	/Kg-dry	1	1/29/2019
Chrysene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.22	mg	/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.22	mg	/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.22	mg	/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.22	mg	/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.22	mg	/Kg-dry	1 `	1/29/2019
2,4-Dichlorophenol	ND	0.22	mg	/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.22	_	/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.22	mg	/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.22	- mg	/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.43	-	/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.1	mg	/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.043	-	/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.043	mg	/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.22	-	/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.22		/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Lab ID:

Franklin - EB 19010622-006 Client Sample ID: A-23

Collection Date: 1/23/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL Qua	difier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550	B) Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.043	mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.043	mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.22	mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.22	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.22	mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.22	mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.043	mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.22	mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.22	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.22	mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND .	0.22	mg/Kg-dry	, 1	1/29/2019
Naphthalene	ND	0.043	mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.22	mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	. 0.22	mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.22	mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.22	mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.43	mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.043	mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.043	mg/Kg-dry	1 .	1/29/2019
N-Nitrosodimethylamine	ND	0.22	mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.22	mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.22	mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.087	mg/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.043	mg/Kg-dry	1	1/29/2019
Phenol	ND	0.22	mg/Kg-dry	1	1/29/2019
Pyrene	ND	0.043	mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.87	mg/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.22	mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.22	mg/Kg-dry	1 .	1/29/2019
2,4,6-Trichlorophenol	ND	0.22	mg/Kg-dry	1	1/29/2019
PCBs	SW80)82A (SW3550	B) Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.10	mg/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Lab ID: 19010622-006

Client Sample ID: A-23

Collection Date: 1/23/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	1081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0021	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0021	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0021	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0021	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0021	mg/Kg-dry	['] 1	1/29/2019
beta-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
Chlordane	NĎ	. 0.021	mg/Kg-dry	1	1/29/2019
delta-BHC	· ND	0.0021	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0021	mg/Kg-dry	1-	1/29/2019
Endosulfan II	. ND	0.0021	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin ·	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0021	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0021	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0021	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0021	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0021	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0021	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0021	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.043	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SWe	6020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	19000	23	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.3	mg/Kg-dry	10	1/26/2019
Arsenic	6.8	1.2	mg/Kg-dry	10	1/26/2019
' Barium	78	1.2	mg/Kg-dry	10	1/26/2019
Beryllium ·	1.1	0.58	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.58	mg/Kg-dry	10	1/26/2019
Calcium	66000	69	mg/Kg-dry	10	1/26/2019
Chromium	38	1.2	mg/Kg-dry	10	1/26/2019
Cobalt	27	1.2	mg/Kg-dry	10	1/26/2019
Copper	32	2.9	mg/Kg-dry	10	1/26/2019
Iron	34000	35	mg/Kg-dry	10	1/26/2019
Lead	20	0.58	mg/Kg-dry	10	1/26/2019
Magnesium	31000	35	mg/Kg-dry	10	1/26/2019
Manganese	500	1.2	mg/Kg-dry	10	1/26/2019
Nickel	70	1.2	mg/Kg-dry	10 .	1/26/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Lab ID:

Franklin - EB

19010622-006

Client Sample ID: A-23

Collection Date: 1/23/2019 7:15:00 AM

Matrix: Soil

Analyses	Result	· RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	4900	35		mg/Kg-dry	10	1/26/2019
Selenium	1.5	1.2		mg/Kg-dry	10	1/26/2019
Silver	ND	1.2		mg/Kg-dry	10	1/26/2019
Sodium ·	200	69		mg/Kg-dry	10	1/26/2019
Thallium	ND	1.2	•	mg/Kg-dry	10	1/26/2019
Vanadium	37	1.2		mg/Kg-dry	10	1/26/2019
Zinc	74	5.8		mg/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/29/2019	Analyst: MDT
Antimony	ND	0.015	·	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	. 0.74	0.050		mg/L	5	1/29/2019
Beryllium	. ND	0.0050		mg/L	5	1/29/2019
Cadmium ·	ND	0.0050		mg/L	5	1/29/2019
Chromium	. ND	0.010		mg/L	5	1/29/2019
Cobalt	- 0.034	0.010		mg/L	5	1/29/2019
Copper	ND .	0.10		mg/L	5	1/29/2019
Iron	ND	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	2.1	0.010		mg/L	5	1/29/2019
Nickel	0.081	0.020		mg/L	5	1/29/2019
Selenium	, ND	0.010	·	mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	• 5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1 1	1/29/2019
Mercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.023	0.020		mg/Kg-dry	1	1/29/2019
Cyanide, Total	- SW9	012A		Prep	Date: 1/27/2019	Analyst: MD -
Cyanide	ND	0.33		mg/Kg-dry	1	1/27/2019
pH (25 °C)	SW9	045C			Date: 1/25/2019	
pН	8.18			pH Units	1	1/25/2019
Percent Moisture	D297	-		•	Date: 1/24/2019	
Percent Moisture	23.5	0.2	•	wt% .	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client Sample ID: A-24

ANALYTICAL RESULTS

Date Reported: February 01, 2019 **Date Printed:**

February 01, 2019

Environmental Group Services, Ltd. **Client:**

Work Order: 19010622 Revision 1 Collection Date: 1/23/2019 7:30:00 AM

Franklin - EB Project: Matrix: Soil

Lab ID: 19010622-007

Analyses	Result	RL Q	ualifier U	J nits	DF	Date Analyze
/olatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019	Analyst: MJ
Acetone	0.13	0.081	mg	/Kg-dry	1	1/25/2019
Benzene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Bromoform	ND	0.0054	, mg	/Kg-dry	1	1/25/2019
Bromomethane	ND	0.011	mg	/Kg-dry	1	1/25/2019
2-Butanone	ND	0.081	-	/Kg-dry	1 .	1/25/2019
Carbon disulfide	ND	0.054	mg/	/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Chloroethane	ND	0.011	mg	/Kg-dry	1	1/25/2019
Chloroform	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Chloromethane	ND	0.011	mg.	/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0054	mg	/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0054	mg	/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0054	mg/	/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0054	mg/	/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0021	mg.	/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0021	mg	/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.021	mg	/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.021	mg	/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.011	mg	/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Styrene	ND	0.0054	mg.	/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0054	mg/	/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Toluene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0054	mg	/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0054	· mg/	/Kg-dry	1 .	1/25/2019
Trichloroethene	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0054	mg	/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.016	mg	/Kg-dry	1	1/25/2019
semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B)	Prep	Date: 1/28/2019	•
Acenaphthene	ND	0.040	mg	/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.040	mg	/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client:

Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-007 Client Sample ID: A-24

Collection Date: 1/23/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.41	'n	ng/Kg-dry	1 .	1/29/2019
Anthracene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
Benzidine	· ND	0.40	п	ng/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.040	п	ng/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.040	. n	ng/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.0	n	ng/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	· 0.21	п	ng/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	n	ng/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Carbazole	ND	0.21	n	ng/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.21	n	ng/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.40	n	ng/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.21	n	ng/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.21	n	ng/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	· ND	0.21	n	ng/Kg-dry	1	1/29/2019
Chrysene	ND	0.040	п	ng/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.21	n	ng/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1 .	1/29/2019
1,3-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.21	п	ng/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.40	n	ng/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.0	n	ng/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: F

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Lab ID:

Franklin - EB

19010622-007

Client Sample ID: A-24

Collection Date: 1/23/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/M	AS SW82	270C (SW3550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.040	mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.040	mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.82	mg/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
PCBs	SW80	82A (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.10	mg/Kg-dry	1	1/29/2019
				1	1/29/2019

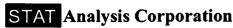
ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19010

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-007 Client Sample ID: A-24

Collection Date: 1/23/2019 7:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4´-DDD	NĎ	0.0020	mg/Kg-dry	1 ·	1/29/2019
4,4'-DDE	. ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ·	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	17000	`22	mg/Kg-dry	10	1/26/2019
Antimony	. ND	2.2	mg/Kg-dry	10	1/26/2019
Arsenic	6.1	1.1	mg/Kg-dry	10	1/26/2019
Barium	120	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	0.98	0.55	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.55	mg/Kg-dry	10	1/26/2019
Calcium	80000	65	mg/Kg-dry	10	1/26/2019
Chromium	33	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	18	1.1	mg/Kg-dry	10	1/26/2019
Copper	37	2.7	mg/Kg-dry	10	1/26/2019
Iron	35000	33	mg/Kg-dry	10	1/26/2019
Lead	17	0.55	mg/Kg-dry	10	1/26/2019
Magnesium	39000	33	mg/Kg-dry	10	1/26/2019
Manganese	640	1.1	mg/Kg-dry	10	1/26/2019
Nickel	. 50	1.1	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-007 Client Sample ID: A-24

Collection Date: 1/23/2019 7:30:00 AM

Matrix: Soil

Metals by ICP/IMS SW6020A (SW3050B) Prep Date: 1/25/2019 Date: 1/25/2019 Polassium Analysi: MDT Potassium 4000 33 mg/Kg-dry 10 1/26/2019 1/26/2019 Silver ND 1.1 mg/Kg-dry 10 1/26/2019 Sodium 190 65 mg/Kg-dry 10 1/26/2019 Yanadium 32 1.1 mg/Kg-dry 10 1/26/2019 Vanadium 32 1.1 mg/Kg-dry 10 1/26/2019 Zinc 69 5.5 mg/Kg-dry 10 1/26/2019 Antimory ND 0.015 mg/Kg-dry 10 1/26/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Beryllium ND 0.000 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.010 mg/L <td< th=""><th>Analyses</th><th>Result</th><th>RL</th><th>Qualifier Units</th><th>DF</th><th>Date Analyzed</th></td<>	Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Selenium ND 1.1 mg/Kg-dry 10 1/26/2019 Silver ND 1.1 mg/Kg-dry 10 1/26/2019 Sodium 190 65 mg/Kg-dry 10 1/26/2019 Thallium ND 1.1 mg/Kg-dry 10 1/26/2019 Vanadium 32 1.1 mg/Kg-dry 10 1/26/2019 Zinc 69 5.5 mg/Kg-dry 10 1/26/2019 TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG Antimony ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Beryllium ND 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.0050 mg/L 5	Metals by ICP/MS	SW602	20A (SW	3050B) Prep	Date: 1/25/2019	Analyst: MDT
Silver ND 1.1 mg/Kg-dry 10 1/26/2019 Sodium 190 65 mg/Kg-dry 10 1/26/2019 Thallium ND 1.1 mg/Kg-dry 10 1/26/2019 Vanadium 32 1.1 mg/Kg-dry 10 1/26/2019 Zinc 69 5.5 mg/Kg-dry 10 1/26/2019 TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG Antimony ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Arsenic ND 0.050 mg/L 5 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 Gadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.0010 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 <	Potassium	4000	33	mg/Kg-dry	10	1/26/2019
Sodium	Selenium ·	ND	1.1	mg/Kg-dry	10	1/26/2019
Thailium	Silver	ND ND	1.1	mg/Kg-dry	10	1/26/2019
Vanadium 32 1.1 mg/Kg-dry 10 1/26/2019 Zinc	Sodium	190	65	mg/Kg-dry	10	1/26/2019
Zinc 69 5.5 mg/Kg-dry 10 1/26/2019 TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG Antimony ND 0.015 mg/L 5 1/29/2019 Arsenic ND 0.010 mg/L 5 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.066 0.010 mg/L 5 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 </td <td>Thallium</td> <td>ND</td> <td>1.1</td> <td>mg/Kg-dry</td> <td>10</td> <td>1/26/2019</td>	Thallium	ND	1.1	mg/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS SW1311/6020A (SW3005A) Prep Date: 1/29/2019 Analyst: JG 1/29/2019 Antimony Arsenic ND 0.010 mg/L 5 1/29/2019 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 1/29/2019 Cobalt 0.066 0.010 mg/L 5 1/29/2019 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 1/29/2019 Thallium ND 0.050 mg/L 5 1/29/2019 1/29/2019 Vanadium ND 0.050 mg/L 5 1/29/2019 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 1/29/2019 TCLP Mercury ND 0.0020 mg/L 5 1/29/2019 Analyst: LB 1/29/2019 Mercury ND 0.026 mg/Kg-dny 1 1/29/2019 Analyst: LB 1/29/2019 Mercury 0.026 0.021 mg/Kg-dny 1	Vanadium .	32	1.1	mg/Kg-dry	10	1/26/2019
Antimony Arsenic ND 0.015 Mg/L 5 1/29/2019 Arsenic ND 0.010 Mg/L 5 1/29/2019 Barium ND 0.083 0.050 Mg/L 5 1/29/2019 Beryllium ND 0.0050 Mg/L 5 1/29/2019 Cadmium ND 0.0050 Mg/L 5 1/29/2019 Cadmium ND 0.0050 Mg/L 5 1/29/2019 Chromium ND 0.010 Mg/L 5 1/29/2019 Cobalt 0.066 0.010 Mg/L 5 1/29/2019 Copper 0.12 0.10 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Iron ND 0.25 Mg/L 5 1/29/2019 Lead 0.014 0.0050 Mg/L 5 1/29/2019 Lead 0.014 0.0050 Mg/L 5 1/29/2019 Manganese 6.7 0.010 Mg/L 5 1/29/2019 Selenium ND 0.000 Mg/L 5 1/29/2019 Silver ND 0.010 Mg/L 5 1/29/2019 Silver ND 0.010 Mg/L 5 1/29/2019 Silver ND 0.010 Mg/L 5 1/29/2019 Thallium ND 0.0050 Mg/L 5 1/29/2019 Thallium ND 0.0050 Mg/L 5 1/29/2019 TCLP Mercury ND 0.0050 Mg/L 5 1/29/2019 TCLP Mercury ND 0.0050 Mg/L 5 1/29/2019 Analyst: LB Mercury ND 0.0026 0.021 Mg/Kg-dry 1 Analyst: LB Mercury ND 0.031 Mg/Kg-dry 1 Analyst: LB Mercury Analyst: LB Mercury ND 0.031 Mg/Kg-dry 1 Analyst: LB Mg/Kg-dry 1 Analyst: RW	Zinc	69	5.5	· mg/Kg-dry	10	1/26/2019
Arsenic ND 0.010 mg/L 5 1/29/2019 Barium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.066 0.010 mg/L 5 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019	TCLP Metals by ICP/MS	SW13 ⁻	11/6020A	(SW3005A) Prep	Date: 1/29/2019	Analyst: JG
Banium 0.83 0.050 mg/L 5 1/29/2019 Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.066 0.010 mg/L 5 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.050 mg/L 5 1/29/2019	•	ND	0.015	mg/L	5	1/29/2019
Beryllium ND 0.0050 mg/L 5 1/29/2019 Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.066 0.010 mg/L 5 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Iron ND 0.025 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Mickel 0.083 0.020 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 V	Arsenic	ND	0.010	mg/L	5	1/29/2019
Cadmium ND 0.0050 mg/L 5 1/29/2019 Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.066 0.010 mg/L 5 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury </td <td>Barium</td> <td>0.83</td> <td>0.050</td> <td>mg/L</td> <td>5</td> <td>1/29/2019</td>	Barium	0.83	0.050	mg/L	5	1/29/2019
Chromium ND 0.010 mg/L 5 1/29/2019 Cobalt 0.066 0.010 mg/L 5 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.010 mg/L 5 1/29/2019 Vanadium ND 0.050 mg/L 5 1/29/2019 TC	Beryllium	ND	0.0050	mg/L	5	1/29/2019
Cobalt 0.066 0.010 mg/L 5 1/29/2019 Copper 0.12 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.010 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.0020 mg/L 1 1/29/2019	Cadmium	ND	0.0050	mg/L	5	1/29/2019
Copper 0.12 0.10 mg/L 5 1/29/2019 Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.0020 mg/L 1 1/29/2019 Mercury SW311/7470A Prep Date: 1/28/2019 Analyst: LB ND 0.026 0.021	Chromium	ND	0.010	mg/L	5	1/29/2019
Iron ND 0.25 mg/L 5 1/29/2019 Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.0020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total	Cobalt	0.066	0.010	mg/L	5	1/29/2019
Lead 0.014 0.0050 mg/L 5 1/29/2019 Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide Orbital <td< td=""><td>Copper</td><td>0.12</td><td>0.10</td><td>mg/L</td><td>5</td><td>1/29/2019</td></td<>	Copper	0.12	0.10	mg/L	5	1/29/2019
Manganese 6.7 0.010 mg/L 5 1/29/2019 Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND<	Iron	ND	0.25	mg/L	5	1/29/2019
Nickel 0.083 0.020 mg/L 5 1/29/2019 Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 PH 8.11 pH Units 1 1/25/2019 Analyst: JT Percent Moisture	Lead	0.014	0.0050	mg/L	5	1/29/2019
Selenium ND 0.010 mg/L 5 1/29/2019 Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury ND 0.050 mg/L 5 1/29/2019 Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A Prep Date: 1/27/2019 Analyst: MD mg/Kg-dry 1 1/27/2019 pH (25 °C) pH SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Percent Moisture	Manganese	6.7	0.010	mg/L	5	1/29/2019
Silver ND 0.010 mg/L 5 1/29/2019 Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Analyst: RW	Nickel .	0.083	0.020	mg/L	5	1/29/2019
Thallium ND 0.0050 mg/L 5 1/29/2019 Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 PH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT PH (015s) 1 1/25/2019 Analyst: RW	Selenium	ND	0.010	mg/L	5	1/29/2019
Vanadium ND 0.010 mg/L 5 1/29/2019 Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 PH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH 8.11 pH Units 1 1/25/2019 Percent Moisture	Silver	ND	0.010	mg/L	5	1/29/2019
Zinc ND 0.050 mg/L 5 1/29/2019 TCLP Mercury Mercury SW1311/7470A ND Prep Date: 1/29/2019 Analyst: LB 1/29/2019 Mercury Mercury SW7471B Mercury Prep Date: 1/28/2019 Analyst: LB 1/29/2019 Cyanide, Total Cyanide SW9012A ND Prep Date: 1/27/2019 Analyst: MD 1/27/2019 PH (25 °C) pH SW9045C 8.11 Prep Date: 1/25/2019 Analyst: JT PH Units Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Thallium	ND	0.0050	mg/L	5	1/29/2019
TCLP Mercury SW1311/7470A Prep Date: 1/29/2019 Analyst: LB 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB 1/29/2019 Cyanide, Total Cyanide SW9012A Prep Date: 1/27/2019 Analyst: MD 1/27/2019 Ph (25 °C) Prep Date: 1/25/2019 SW9045C Prep Date: 1/25/2019 Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Vanadium	ND	0.010	mg/L	5	1/29/2019
Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH 8.11 pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Zinc	ND	0.050	mg/L	5	1/29/2019
Mercury ND 0.00020 mg/L 1 1/29/2019 Mercury SW7471B Prep Date: 1/28/2019 Analyst: LB Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total SW9012A Prep Date: 1/27/2019 Analyst: MD Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH 8.11 pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	TCLP Mercury	SW131	11/7470A	Prep	Date: 1/29/2019	Analyst: LB
Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A ND Prep Date: 1/27/2019 Analyst: MD 1/27/2019 pH (25 °C) pH SW9045C Prep Date: 1/25/2019 Prep Date: 1/25/2019 Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	· ·	ND	0.00020	mg/L	1	1/29/2019
Mercury 0.026 0.021 mg/Kg-dry 1 1/29/2019 Cyanide, Total Cyanide SW9012A ND Prep Date: 1/27/2019 Analyst: MD 1/27/2019 pH (25 °C) pH SW9045C Prep Date: 1/25/2019 Prep Date: 1/25/2019 Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Mercury	SW747	71B	Prep	Date: 1/28/2019	Analyst: LB
Cyanide ND 0.31 mg/Kg-dry 1 1/27/2019 pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	•	0.026	0.021	mg/Kg-dry	1	•
pH (25 °C) SW9045C Prep Date: 1/25/2019 Analyst: JT 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	Cyanide, Total	SW901	12A	Prep	Date: 1/27/2019	Analyst: MD
pH 8.11 pH Units 1 1/25/2019 Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	•	ND	0.31	mg/Kg-dry	1	1/27/2019
Percent Moisture D2974 Prep Date: 1/24/2019 Analyst: RW	pH (25 °C)	SW904	45C	•		· ·
· · · · · · · · · · · · · · · · · ·	рН	8.11		pH Units	1	1/25/2019
Percent Moisture 20.3 0.2 * wt% 1 1/25/2019	Percent Moisture	D2974		Prep	Date: 1/24/2019	•
	Percent Moisture	20.3	0.2	* wt%	1	1/25/2019

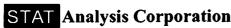
· · ·

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client: Environmental Group Services, Ltd.

19010622 Revision 1

Work Order: Project:

Lab ID:

Franklin - EB 19010622-008 Client Sample ID: A-25

Collection Date: 1/23/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019	Analyst: AE
Acetone	ND	0.076		mg/Kg-dry	1	1/26/2019
Benzene	ND	/ 0.0051	•	mg/Kg-dry	1	1/26/2019
Bromodichloromethane	ND	0.0051		mg/Kg-dry	1	1/26/2019
Bromoform	ND	0.0051		mg/Kg-dry	1	1/26/2019
Bromomethane	ND	0.010		mg/Kg-dry	1	1/26/2019
2-Butanone	ND	0.076		mg/Kg-dry	1	1/26/2019
Carbon disulfide	ND	0.051		mg/Kg-dry	1	1/26/2019
Carbon tetrachloride	ND	0.0051		mg/Kg-dry	1	1/26/2019
Chlorobenzene	ND	0.0051		mg/Kg-dry	`1	1/26/2019
Chloroethane	ND	0.010		mg/Kg-dry	1	1/26/2019
Chloroform	ND	0.0051		mg/Kg-dry	1	1/26/2019
Chloromethane	ND	0.010		mg/Kg-dry	1	1/26/2019
Dibromochloromethane	ND	0.0051		mg/Kg-dry	1	1/26/2019
1,1-Dichloroethane	ND	0.0051		mg/Kg-dry	1	1/26/2019
1,2-Dichloroethane	ND	0.0051		mg/Kg-dry	1 ′	1/26/2019
1,1-Dichloroethene	ND	0.0051		mg/Kg-dry	1	1/26/2019
cis-1,2-Dichloroethene	ND	0.0051		mg/Kg-dry	1	1/26/2019
trans-1,2-Dichloroethene	ND	0.0051		mg/Kg-dry	1	1/26/2019
1,2-Dichloropropane	ND	0.0051		mg/Kg-dry	1	1/26/2019
cis-1,3-Dichloropropene	ND	0.0020		mg/Kg-dry	1	1/26/2019
trans-1,3-Dichloropropene	ND	0.0020		mg/Kg-dry	1	1/26/2019
Ethylbenzene	ND	0.0051		mg/Kg-dry	1,	1/26/2019
2-Hexanone	ND	0.020		mg/Kg-dry	1	1/26/2019
4-Methyl-2-pentanone	ND	0.020		mg/Kg-dry	1	1/26/2019
Methylene chloride	ND	0.010		mg/Kg-dry	1	1/26/2019
Methyl tert-butyl ether	ND	0.0051		mg/Kg-dry	1	1/26/2019
Styrene	ND	0.0051		mg/Kg-dry	1	1/26/2019
1,1,2,2-Tetrachloroethane	ND	0.0051		mg/Kg-dry	1 ,	1/26/2019
Tetrachloroethene	ND	0.0051		mg/Kg-dry	1	1/26/2019
Toluene	ND	0.0051		mg/Kg-dry	1	1/26/2019
1,1,1-Trichloroethane	ND	0.0051		mg/Kg-dry	1	1/26/2019
1,1,2-Trichloroethane	ND	0.0051		mg/Kg-dry	1	1/26/2019
Trichloroethene	ND	0.0051		mg/Kg-dry	1	1/26/2019
Vinyl chloride	ND	0.0051		mg/Kg-dry	1	1/26/2019
Xylenes, Total	ND	0.015		mg/Kg-dry	1	1/26/2019
emivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B)	Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.037		mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.037		mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client: Environmental Group Services, Ltd.

19010622 Revision 1 Work Order:

Franklin - EB **Project:**

Lab ID: 19010622-008 Client Sample ID: A-25

Collection Date: 1/23/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW355	0B) Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.37	mg/Kg-dry	1	1/29/2019
Anthracene	ND	0.037	mg/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.037	mg/Kg-dry	1	1/29/2019
Benzidine	ND	0.37	mg/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.037	mg/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.037	mg/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.037	mg/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.037	mg/Kg-dry	1	1/29/2019
Benzoic acid	ND	0.92	mg/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.19	mg/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.19	mg/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.19	mg/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	0.92	mg/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.19	mg/Kg-dry	1	1/29/2019
Carbazole	ND	0.19	mg/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.19	mg/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.37	mg/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.19	mg/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.19	mg/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.19 :	mg/Kg-dry	1	1/29/2019
Chrysene	ND	0.037	mg/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.037	mg/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.19	mg/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.19	mg/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.19	mg/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	0.92	mg/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	1/29/2019
2.6-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Lab ID: 19010622-008

Client Sample ID: A-25
Collection Date: 1/23/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS		270C (SW355	50B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND:	0.037	m	g/Kg-dry	1	1/29/2019
Fluorene	ND	0.037	m	g/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.19	m	g/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.19	m	ig/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.19	m	ig/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.19	m	g/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.037	m	ig/Kg-dry	1	1/29/2019
Isophorone	ND	0.19	m	ig/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.19	m	g/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.19	m	ig/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.19	m	g/Kg-dry	1	1/29/2019
Naphthalene	ND	0.037	m	g/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.19	m	g/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.19	m	g/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.19	m	g/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.19	m	ig/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.37	m	g/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.037	m	g/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.037	m	g/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.19	m	ig/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.19	m	g/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.19	m	g/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.074	m	g/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.037	m	g/Kg-dry	1	1/29/2019
Phenol	ND	0.19	m	g/Kg-dry	1	1/29/2019
Pyrene	ND	0.037	m	g/Kg-dry	1	1/29/2019
Pyridine	ND	0.74	m	g/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.19	m	g/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.19	, m	g/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.19	m	ıg/Kg-dry	1	1/29/2019
PCBs	SW80)82A (SW355		•	Date: 1/29/2019	•
Aroclor 1016	ND	0.091	m	ig/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.091	m	g/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.091		g/Kg-dry	1 '	1/29/2019
Aroclor 1242	ND	0.091	m	g/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.091	m	g/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.091	m	g/Kg-dry	1	1/29/2019
Aroclor 1260 l	ND	0.091	m	g/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environme

Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Lab ID: Franklin - EB

19010622 Revision I

19010622-008

Client Sample ID: A-25

Collection Date: 1/23/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Pesticides	SW8	081B (SW	3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0018	•	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0018		mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0018		mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0018		mg/Kg-dry	1 .	1/29/2019
alpha-BHC	· ND	0.0018		mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0018		mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0018		mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.018		mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0018		mg/Kg-dry	1	1/29/2019
Dieldrin	. ND	0.0018		mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0018		mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0018		mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0018		mg/Kg-dry	1	1/29/2019
Endrin	· ND	0.0018		mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0018		mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0018		mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0018		mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0018		mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0018		mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0018		mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0018		mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.037		mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Atuminum	13000	19		mg/Kg-dry	10	1/26/2019
Antimony	ND	1.9		mg/Kg-dry	10	1/26/2019
Arsenic	13	0.97		mg/Kg-dry	10	1/26/2019
Barium	39	0.97		mg/Kg-dry	10	1/26/2019
Beryllium	0.76	0.49		mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.49		mg/Kg-dry	10	1/26/2019
Calcium	70000	58		mg/Kg-dry	10	1/26/2019
Chromium	26	0.97		mg/Kg-dry	10	1/26/2019
Cobalt	17	0.97		mg/Kg-dry	10	1/26/2019
Copper	33	2.4		mg/Kg-dry	10	1/26/2019
Iron	27000	29		mg/Kg-dry	10	1/26/2019
Lead	16	0.49		mg/Kg-dry	10	1/26/2019
Magnesium	35000	29		mg/Kg-dry	10	1/26/2019
Manganese	520	0.97	÷	mg/Kg-dry	10	1/26/2019 ,
Nickel .	44	0.97		mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-008 **ANALYTICAL RESULTS**

Client Sample ID: A-25

Collection Date: 1/23/2019 7:45:00 AM

Matrix: Soil

Analyses	Result	RL C	Qualifier Units	DF	Date Analyzed
Metals by ICP/MS	, SW6	020A (SW30)50B) Pres	Date: 1/25/2019	Analyst: MDT
Potassium	3300	29	mg/Kg-dry		1/26/2019
Selenium	ND	0.97	mg/Kg-dry		1/26/2019
Silver	ND	0.97	mg/Kg-dry		1/26/2019
Sodium	230	58	mg/Kg-dry		1/26/2019
Thallium	ND	0.97	mg/Kg-dry		1/26/2019
Vanadium	26	0.97	mg/Kg-dry		1/26/2019
Zinc	57	4.9	mg/Kg-dry		1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A (SW3005A) Prej	Date: 1/29/2019	Analyst: JG
Antimony	ND	0.015	mg/L	5	1/29/2019
Arsenic	ND	0.010	mg/Ļ	5	1/29/2019
Barium	. 0.43	0.050	mg/L	5	1/29/2019
Beryllium	ND	0.0050	mg/L	5	1/29/2019
Cadmium	ND	0.0050	mg/L	5	1/29/2019
Chromium	ND	0.010	mg/L	5	1/29/2019
Cobalt	0.095	0.010	mg/L	5	1/29/2019
Copper	0.16	0.10	mg/L	5	1/29/2019
Iron	ND	0.25	mg/L	5	1/29/2019
Lead	0.013	0.0050	mg/L	5	1/29/2019
Manganese	6.3	0.010	mg/L	5	1/29/2019
Nickel	0.17	0.020	mg/L	5 ,	1/29/2019
Selenium	ND	0.010	mg/L	5	1/29/2019
Silver	ND	0.010	mg/L	5	1/29/2019
Thallium	ND	0.0050	mg/L	5	1/29/2019
Vanadium	ND	0.010	mg/L	5	1/29/2019
Zinc	0.065	· 0.050	mg/L	5	1/29/2019
CLP Mercury	SW1	311/7470A	Prej	Date: 1/29/2019	•
Mercury	ND ·	0.00020	mg/L	1	1/29/2019
Mercury	SW7		•	Date: 1/28/2019	•
Mercury	0.025	0.017	mg/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A	Prej	Date: 1/27/2019	•
Cyanide	ND	0.28	mg/Kg-dry	1	1/27/2019
оН (25 °C)	SW9	045C	Pre	Date: 1/25/2019	Analyst: JT
pH	7.77		pH Units	1	1/25/2019
Percent Moisture	D297			Date: 1/24/2019	•
Percent Moisture	12.3	0.2	* wt%	1	1/25/2019

Qualifiers: J - Ana

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

February 01, 2019

Date Frinted: Teoldary 01, 20

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-009

Client Sample ID: A-26

Collection Date: 1/23/2019 8:00:00 AM

ANALYTICAL RESULTS

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pre	ep Date: 1/24/2019	Analyst: AE
Acetone	ND	0.097	mg/Kg-dr	y 1	1/26/2019
Benzene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Bromodichloromethane	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Bromoform	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Bromomethane	ND	0.013	mg/Kg-dr	y 1	1/26/2019
2-Butanone	ND	0.097	mg/Kg-dr	•	1/26/2019
Carbon disulfide	ND	0.065	mg/Kg-dr	y 1	1/26/2019
Carbon tetrachloride	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Chlorobenzene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Chloroethane	ND	0.013	mg/Kg-dr	y 1	1/26/2019
Chloroform	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Chloromethane	ND	0.013	mg/Kg-dr	y 1	1/26/2019
Dibromochloromethane	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
1,1-Dichloroethane	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
1,2-Dichloroethane	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
1,1-Dichloroethene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
cis-1,2-Dichloroethene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
trans-1,2-Dichloroethene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
1,2-Dichloropropane `	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
cis-1,3-Dichloropropene	ND	0.0026	mg/Kg-dr	y 1	1/26/2019
trans-1,3-Dichloropropene	ND	0.0026	mg/Kg-dr	y 1	1/26/2019
Ethylbenzene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
2-Hexanone	ND	0.026	mg/Kg-dr	y 1	1/26/2019
4-Methyl-2-pentanone	ND	0.026	mg/Kg-dr	y 1	1/26/2019
Methylene chloride	ND	0.013	mg/Kg-dr	y 1	1/26/2019
Methyl tert-butyl ether	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Styrene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
1,1,2,2-Tetrachloroethane	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Tetrachloroethene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Toluene	ND ·	0.0065	mg/Kg-dr	y 1	1/26/2019
1,1,1-Trichloroethane	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
1,1,2-Trichloroethane	ND	0.0065	mg/Kg-dr		1/26/2019
Trichloroethene	ND	0.0065	mg/Kg-dr	y 1	1/26/2019
Vinyl chloride	ND	0.0065	mg/Kg-dr		1/26/2019
Xylenes, Total	ND	0.019	mg/Kg-dr	y 1	1/26/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) Pre	ep Date: 1/28/201 9	•
Acenaphthene	ND	0.040	mg/Kg-dr	y 1	1/29/2019
Acenaphthylene	ND	0.040	mg/Kg-dr	y 1	1/29/2019

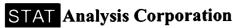
ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: Febr

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-009 Client Sample ID: A-26

Collection Date: 1/23/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyze
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	550B) Pre	ep Date: 1/28/201	9 Analyst: FP
Aniline	ND	0.40	mg/Kg-dr	y 1	1/29/2019
Anthracene	ND	0.040	mg/Kg-di	y 1	1/29/2019
Benz(a)anthracene	ND	0.040	mg/Kg-dı	y ,1	1/29/2019
Benzidine	ND	0.40	mg/Kg-di	y 1	1/29/2019
Benzo(a)pyrene	ND	0.040	mg/Kg-dı	y 1	1/29/2019
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dı	y 1	1/29/2019
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dı	y 1	1/29/2019
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dı	y 1	1/29/2019
Benzoic acid	ND	0.99	mg/Kg-dı	y 1	1/29/2019
Benzyl alcohol	ND	0.20	mg/Kg-dr	y 1	1/29/2019
Bis(2-chloroethoxy)methane	ND	. 0.20	mg/Kg-dı	y 1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg-dı	y 1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	0.99	mg/Kg-dı	y 1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg-dı	y 1	1/29/2019
Butyl benzyl phthalate	ND	0.20	mg/Kg-dı	y 1	1/29/2019
Carbazole	ND	0.20	mg/Kg-dı	y 1	1/29/2019
4-Chloroaniline	ND	0.20	mg/Kg-dı	y 1	1/29/2019
4-Chloro-3-methylphenol	ND	0.40	mg/Kg-dı	y 1	1/29/2019
2-Chloronaphthalene	ND	0.20	mg/Kg-dı	y 1	1/29/2019
2-Chlorophenol	ND	0.20	mg/Kg-dı	y 1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg-di	y 1	1/29/2019
Chrysene	ND	0.040	mg/Kg-dı	y 1	1/29/2019
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dı	y 1	1/29/2019
Dibenzofuran	ND	0.20	mg/Kg-di	y 1,	1/29/2019
1,2-Dichlorobenzene	ND	0.20	mg/Kg-dı	y 1	1/29/2019
1,3-Dichlorobenzene	ND	0.20	mg/Kg-dı	y 1	1/29/2019
1,4-Dichlorobenzene	ND	0.20	mg/Kg-dı	y 1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.20	mg/Kg-dı	y 1	1/29/2019
2,4-Dichlorophenol	ND	0.20	mg/Kg-dı	y 1	1/29/2019
Diethyl phthalate	ND	0.20	mg/Kg-dı	y 1	1/29/2019
2,4-Dimethylphenol	ND	0.20	mg/Kg-dı	y 1	1/29/2019
Dimethyl phthalate	ND	0.20	mg/Kg-dr	y 1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg-dı	y 1	1/29/2019
2,4-Dinitrophenol	ND	0.99	mg/Kg-dı	y 1	1/29/2019
2,4-Dinitrotoluene	ND	0.040	mg/Kg-dı	y 1	1/29/2019
2,6-Dinitrotoluene	ND	0.040	mg/Kg-dı	y 1 _	1/29/2019
Di-n-butyl phthalate	ND	0.20	mg/Kg-dı	y 1	1/29/2019
Di-n-octyl phthalate	ND	0.20	mg/Kg-dı	y 1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Work Order:

Environmental Group Services, Ltd.

19010622 Revision 1

Project: Lab ID: Franklin - EB

19010622-009

Client Sample ID: A-26

Collection Date: 1/23/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualit	fier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.040	mg/Kg-dry	1	1/29/2019
Fluorene `	ND	0.040	mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.20	mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.20	mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.20	mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.20	mg/Kg-dry	1	1/29/2019
Naphthalene	ND	0.040	mg/Kg-dry	1 -	1/29/2019
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.20	mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.080	mg/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Phenol	ND	0.20	mg/Kg-dry	1	1/29/2019
Pyrene	NĎ	0.040	mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.80	mg/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1 .	1/29/2019
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	1/29/2019
PCBs)82A (SW3550B)	Prep	Date: 1/29/2019	•
Aroclor 1016	ND	0.098	mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.098	· mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.098	mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.098	mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.098	mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.098	mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.098	mg/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Environmental Group Services, Ltd.

Work Order:

Client:

Lab ID:

19010622 Revision 1

Project:

Franklin - EB 19010622-009 Client Sample ID: A-26

Collection Date: 1/23/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW355	0B) Prep	Date: 1/29/	2019 Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019
Aldrin	ND -	0.0020	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-Chlordane ·	ND	0.0020	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	. 1/29/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1 .	1/29/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW305	OB) Prep	Date: 1/25/2	2019 Analyst: MDT
Aluminum	12000	22	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/26/2019
Arsenic	13	1.1	mg/Kg-dry	10	1/26/2019
Barium	39	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	0.76	0.55	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.55	mg/Kg-dry	10	1/26/2019
Calcium	58000	66	mg/Kg-dry	10	1/26/2019
Chromium	23	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	9.4	1.1	mg/Kg-dry	10	1/26/2019
Copper	45	2.7	mg/Kg-dry	10	1/26/2019
Iron	30000	33	mg/Kg-dry	10	1/26/2019
Lead	24	0.55	mg/Kg-dry	10	1/26/2019
Magnesium	29000	33	mg/Kg-dry	10	1/26/2019
Manganese	310	1.1	mg/Kg-dry	10	1/26/2019
Nickel	34	1.1	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP 1L300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-009 Client Sample ID: A-26

Collection Date: 1/23/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Un	nits DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW:	3050B)	Prep Date: 1/25/2	019 Analyst: MDT
Potassium	2700	33	mg/K	•	1/26/2019
Selenium	ND	1.1	mg/K		1/26/2019
Silver	ND	1.1	mg/K	g-dry 10	1/26/2019
Sodium	200	66	mg/K	g-dry 10	1/26/2019
Thallium	ND	1.1	mg/K	g-dry 10	1/26/2019
Vanadium	29	1.1	mg/K	g-dry 10	1/26/2019
Zinc	53	5.5	mg/K	g-dry 10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A)	Prep Date: 1/29/2	2019 Analyst: MDT
Antimony	ND	0.015	mg	/L 5	1/29/2019
Arsenic	ND	0.010	mg	/L 5	1/29/2019
Barium .	0.34	0.050	mg	/L 5	1/29/2019
Beryllium	ND	0.0050	mg	/L 5	1/29/2019
Cadmium	ND	0.0050	mg	/L 5	1/29/2019
Chromium	ND	0.010	mg	/L 5	1/29/2019
Cobalt	ND	0.010	mg	/L 5	1/29/2019
Copper	ND	0.10	mg	/L 5	1/29/2019
Iron	ND	0.25	mg	/L 5	1/29/2019
Lead	ND	0.0050	mg	/L 5	1/29/2019
Manganese	0.90	0.010	mg	/L 5	1/29/2019
Nickel	ND	0.020	mg	/L 5	1/29/2019
Selenium	ND	0.010	mg	/L 5	1/29/2019
Silver	ND	0.010	mg	/L 5	1/29/2019
Thallium	ND	0.0050	mg	/L 5	1/29/2019
Vanadium	ND	0.010	mg	/L 5	1/29/2019
Zinc	ND	0.050	mg	/L 5	1/29/2019
TCLP Mercury	SW1	311/7470A		Prep Date: 1/29/2	
Mercury	ND	0.00020	mg	/L 1	1/29/2019
Mercury	SW7	471B		Prep Date: 1/28/2	•
Mercury	0.027	0.023	mg/K	g-dry 1	1/29/2019
Cyanide, Total	SW9			Prep Date: 1/27/2	-
Cyanide	ND	0.31	mg/K	g-dry 1	1/27/2019
pH (25 °C)	SW9	045C		Prep Date: 1/25/2	019 Analyst: JT
pH	8.10		pH U	Inits 1	1/25/2019
Percent Moisture	D297	4		Prep Date: 1/24/2	019 Analyst: RW
Percent Moisture	18.5	0.2	* wt ^c	% 1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-010 Client Sample ID: A-27

Collection Date: 1/23/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pre	Date: 1/24/2019	Analyst: AET
Acetone	ND	0.082	mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0054	mg/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0054	mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0054	mg/Kg-dry	1	1/25/2019
Bromomethane	ND	0.011	mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.082	mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.054	mg/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0054	mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0054	mg/Kg-dry	1	1/25/2019
Chloroethane	ND	0.011	mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0054	mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.011	mg/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0054	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0054	mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0054	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0054	mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0054	mg/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0054	mg/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0054	mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0022	mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0022	mg/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0054	mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.022	mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.022	mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.011	mg/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0054	mg/Kg-dry	1	1/25/2019
Styrene	ND	0.0054	mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0054	mg/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0054	mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0054	mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0054	mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0054	mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0054	mg/Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0054	mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.016	mg/Kg-dry	1	1/25/2019
emivolatile Organic Compounds by GC/MS	SW82	270C (SW355		Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.039	mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.039	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Envi

Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-010 Client Sample ID: A-27

Collection Date: 1/23/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35	50B) Pre	p Date: 1/2	28/2019 Analyst: FP
Aniline	ND	0.40	mg/Kg-dry	1	1/29/2019
Anthracene	ND	0.039	mg/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.039	mg/Kg-dry	1	1/29/2019
Benzidine	ND	0.39	mg/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.039	mg/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.039	mg/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.039	mg/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.039	mg/Kg-dry	1	1/29/2019
Benzoic acid	ND	0.99	mg/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.20	mg/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	0.99	mg/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.20	mg/Kg-dry	1	1/29/2019
Carbazole	ND	0.20	mg/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.20	mg/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.39	mg/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND .	0.20	mg/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.20	mg/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	1/29/2019
Chrysene	ND	0.039	mg/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.039	mg/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.20	mg/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.20	mg/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.20	mg/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.20	mg/Kg-dry	1 1	1/29/2019
2,4-Dimethylphenol	ND	0.20	mg/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.20	mg/Kg-dry		1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.39	mg/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	0.99	mg/Kg-dry		1/29/2019
2,4-Dinitrotoluene	ND	0.039	mg/Kg-dry		1/29/2019
2,6-Dinitrotoluene	ND	0.039	mg/Kg-dry		1/29/2019
Di-n-butyl phthalate	ND	0.20	· mg/Kg-dry		1/29/2019
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry		1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Work Order: Environmental Group Services, Ltd.

WOIR OIG

19010622 Revision 1

Project: Lab ID: Franklin - EB

D 11: DD

19010622-010

Client Sample ID: A-27

cheme Sample 1D. 11-27

Collection Date: 1/23/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35	50B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.039		mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.039		mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.20		mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.20		mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.20		mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.20		mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.039		mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.20		mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.20		mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.20		mg/Kg-dry	1 .	1/29/2019
Naphthalene	ND ·	0.039		mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.20		mg/Kg-dry	1 .	1/29/2019
3-Nitroaniline	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	· 0.20		mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.39		mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.039		mg/Kg-dry	1 ·	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.039		mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.20		mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.20		mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20		mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.080		mg/Kg-dry	1	1/29/2019
Phenanthrene .	ND	0.039		mg/Kg-dry	1	1/29/2019
Phenol	ND	0.20		mg/Kg-dry	1	1/29/2019
Pyrene	ND ·	0.039		mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.80		mg/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.20		mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.20		mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND '	0.20		mg/Kg-dry	1	1/29/2019
PCBs	SW80)82A (SW35	50B)	Prep	Date: 1/29/2019	•
Aroclor 1016	ND	0.095		mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.095		mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.095		mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.095		mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.095		mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.095		mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.095		mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-010

Client Sample ID: A-27

Collection Date: 1/23/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4´-DDE	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	1/29/2019
Aldrin .	ND	0.0019	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.019,	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND -	0.0019	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.039	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	15000	22	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.2	mg/Kg-dry	` 10	1/26/2019
Arsenic	8.0	1.1	mg/Kg-dry	10	1/26/2019
Barium	63	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	0.86	0.54	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.54	mg/Kg-dry	10	1/26/2019
Calcium	71000	65	mg/Kg-dry	10	1/26/2019
Chromium	30	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	16	1.1	mg/Kg-dry	10	1/26/2019
Copper	32	2.7	mg/Kg-dry	10	1/26/2019
Iron	28000	33	mg/Kg-dry	10	1/26/2019
Lead '	15	0.54	mg/Kg-dry	10	1/26/2019
Magnesium	35000	33	mg/Kg-dry	10	1/26/2019
Manganese	530	1.1	mg/Kg-dry	10	1/26/2019
Nickel	44	1.1	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Environmental Group Services, Ltd. Client:

Work Order: 19010622 Revision 1

Franklin - EB Project:

Lab ID: 19010622-010

Client Sample ID: A-27

Collection Date: 1/23/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	- SW60) 20A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	3900	`33	•	mg/Kg-dry	10	1/26/2019
Selenium	ND	1.1	1	mg/Kg-dry	10	1/26/2019
Silver	ND	1.1		mg/Kg-dry	10	1/26/2019
Sodium	360	65	1	mg/Kg-dry	10	1/26/2019
Thallium	ND	1.1	1	mg/Kg-dry	10	1/26/2019
Vanadium	30	1.1		mg/Kg-dry	10	1/26/2019
Zinc	60	5.4	ı	mg/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1:	311/6020A	(SW3005	A) Prep	Date: 1/29/2019	Analyst: JG
Antimony	ND	0.015		mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.77	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050	,	mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.037	0.010	•	mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5	1/29/2019
Iron	0.44	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	4.7	0.010		mg/L	5	1/29/2019
Nickel	0.020	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW13	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
Mercury	SW74	171B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.026	0.020	ı	mg/Kg-dry	. 1	1/29/2019
Cyanide, Total	SW90)12A		Prep	Date: 1/27/2019	
Cyanide	ND	0.30	•	mg/Kg-dry	1	1/27/2019
pH (25 °C)	SW90)45C		•	Date: 1/25/2019	•
рН	7.65			pH Units	1	1/25/2019
Percent Moisture	D297			•	Date: 1/24/2019	Analyst: RW
Percent Moisture	16.2	0.2	•	wt%	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP 1L300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Lab ID:

Franklin - EB 19010622-011 Client Sample ID: A-28

Collection Date: 1/23/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Ur	nits	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019	Analyst: AET
Acetone	ND	0.071	mg/K	g-dry	1	1/25/2019
Benzene	ND	0.0047	mg/K	g-dry	1	1/25/2019
Bromodichloromethane	ND	0.0047	mg/K	g-dry	1	1/25/2019
Bromoform	ND	0.0047	mg/K	g-dry	1	1/25/2019
Bromomethane	ND	0.0094	mg/K	g-dry	1	1/25/2019
2-Butanone	ND	0.071	mg/K	g-dry	1	1/25/2019
· Carbon disulfide	ND	0.047	mg/K	g-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0047	mg/K	g-dry	1 .	1/25/2019
Chlorobenzene	ND	0.0047	mg/K	g-dry	1	1/25/2019
Chloroethane	ND	0.0094	mg/K	g-dry	1	1/25/2019
Chloroform	ND	0.0047	mg/K	g-dry	1	1/25/2019
Chloromethane	ND	0.0094	mg/K	g-dry	1	1/25/2019
Dibromochloromethane	ND	0.0047	mg/K	g-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0047	mg/K	g-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0019	mg/K	g-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0019	mg/K	g-dry	1	1/25/2019
Ethylbenzene	ND	0.0047	mg/K	g-dry	1	1/25/2019
2-Hexanone	ND	0.019	mg/K	g-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.019	mg/K	g-dry	1	1/25/2019
Methylene chloride	ND	0.0094	mg/K	g-dry	1	1/25/2019
Methyl tert-butyl ether	· ND	0.0047	mg/K	g-dry	1	1/25/2019
Styrene	ND	0.0047	mg/K	g-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019
Tetrachloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019
Toluene	ND	0.0047	mg/K	g-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019
Trichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019
Vinyl chloride	ND	0.0047	mg/K	g-dry	1	1/25/2019
Xylenes, Total	ND	0.014	mg/K	-	1	1/25/2019
Semivolatile Organic Compounds by GC/M		270C (SW35	•	•	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.038	mg/K	•	1	1/29/2019
Acenaphthylene	ND	0.038	mg/K	g-dry	1	1/29/2019

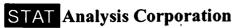
ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Lab ID: 19010622-011

Client Sample ID: A-28

Collection Date: 1/23/2019 8:30:00 AM

Matrix: Soil

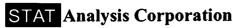
Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.38	m	g/Kg-dry	1	1/29/2019
Anthracene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.038	· m	g/Kg-dry	1	1/29/2019
Benzidine	ND	0.38	m	g/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Benzoic acid	ND	0.96	m	g/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.20	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.20	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.20	m	g/Kg-dry	1 ·	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	0.96	m	g/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	· 0.20	m	g/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.20	m	g/Kg-dry	1	1/29/2019
Carbazole	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.38	m	g/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.20	m	g/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.20	m	g/Kg-dry	1	1/29/2019
Chrysene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.20	m	g/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.20	m	g/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.20	m	g/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.20		g/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.20		g/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.20	m	g/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.20	m	g/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.38		g/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	0.96		g/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.038		g/Kg-dry	1	1/29/2019
2.6-Dinitrotoluene	ND	0.038		g/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.20		g/Kg-dry	1 .	1/29/2019
Di-n-octyl phthalate	ND	0.20		g/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-011 Client Sample ID: A-28

Collection Date: 1/23/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.038	mg	g/Kg-dry	1	1/29/2019
Fluorene	ND	0.038	· mg	g/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.20	mç	g/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.20	mç	g/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.20	m	g/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.20	mg	g/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.038	m	g/Kg-dry	1	1/29/2019
Isophorone	ND	0.20	. mg	g/Kg-dry	1	1/29/2019
2-Methylnaphthalene '	ND	0.20	mç	g/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.20	mç	g/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.20	mg	g/Kg-dry	1	1/29/2019
Naphthalene	ND	0.038	mç	g/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.20	mç	g/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.20	mç	g/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.20	mç	g/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.20	mç	g/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.38	mg	g/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.038	mç	g/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.038	mç	g/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.20	mç	g/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.20	mç	g/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mç	g/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.077	mç	g/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.038	mç	g/Kg-dry	1	1/29/2019
Phenol ·	ND	0.20	mç	g/Kg-dry	1	1/29/2019 .
Pyrene	ND	0.038	mg	g/Kg-dry	1	1/29/2019
Pyridine	ND ·	0.77	mg	g/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.20	mç	g/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.20	mç	/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.20	mą	g/Kg-dry	1	1/29/2019
PCBs	SW8	082A (SW3	550B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.093	mg	g/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.093	mg	g/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.093	mg	g/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.093	mę	g/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.093	mg	g/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.093	mg	g/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.093	mg	g/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-011

Collection Date: 1/23/2019 8:30:00 AM

Matrix: Soil

Client Sample ID: A-28

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND .	0.0019	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0019	mg/Kg-dry	، 1	1/29/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.019	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	, 1	1/29/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	· ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.039	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	14000	21	mg/Kg-dry	10	1/26/2019
Antimony	. ND	2.1	mg/Kg-dry	10	1/26/2019
Arsenic	7.0	1.1	mg/Kg-dry	10	1/26/2019
Barium	73	1.1	mg/Kg-dry	10 ·	1/26/2019
Beryllium	0.83	0.54	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.54	mg/Kg-dry	10	1/26/2019
Calcium	76000	64	mg/Kg-dry	10	1/26/2019
Chromium	34	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	·14	1.1	mg/Kg-dry	10	1/26/2019
Copper	30	2.7	mg/Kg-dry	10	1/26/2019
Iron	32000	32	mg/Kg-dry	10	1/26/2019
Lead	17	0.54	mg/Kg-dry	10	1/26/2019
Magnesium	37000	32	mg/Kg-dry	10	1/26/2019
Manganese	' 490	1.1	mg/Kg-dry	10	1/26/2019
Nickel	44	1.1	mg/Kg-dry	10	1/26/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client: Work Order: Environmental Group Services, Ltd.

19010622 Revision 1

Project:

Lab ID:

Franklin - EB 19010622-011

Client Sample ID: A-28

Collection Date: 1/23/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	3200	32	n	ig/Kg-dry	10	1/26/2019
Selenium	ND	1.1		ig/Kg-dry	10	1/26/2019
Silver	ND	1.1	n	ig/Kg-dry	_. 10	1/26/2019
Sodium	350	64	m	ng/Kg-dry	10	1/26/2019
Thallium	ND	1.1	m	ng/Kg-dry	10	1/26/2019
Vanadium ·	28	1.1	n	ng/Kg-dry	10	1/26/2019
Zinc	63	5.4	m	ng/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A) Prep	Date: 1/29/2019	Analyst: MDT
Antimony,	ND	0.015	·	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	. 0.53	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.017	0.010		mg/L	5	1/29/2019
Copper	ND	0.10	•	mg/L	5	1/29/2019
Iron	1.5	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	3.5	0.010		mg/L	5	1/29/2019
Nickel	ND	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND .	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1	311/7470A		Pren	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
Mercury	SW7	471B		Pren	Date: 1/28/2019	Analyst: LB
Mercury	0.027	0.023	m	ıg/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.29	m	ig/Kg-dry	1	1/27/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/25/2019	Analyst: JT
рН	7.81		ı	oH Units	1	1/25/2019
Percent Moisture	D297	74		Prep	Date: 1/24/2019	Analyst: RW
Percent Moisture	15.1	0.2	•	wt%	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Client:

Lab ID: 19010622-012

ANALYTICAL RESULTS

Client Sample ID: A-29

Collection Date: 1/23/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifie	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019	Analyst: AE
Acetone	ND	0.075		mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0050		mg/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0050		mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0050		mg/Kg-dry	1	1/25/2019
Bromomethane	ND	0.010		mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.075		mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.050		mg/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0050		mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0050		mg/Kg-dry	1	1/25/2019
Chloroethane	ND	0.010		mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0050		mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.010		mg/Kg-dry	1 .	1/25/2019
Dibromochloromethane	ND	0.0050		mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0050		mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0050		mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0050		mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0050		mg/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	·ND	0.0050		mg/Kg-dry	1	. 1/25/2019
1,2-Dichloropropane	· ND	0.0050		mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0020		mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0020		mg/Kg-dry	1 .	1/25/2019
Ethylbenzene	ND	0.0050		mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.020		mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.020		mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.010		mg/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0050		mg/Kg-dry	1	1/25/2019
Styrene	ND	0.0050		mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0050		mg/Kg-dry	1	1/25/2019
Tetrachloroethene	· ND	0.0050		mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0050		mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0050		mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0050		mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0050		mg/Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0050		mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.015		mg/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35	50B)	Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.040		mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.040		mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-012

Client Sample ID: A-29

Collection Date: 1/23/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed	
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3	550B)	Prep	Date: 1/28/2019	Analyst: FP	
Aniline	ND	0.41	n	ng/Kg-dry	1	1/29/2019	
Anthracene	ND	0.040	n	ng/Kg-dry	1	1/29/2019	
Benz(a)anthracene	ND	0.040	u	ng/Kg-dry	1	1/29/2019	
Benzidine	ND	0.40	n	ng/Kg-dry	1	1/29/2019	
Benzo(a)pyrene	ND	0.040	п	ng/Kg-dry	1	1/29/2019	
Benzo(b)fluoranthene	ND	0.040	п	ng/Kg-dry	1	1/29/2019	
Benzo(g,h,i)perylene	ND	0.040	n	ng/Kg-dry	1	1/29/2019	
Benzo(k)fluoranthene	ND	0.040	п	ng/Kg-dry	1	1/29/2019	
Benzoic acid	ND	1.0	п	ng/Kg-dry	1	1/29/2019	
Benzyl alcohol	ND	0.21	n	ng/Kg-dry	1	1/29/2019	
Bis(2-chloroethoxy)methane	ND	0.21	п	ng/Kg-dry	1	1/29/2019	
Bis(2-chloroethyl)ether	ND	0.21	m	ng/Kg-dry	1	1/29/2019	
Bis(2-ethylhexyl)phthalate	ND	1.0	n	ng/Kg-dry	1	1/29/2019	
4-Bromophenyl phenyl ether	ND	0.21	n	ng/Kg-dry	1	1/29/2019	
Butyl benzyl phthalate	ND	0.21	n	ng/Kg-dry	1	1/29/2019	
Carbazole	ND	0.21	ıπ	ng/Kg-dry	1	1/29/2019	
4-Chloroaniline	ND	0.21	n	ng/Kg-dry	1	1/29/2019	
4-Chloro-3-methylphenol	ND	0.40	m	ng/Kg-dry	1	1/29/2019	
2-Chloronaphthalene	ND	0.21	n	ng/Kg-dry	1	1/29/2019	
2-Chlorophenol	ND	0.21	п	ng/Kg-dry	1	1/29/2019	
4-Chlorophenyl phenyl ether	ND	0.21	m	ng/Kg-dry	1	1/29/2019	
Chrysene	ND	0.040	m	ng/Kg-dry	1	1/29/2019	
Dibenz(a,h)anthracene	ND	0.040	m	ng/Kg-dry	1	1/29/2019	
Dibenzofuran	ND	0.21	m	ng/Kg-dry	1	1/29/2019	
1,2-Dichlorobenzene	ND	0.21		ng/Kg-dry	1	1/29/2019	
1,3-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/29/2019	
1,4-Dichlorobenzene	ND	0.21	n	ng/Kg-dry	1	1/29/2019	
3,3'-Dichlorobenzidine	ND	0.21		ng/Kg-dry	1	1/29/2019	
2,4-Dichlorophenol	ND	0.21		ng/Kg-dry	1	1/29/2019	
Diethyl phthalate	ND	0.21		ng/Kg-dry	1	1/29/2019	
2,4-Dimethylphenol	ND	0.21		ng/Kg-dry	1	1/29/2019	
Dimethyl phthalate	ND	0.21		ng/Kg-dry	1	1/29/2019	
4,6-Dinitro-2-methylphenol	ND	0.40		ng/Kg-dry	1	1/29/2019	
2,4-Dinitrophenol	ND	1.0		ng/Kg-dry	1	1/29/2019	
2,4-Dinitrotoluene	ND	0.040		ng/Kg-dry	1	1/29/2019	
2.6-Dinitrotoluene	ND	0.040		ng/Kg-dry	1	1/29/2019	
Di-n-butyl phthalate	ND	0.21		ng/Kg-dry	1	1/29/2019	
Di-n-octyl phthalate .	ND	0.21		ng/Kg-dry	1	1/29/2019	

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-012 Client Sample ID: A-29

Collection Date: 1/23/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL C	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B) Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.040	mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.040	mg/Kg-dry	1 '	1/29/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1,	1/29/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Naphthalene	ND	0.040	· mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND \	0.21	mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	`0.21	mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.82	mg/Kg-dry	j. 1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
PCBs	SW8	082A (SW35	50B) Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.097	mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	· 0.097	mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.097	mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.097	mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.097	mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.097	mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.097	mg/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-012

Client Sample ID: A-29

Collection Date: 1/23/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Pesticides	SW8	1081B (SW355	50B) Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	· ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	1/29/2019
Aldrin	' ND	0.0019	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.019	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan I	. ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW305	i0B) Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	16000	22	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/26/2019
Arsenic	11	1.1	mg/Kg-dry	10	1/26/2019
Barium	69	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	0.88	0.55	mg/Kg-dry	10	1/26/2019
Cadmium	ND	. 0.55	mg/Kg-dry	10	1/26/2019
Calcium	97000	66	mg/Kg-dry	10	1/26/2019
Chromium	31	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	21	1.1	mg/Kg-dry	10	1/26/2019
Copper .	39	2.8	mg/Kg-dry	10	1/26/2019
Iron	32000	33	mg/Kg-dry	10	1/26/2019
Lead	18	0.55 ·	mg/Kg-dry	10	1/26/2019
Magnesium	45000	33	mg/Kg-dry	10	1/26/2019
Manganese	. 670	1.1	mg/Kg-dry	10	1/26/2019
Nickel	54	1.1	mg/Kg-dry	10	1/26/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Franklin - EB

Project: Lab ID:

19010622-012

Client Sample ID: A-29

Collection Date: 1/23/2019 8:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	3800	33	·	ng/Kg-dry	10	1/26/2019
Selenium	1.2	1.1	r	ng/Kg-dry	10	1/26/2019
Silver	ND	1.1	n	ng/Kg-dry	10	1/26/2019
Sodium	240	66	n	ng/Kg-dry	10	1/26/2019
Thallium	ND	1.1	n	ng/Kg-dry	10	1/26/2019
Vanadium	33	1.1	n	ng/Kg-dry	10	1/26/2019
Zinc	68	5.5	r	ng/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005/	A) Prep	Date: 1/29/2019	Analyst: MDT
Antimony	ND	0.015	•	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.52	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.063	0.010		mg/L	5	1/29/2019
Copper	0.14	0.10		mg/L	5	1/29/2019
Iron	ND	0.25		mg/L	5	1/29/2019
Lead	0.0095	0.0050		mg/L	5	1/29/2019
Manganese	5.2	0.010		mg/L	5	1/29/2019
Nickel	0.12	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	NĎ	0.010		mg/L	5	1/29/2019
Zinc	0.066	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
Mercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.029	0.022	n	ng/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.31	n	ng/Kg-dry	1	1/27/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/25/2019	•
рН	7.91		٠	pH Units	• 1	1/25/2019
Percent Moisture	D297	74		Prep	Date: 1/24/2019	•
Percent Moisture	18.6	0.2	•	wt%	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Lab ID:

Franklin - EB

19010622-013

Client Sample ID: A-30

Collection Date: 1/23/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Un	its	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep [Date: 1/24/2019	Analyst: AE
Acetone	ND	0.088	mg/Kg	g-dry	1 .	1/25/2019
Benzene	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Bromodichloromethane	ND	0.0059	. mg/Kg	g-dry	1	1/25/2019
Bromoform	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Bromomethane	ND	0.012	mg/Kg	g-dry	1	1/25/2019
2-Butanone	ND	0.088	mg/Kg	g-dry	1 .	1/25/2019
Carbon disulfide	ND	0.059	mg/Kg	g-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Chlorobenzene	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Chloroethane	ND	0.012	mg/Kg	g-dry	1	1/25/2019
Chloroform	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Chloromethane	ND	0.012	mg/Kg	g-dry	1	1/25/2019
Dibromochloromethane	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0059	mg/Kg	j-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0059	mg/Kg	j-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0024	mg/Kg	g-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0024	mg/Kg	g-dry	1	1/25/2019
Ethylbenzene	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
2-Hexanone	ND	0.024	mg/Kg	g-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.024	mg/Kg	j-dry	1	1/25/2019
Methylene chloride	ND	0.012	mg/Kg	g-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Styrene	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Tetrachloroethene	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Toluene	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Trichloroethene	ND	0.0059	mg/Kg	g-dry	1,	1/25/2019
Vinyl chloride	ND	0.0059	mg/Kg	g-dry	1	1/25/2019
Xylenes, Total	ND	0.018	mg/Kg	j-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B)	Prep [Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.041	mg/Kg	j-dry	1	1/29/2019
Acenaphthylene	ND	0.041	mg/Kg	j-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Work Order: Environmental Group Services, Ltd.

19010622 Revision 1

Project:

Lab ID:

Franklin - EB 19010622-013 Client Sample ID: A-30

Collection Date: 1/23/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qua	alifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550)B) Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.41	mg/Kg-dry	1	1/29/2019
Anthracene	ND	0.041	mg/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	1/29/2019
Benzidine	ND	0.41	mg/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND ·	0.21	mg/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	1/29/2019
Carbazole	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	1/29/2019
Chrysene	ND	0.041	mg/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	, 1	1/29/2019
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Date Filiteu: February Of

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB

Lab ID: 19010622-013

Client Sample ID: A-30

Collection Date: 1/23/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.041	mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.041	mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1 .	1/29/2019
N-Nitrosodiphenylamine .	ND	0.21	mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	1/29/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Pyrene	ND	0.041	mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.82	mg/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
PCBs	SW8	082A (SW35	50B) Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

ANALYTICAL RESULTS

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-013 Client Sample ID: A-30

Collection Date: 1/23/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Quali	ifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B) Prep	Date: 1/29/	2019 Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4´-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	. ND	0.0020	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Chlordane	, ND	0.020	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0020	. mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND ·	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1 ,	1/29/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor ·	ND	0.0020	 mg/Kg-dry 	1	1/29/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Toxaphene .	ND	0.041	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B) Prep	Date: 1/25/	2019 Analyst: MDT
Aluminum	14000	22	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.2	mg/Kg-dry	10	1/26/2019
Arsenic	11	1.1	mg/Kg-dry	10	1/31/2019
Barium	46	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	0.95	0.55	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.55	mg/Kg-dry	10	1/26/2019
Calcium	54000	66	mg/Kg-dry	10	1/26/2019
Chromium	27	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	18	1.1	mg/Kg-dry	10	1/26/2019
Copper	54	2.8	mg/Kg-dry	10	1/26/2019
Iron	39000	33	mg/Kg-dry	10	1/26/2019
Lead	26	0.55	mg/Kg-dry	10	1/26/2019
Magnesium	27000	33	mg/Kg-dry	10	1/26/2019
Manganese	450	1.1 +	mg/Kg-dry	10	1/26/2019
Nickel	57	1.1	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019 **ANALYTICAL RESULTS**

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-013 Client Sample ID: A-30

Collection Date: 1/23/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyze
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MD
Potassium	3000	33	, w	ig/Kg-dry	10	1/26/2019
Selenium	1.9	1.1	m	ig/Kg-dry	10	1/26/2019
Silver	ND	1.1	m	g/Kg-dry	10	1/26/2019
Sodium	680	66	m	ıg/Kg-dry	10	1/26/2019
Thallium	ND	1.1	m	g/Kg-dry	10	1/26/2019
Vanadium	31	1.1	m	g/Kg-dry	10	1/26/2019
Zinc	98	5.5	m	ig/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A) Prep	Date: 1/29/2019	Analyst: MD
Antimony	ND	0.015		mg/L	5 ,	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.55	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.038	0.010		mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5	1/29/2019
Iron	0.28	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	4.8	0.010		mg/L	5	1/29/2019
Nickel	0.043	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	, ND	0.00020		mg/L	1	1/29/2019
flercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.030	0.022	m	ig/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A	,		Date: 1/27/2019	•
Cyanide	ND	0.31	m	ig/Kg-dry	1	1/27/2019
oH (25 °C)	SW9	045C		•	Date: 1/25/2019	•
рН	8.07		t	H Units	1	1/25/2019
Percent Moisture	D297	-		•	Date: 1/24/2019	•
Percent Moisture	19.4	0.2	•	wt%	1	1/25/2019

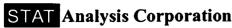
ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-014

ANALYTICAL RESULTS

Client Sample ID: A-31

Collection Date: 1/23/2019 9:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 1/24/2019	Analyst: AE
Acetone	ND	0.096	mg/Kg-dry	1	1/25/2019
Benzene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
Bromoform	ND	0.0064	mg/Kg-dry	1	1/25/2019
Bromomethane	ND	0.013	mg/Kg-dry	1	1/25/2019
2-Butanone	ND	0.096	mg/Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.064	mg/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0064	mg/Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Chloroethane	ND	0.013	mg/Kg-dry	1	1/25/2019
Chloroform	ND	0.0064	mg/Kg-dry	1	1/25/2019
Chloromethane	ND	0.013	mg/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0064	mg/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0026	mg/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0064	mg/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.026	mg/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND -	- 0.026	mg/Kg-dry	1	1/25/2019
Methylene chloride	ND	0.013	mg/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0064	mg/Kg-dry	1	1/25/2019
Styrene	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Toluene	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0064	mg/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0064	mg/Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0064	mg/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.019	mg/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW355	5 0B) Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.040	mg/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.040	mg/Kg-dry	1	1/29/2019

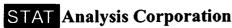
ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter


Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB

19010622-014

Client Sample ID: A-31

Collection Date: 1/23/2019 9:15:00 AM

Matrix: Soil

Analyses	Result ·	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.40	m	ig/Kg-dry	1	1/29/2019
Anthracene	ND	0.040	m	ig/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND .	0.040	m	g/Kg-dry	1	1/29/2019
Benzidine	ND	0.40	m	ig/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.040	m	ig/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.040	m	ig/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.040	m	ig/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.040	, m	g/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.0	m	g/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.21	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.21	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.21	m	g/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	m	g/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.21	m	g/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.21	m	g/Kg-dry	1	1/29/2019
Carbazole	ND	0.21	m	g/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.21	m	g/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.40	m	g/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.21	m	g/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.21	m	g/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.21	m	g/Kg-dry	1	1/29/2019
Chrysene \	ND	0.040	m	g/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.21	m	g/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.21	m	ig/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.21	m	g/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.21	m	g/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.21		ig/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.21		ig/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.21	m	g/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.21		ig/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.21		g/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.40		g/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.0 .		g/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.040		g/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.040		g/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.21		g/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.21		g/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-014

Client Sample ID: A-31

Collection Date: 1/23/2019 9:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.040	mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.040	mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachloroethane .	ND	0.21	mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.081	mg/Kg-dry	1 ,	1/29/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.81	mg/Kg-dry	1 .	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
PCBs	SW80	82A (SW3550B)		Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Environmental Group Services, Ltd. Client:

19010622 Revision 1 Work Order:

Project: Franklin - EB

Lab ID: 19010622-014

Collection Date: 1/23/2019 9:15:00 AM

Matrix: Soil

Client Sample ID: A-31

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW355	OB) Prep	Date: 1/29/2019	Analyst: GV (
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0020	. mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0020	mg/Kg-dry	1.	1/29/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-BHC	· ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW305	OB) Prep	Date: 1/25/2019	Analyst: MD
Aluminum	16000	21	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.1	mg/Kg-dry	10	1/26/2019
Arsenic	11	1.1	mg/Kg-dry	10	1/26/2019
Barium	79	1.1	mg/Kg-dry	10	1/26/2019 ·
Beryllium	0.90	0.53	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.53	mg/Kg-dry	10	1/26/2019
Calcium	73000	63	mg/Kg-dry	10	1/26/2019
Chromium	29	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	19	1.1	mg/Kg-dry	10	1/26/2019
Copper	33	2.6	mg/Kg-dry	10	1/26/2019
Iron	31000	32	mg/Kg-dry	10	1/26/2019
Lead	16	0.53	mg/Kg-dry	10	1/26/2019
Magnesium	35000	32	mg/Kg-dry	10	1/26/2019
Manganese	620	1.1	mg/Kg-dry	10	1/26/2019
Nickel	49	1.1	mg/Kg-dry	10	1/26/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB

19010622-014

Client Sample ID: A-31

Collection Date: 1/23/2019 9:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	3700	32		mg/Kg-dry	10	1/26/2019
Selenium	1.1	1.1		mg/Kg-dry	10	1/26/2019
Silver	ND	1.1		mg/Kg-dry	10	1/26/2019
Sodium	350	63		mg/Kg-dry	10	1/26/2019
Thallium	ND	1.1		mg/Kg-dry	10	1/26/2019
Vanadium	30	1.1		mg/Kg-dry	10	1/26/2019
Zinc	66	5.3		mg/Kg-dry	10	1/26/2019
CLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/29/2019	Analyst: MDT
Antimony	ND	0.015	·	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.46	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	, ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.027	0.010		mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5	1/29/2019
Iron	, ND	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	2.7	0.010		mg/L	5	1/29/2019
Nickel	0.074	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
CLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
lercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.022	0.022	1	mg/Kg-dry	1	1/29/2019
yanide, Total	SW9	012A		Prep	Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.31	(mg/Kg-dry	1	1/27/2019
oH (25 °C)	SW9	045C		Prep	Date: 1/25/2019	Analyst: JT
рН	7.97			pH Units	1	1/25/2019
Percent Moisture	D297	4		Prep	Date: 1/24/2019	Analyst: RW
Percent Moisture	18.9	0.2	•	wt%	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: E

Environmental Group Services, Ltd.

Work Order: 1

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-015 Client Sample ID: A-32

Collection Date: 1/23/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019	Analyst: AET
Acetone	ND	0.078	n	ng/Kg-dry	1	1/25/2019
Benzene	ND	0.0052	n	ng/Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0052	п	ng/Kg-dry	1	1/25/2019
Bromoform	ND	0.0052	π	ng/Kg-dry	1	1/25/2019
Bromomethane	ND	0.010	n	ng/Kg-dry	1 .	1/25/2019
2-Butanone	ND	0.078	n	ng/Kg-dry	1	1/25/2019
Carbon disulfide ·	ND	0.052	π	ng/Kg-dry	1	1/25/2019
Carbon tetrachloride	ND	0.0052	n	ng/Kg-dry	1	1/25/2019
Chlorobenzene ·	ND	0.0052	π	ng/Kg-dry	1	1/25/2019
Chloroethane	ND	0.010	n	ng/Kg-dry	1 .	1/25/2019
Chloroform .	ND	0.0052	π	ng/Kg-dry	1 .	1/25/2019
Chloromethane	ND	0.010	π	ng/Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0052	n	ng/Kg-dry	1	1/25/2019
1,1-Dichloroethane	ND	0.0052	п	ng/Kg-dry	1	1/25/2019
1,2-Dichloroethane	ND	0.0052	n	ng/Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0052	n	ng/Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0052	n	ng/Kg-dry	1	1/25/2019
trans-1,2-Dichloroethene .	ND	0.0052	п	ng/Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0052	п	ng/Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0021	` n	ng/Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0021	n	ng/Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0052	п	ng/Kg-dry	1	1/25/2019
2-Hexanone	ND	0.021	п	ng/Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.021	n	ng/Kg-dry	1 '	1/25/2019
Methylene chloride	ND	0.010	. u	ng/Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0052	, u	ng/Kg-dry	1	1/25/2019
Styrene	ND	0.0052	m	ng/Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0052	· m	ng/Kg-dry	1	1/25/2019
Tetrachloroethene	ND	0.0052	m	ng/Kg-dry	1	1/25/2019
Toluene	ND	0.0052	· n	ng/Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0052	m	ng/Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0052	' m	ng/Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0052	n	ng/Kg-dry	1	1/25/2019
Vinyl chloride	ND (0.0052	m	ng/Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.016	m	ng/Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B)	Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.040	n	ng/Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.040	п	ng/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project:

Franklin - EB

Lab ID:

19010622-015

Client Sample ID: A-32

Collection Date: 1/23/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3	550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.40		mg/Kg-dry	1	1/29/2019
Anthracene	ND	0.040	1	mg/Kg-dry	1 .	1/29/2019
Benz(a)anthracene	ND	0.040	1	mg/Kg-dry	1	1/29/2019
Benzidine	ND	0.40		mg/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.040	•	mg/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.040		mg/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.040	,	mg/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.040	1	mg/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.0		mg/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.20		mg/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.20		mg/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.20		mg/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	1	mg/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.20	1	mg/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.20		mg/Kg-dry	1 .	1/29/2019
Carbazole	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.20	ı	mg/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.40	1	mg/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.20	1	mg/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.20		mg/Kg-dry	1	1/29/2019
Chrysene	ND	0.040		mg/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.040	٠ ،	ng/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.20		mg/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.20		mg/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.20		mg/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.20		ng/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.20		ng/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.20		mg/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.20	,	mg/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.20		mg/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.20		mg/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.40		ng/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.0		ng/Kg-dry	1	1/29/2019
2.4-Dinitrotoluene	ND	0.040		ng/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.040		ng/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.20		ng/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.20		ng/Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-015

Client Sample ID: A-32

Collection Date: 1/23/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifie	r Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	s swa	270C (SW:	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.040	·	mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.040		mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.20		mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.20	<i>:</i>	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.20		mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.20		mg/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.040		mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.20		mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.20	_	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.20		mg/Kg-dry	1 .	1/29/2019
Naphthalene	ND	0.040		mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.20		mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.20		mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.20		mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.40		mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.040		mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.040		mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.20		mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.20		mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20		mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.081		mg/Kg-dry	. 1	1/29/2019
Phenanthrene	ND	0.040		mg/Kg-dry	1	1/29/2019
Phenol	ND	0.20		mg/Kg-dry	1	, 1/29/2019
Pyrene	ND	0.040		mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.81		mg/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.20		mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.20		mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.20		mg/Kg-dry	1	1/29/2019
PCBs	SW8	082A (SW:	3550B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.096		mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.096		mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.096		mg/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.096		mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.096		mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.096		mg/Kg-dry	1	1/29/2019
Aroclor 1260	ND	0.096		mg/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Franklin - EB

Lab ID:

Project:

19010622-015

Client Sample ID: A-32

Collection Date: 1/23/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1 '	1/29/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	1/29/2019
Aldrin	ND	.0.0019	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
beta-BHC	ND .	0.0019	mg/Kg-dry	16	1/29/2019
Chlordane	ND	0.019	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	. 1	1/29/2019
Endrin	. ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	•
Aluminum	15000	20	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.0	mg/Kg-dry	10	1/26/2019
Arsenic	6.6	1.0	mg/Kg-dry	10	1/26/2019
Barium .	63	1.0	mg/Kg-dry	10	1/26/2019
Beryllium	0.79	0.51	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.51	mg/Kg-dry	10	1/26/2019
Calcium	74000	61	mg/Kg-dry	10	1/26/2019
Chromium	27	1.0	mg/Kg-dry	10	1/26/2019
Cobalt	15	1.0	mg/Kg-dry	10	1/26/2019
Copper	29	2.6	mg/Kg-dry	10	1/26/2019
Iron .	28000	31	mg/Kg-dry	10	1/26/2019
Lead	15	0.51	mg/Kg-dry	10	1/26/2019
Magnesium	33000	31	mg/Kg-dry	10	1/26/2019
Manganese ,	530	1.0	mg/Kg-dry	10	1/26/2019
Nickel	42 .	1.0	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank .

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-015 Client Sample ID: A-32

Collection Date: 1/23/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SWe	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	2600	31	m	g/Kg-dry	10	1/26/2019
Selenium	ND	1.0	m	g/Kg-dry	10	1/26/2019
Silver	ND	1.0	m	g/Kg-dry	10	1/26/2019
Sodium	740	61	m	g/Kg-dry	10	1/26/2019
Thallium	ND	1.0	m	g/Kg-dry	10	1/26/2019
Vanadium	27	1.0	m	g/Kg-dry	10	1/26/2019
Zinc	64	5.1	m	g/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A) Prep	Date: 1/29/2019	Analyst: MDT
Antimony	ND	0.015	•	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	. 0.49	0.050		mg/L	5	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.065	0.010		mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5	1/29/2019
Iron	0.31	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	5.9	0.010		mg/L	5	1/29/2019
Nickel	0.051	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010	•	mg/L	5	1/29/2019
Silver	ND	0.010	•	mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
Mercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.024	0.021	m	g/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.31	m	g/Kg-dry	1	1/27/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/25/2019	Analyst: JT
pH	8.10		ŗ	H Units	1	1/25/2019
Percent Moisture	D29	•			Date: 1/24/2019	•
Percent Moisture	18.6	0.2	•	wt%	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Date Printed: February

Client:

Environmental Group Services, Ltd.

Work Order: 19010

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-016 Client Sample ID: A-33

Collection Date: 1/23/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier (J nits	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019	Analyst: AET
Acetone	ND	0.069	mg/	Kg-dry	1	1/25/2019
Benzene	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Bromodichloromethane	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Bromoform	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Bromomethane	ND	0.0092	mg/	Kg-dry	1	1/25/2019
2-Butanone	ND	0.069	mg/	Kg-dry	1	1/25/2019
Carbon disulfide	ND	0.046	mg/	Kg-dry	1 .	1/25/2019
Carbon tetrachloride	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Chlorobenzene	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Chloroethane	ND	0.0092	mg/	Kg-dry	1	1/25/2019
Chloroform	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Chloromethane	ND	0.0092	mg/	Kg-dry	1	1/25/2019
Dibromochloromethane	ND	0.0046	mg/	Kg-dry	1 '	1/25/2019
1,1-Dichloroethane	ND	0.0046	· mg/	Kg-dry	1 ,	1/25/2019
1,2-Dichloroethane	ND	0.0046	mg/	Kg-dry	1	1/25/2019
1,1-Dichloroethene	ND	0.0046	mg/	Kg-dry	1	1/25/2019
cis-1,2-Dichloroethene	ND	0.0046	mg/	Kg-dry	1 '	1/25/2019
trans-1,2-Dichloroethene	ND	0.0046	mg/	Kg-dry	1	1/25/2019
1,2-Dichloropropane	ND	0.0046	mg/	Kg-dry	1	1/25/2019
cis-1,3-Dichloropropene	ND	0.0018	mg/	Kg-dry	1	1/25/2019
trans-1,3-Dichloropropene	ND	0.0018	mg/	Kg-dry	1	1/25/2019
Ethylbenzene	ND	0.0046	mg/	Kg-dry	1	1/25/2019
2-Hexanone	ND	0.018	mg/	Kg-dry	1	1/25/2019
4-Methyl-2-pentanone	ND	0.018	mg/	Kg-dry	1	1/25/2019
Methylene chloride	ND	0.0092	mg/	Kg-dry	1	1/25/2019
Methyl tert-butyl ether	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Styrene	ND	0.0046	mg/	Kg-dry	1	1/25/2019
1,1,2,2-Tetrachloroethane	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Tetrachloroethene	ND .	0.0046	mg/	Kg-dry	1	1/25/2019
Toluene	ND	0.0046		Kg-dry	1	1/25/2019
1,1,1-Trichloroethane	ND	0.0046	mg/	Kg-dry	1	1/25/2019
1,1,2-Trichloroethane	ND	0.0046	_ mg/	Kg-dry	1	1/25/2019
Trichloroethene	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Vinyl chloride	ND	0.0046	mg/	Kg-dry	1	1/25/2019
Xylenes, Total	ND	0.014	_	Kg-dry	1	1/25/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35	50B)	Prep	Date: 1/28/2019	Analyst: FP
Acenaphthene	ND	0.040	•	Kg-dry	1	1/29/2019
Acenaphthylene	ND	0.040	mg/	Kg-dry	1	1/29/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-016 Client Sample ID: A-33

Collection Date: 1/23/2019 9:45:00 AM

Matrix: Soil

Analyses	Result RL Qualifier Units DF					Date Analyzed				
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3	3550B)	Prep	Date: 1/28/2019	Analyst: FP				
Aniline	ND	0.41	mg	/Kg-dry	1	1/29/2019				
Anthracene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Benz(a)anthracene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Benzidine	ND	0.40	mg	/Kg-dry	1	1/29/2019				
Benzo(a)pyrene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Benzo(b)fluoranthene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Benzo(g,h,i)perylene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Benzo(k)fluoranthene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Benzoic acid	ND	1.0	mg	/Kg-dry	1	1/29/2019				
Benzyl alcohol	ND	0.21	mg	/Kg-dry	1	1/29/2019				
Bis(2-chloroethoxy)methane	ND	0.21	mg	/Kg-dry	1	1/29/2019				
Bis(2-chloroethyl)ether	ND	0.21	mg	/Kg-dry	1	1/29/2019				
Bis(2-ethylhexyl)phthalate	ND	1.0	mg	/Kg-dry	1	1/29/2019				
4-Bromophenyl phenyl ether	. ND	0.21	mg	/Kg-dry	1	1/29/2019				
Butyl benzyl phthalate	ND	0.21	mg	/Kg-dry	1	1/29/2019				
Carbazole	ND	0.21	mg	/Kg-dry	1	1/29/2019				
4-Chloroaniline	ND	0.21	mg	/Kg-dry	1	1/29/2019				
4-Chloro-3-methylphenol	ND	0.40	mg	/Kg-dry	1	1/29/2019				
2-Chloronaphthalene	ND	0.21	mg	/Kg-dry	1	1/29/2019				
2-Chlorophenol	ND	0.21	mg	/Kg-dry	1	1/29/2019				
4-Chlorophenyl phenyl ether	ND	0.21	mg	/Kg-dry	1	1/29/2019				
Chrysene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Dibenz(a,h)anthracene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Dibenzofuran	ND	0.21	mg	/Kg-dry	1	1/29/2019				
1,2-Dichlorobenzene	ND	0.21	mg	/Kģ-dry	1	1/29/2019				
1,3-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	1/29/2019				
1,4-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	1/29/2019				
3,3'-Dichlorobenzidine	ND	0.21	mg	/Kg-dry	1	1/29/2019				
2,4-Dichlorophenol	ND	0.21	mg	/Kg-dry	1	1/29/2019				
Diethyl phthalate	ND	0.21	mg	/Kg-dry	1	1/29/2019				
2,4-Dimethylphenol	ND	0.21	mg	/Kg-dry	1	. 1/29/2019				
Dimethyl phthalate	ND	0.21	mg	/Kg-dry	1	1/29/2019				
4,6-Dinitro-2-methylphenol	ND	0.40	mg	Kg-dry	1	1/29/2019				
2,4-Dinitrophenol	ND	1.0	mg	/Kg-dry	1	1/29/2019				
2,4-Dinitrotoluene	ND	0.040		/Kg-dry	1	1/29/2019				
2,6-Dinitrotoluene	ND	0.040	mg	/Kg-dry	1	1/29/2019				
Di-n-butyl phthalate	ND	0.21	mg	/Kg-dry	1	1/29/2019				
Di-n-octyl phthalate	ND	0.21	mg	/Kg-dry	1	1/29/2019				

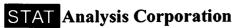
Qualifiers:

ND - Not Detected at the Reporting Limit,

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-016 Client Sample ID: A-33

Collection Date: 1/23/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	ier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene '	ND	0.040	mg/Kg-dry	1	1/29/2019
Fluorene	ND	0.040	mg/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	1/29/2019 .
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Isophorone	ND	0.21 、	mg/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.21	, mg/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Phenol	ND	0.21	mg/Kg-dry	1	1/29/2019
Pyrene	ND	0.040	mg/Kg-dry	1	1/29/2019
Pyridine	ND	0.82	mg/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	1/29/2019
PCBs	SW80	82A (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1 '	1/29/2019
Aroclor 1242	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1 -	1/29/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1	1/29/2019

· ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB 19010622-016 Client Sample ID: A-33

Collection Date: 1/23/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	fier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	, . ND	0.0020	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.020	mg/Kg-dry	. 1	1/29/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Dieldrin .	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	16000	23	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.3	mg/Kg-dry	10	1/26/2019
Arsenic	10	1.0	mg/Kg-dry	10	1/31/2019
Barium	87	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	0.86	0.57	mg/Kg-dry	10	1/26/2019
Cadmium	, ND	0.57	mg/Kg-dry	10	1/26/2019
Calcium	81000	68	mg/Kg-dry	10	1/26/2019
Chromium	. 31	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	20	1.1	mg/Kg-dry	10	1/26/2019
Copper .	34	2.8	mg/Kg-dry	10	1/26/2019
Iron	29000	34	mg/Kg-dry	10	1/26/2019
Lead	17	0.57	mg/Kg-dry	10	1/26/2019
Magnesium	38000	34	mg/Kg-dry	10	1/26/2019
Manganese	570	1.1	mg/Kg-dry	10	1/26/2019
Nickel	50	1.1	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 February 01, 2019

ANALYTICAL RESULTS

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-016 Client Sample ID: A-33

Collection Date: 1/23/2019 9:45:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 1/25/2019	Analyst: MDT
Potassium	3900	34	m	g/Kg-dry	10	1/26/2019
Selenium	ND	1.1	m	g/Kg-dry	10	1/26/2019
Silver	ND	1.1	m	g/Kg-dry	10	1/26/2019
Sodium	240	68	m	g/Kg-dry	10	1/26/2019
Thallium	ND	1.1	m	g/Kg-dry	10	1/26/2019
Vanadium	31	1.1	m	g/Kg-dry	10	1/26/2019
Zinc	69	5.7	n	ig/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A) Prep	Date: 1/29/2019	Analyst: MDT
Antimony	ND	0.015		mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.95	0.050		mg/L	5 1	1/29/2019
Beryllium	ND	0.0050		mg/L	5	1/29/2019
Cadmium .	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.11	0.010		mg/L	5	1/29/2019
Copper	0.14	0.10		mg/L	5	1/29/2019
Iron	ND	0.25		mg/L	5	1/29/2019
Lead	0.0087	. 0.0050		mg/L	5	1/29/2019
Manganese	5.2	0.010		mg/L	5	1/29/2019
Nickel	0.17	0.020		mg/L	, 5	1/29/2019
Selenium	ND	0.010	•	mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc .	0.064	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
Mercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.025	0.023	n	g/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A		Prep	Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.31	m	g/Kg-dry	1	1/27/2019
pH (25 °C)		045C			Date: 1/25/2019	
рН	8.23		t	H Units	1	1/25/2019
Percent Moisture	D297	74		Prep	Date: 1/24/2019	Analyst: RW
Percent Moisture ,	, 20.0	0.2	•	wt%	1	1/25/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

-HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environ

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-017 Client Sample ID: A-34

Collection Date: 1/23/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier U	nits	DF	•			
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 1/24/2019				
Acetone	ND	0.071	mg/K	g-dry	1	1/25/2019			
Benzene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Bromodichloromethane	ND	0.0047	, mg/K	g-dry	1	1/25/2019			
Bromoform .	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Bromomethane	ND	0.0095	mg/K	g-dry	1	1/25/2019			
2-Butanone	ND	0.071	mg/K	g-dry	1	1/25/2019			
Carbon disulfide	ND	0.047	mg/K	g-dry	1	1/25/2019			
Carbon tetrachloride	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Chlorobenzene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Chloroethane	ND	0.0095	mg/K	g-dry	1	1/25/2019			
Chloroform	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Chloromethane	ND	0.0095	mg/K	g-dry	1	1/25/2019			
Dibromochloromethane	ND	0.0047	mg/K	g-dry	1	1/25/2019			
1,1-Dichloroethane	ND ·	0.0047	mg/K	g-dry	1	1/25/2019			
1,2-Dichloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019			
1,1-Dichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
cis-1,2-Dichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
trans-1,2-Dichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
1,2-Dichloropropane	ND	0.0047	mg/K	g-dry	1	1/25/2019			
cis-1,3-Dichloropropene	ND	0.0019	mg/K	g-dry	1	1/25/2019			
trans-1,3-Dichloropropene	ND	0.0019	mg/K	g-dry	1	1/25/2019			
Ethylbenzene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
2-Hexanone	ND	0.019	mg/K	g-dry	1	1/25/2019			
4-Methyl-2-pentanone	ND	0.019	mg/K	g-dry	1 .	1/25/2019			
Methylene chloride	ND	0.0095	mg/K	g-dry	1	1/25/2019			
Methyl tert-butyl ether	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Styrene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
1,1,2,2-Tetrachloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Tetrachloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Toluene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
1,1,1-Trichloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019			
1,1,2-Trichloroethane	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Trichloroethene	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Vinyl chloride	ND	0.0047	mg/K	g-dry	1	1/25/2019			
Xylenes, Total	ND	0.014	mg/K	g-dry	1	1/25/2019			
Semivolatile Organic Compounds by GC/MS		270C (SW35		•	Date: 1/28/2019	•			
Acenaphthene	ND	0.040	mg/K	g-dry	1	1/29/2019			
Acenaphthylene	ND	0.040	mg/K	g-dry	1	1/29/2019			

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed: February 01, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19010622 Revision 1

Project: Franklin - EB
Lab ID: 19010622-017

Client Sample ID: A-34

Collection Date: 1/23/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyze
Semivolatile Organic Compounds by GC/M	s swaz	70C (SW	3550B)	Prep	Date: 1/28/2019	Analyst: FP
Aniline	ND	0.41		g/Kg-dry	1	1/29/2019
Anthracene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Benz(a)anthracene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Benzidine ;	ND	0.40	m	g/Kg-dry	1	1/29/2019
Benzo(a)pyrene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Benzo(b)fluoranthene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Benzo(g,h,i)perylene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Benzo(k)fluoranthene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Benzoic acid	ND	1.0	m	g/Kg-dry	1	1/29/2019
Benzyl alcohol	ND	0.21	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethoxy)methane	ND	0.21	m	g/Kg-dry	1	1/29/2019
Bis(2-chloroethyl)ether	ND	0.21	m	g/Kg-dry	1	1/29/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	m	g/Kg-dry	1	1/29/2019
4-Bromophenyl phenyl ether	ND	0.21	m	g/Kg-dry	1	1/29/2019
Butyl benzyl phthalate	ND	0.21	m	g/Kg-dry	1	1/29/2019
Carbazole	ND	0.21	m	g/Kg-dry	1	1/29/2019
4-Chloroaniline	ND	0.21	m	g/Kg-dry	1	1/29/2019
4-Chloro-3-methylphenol	ND	0.40	m	g/Kg-dry	1	1/29/2019
2-Chloronaphthalene	ND	0.21	m	g/Kg-dry	1	1/29/2019
2-Chlorophenol	ND	0.21	m	g/Kg-dry	1	1/29/2019
4-Chlorophenyl phenyl ether	ND	0.21	m	g/Kg-dry	1	1/29/2019
Chrysene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Dibenz(a,h)anthracene	ND	0.040	m	g/Kg-dry	1	1/29/2019
Dibenzofuran	ND	0.21	m	g/Kg-dry	1	1/29/2019
1,2-Dichlorobenzene	ND	0.21	m	g/Kg-dry	1	1/29/2019
1,3-Dichlorobenzene	ND	0.21	m	g/Kg-dry	1	1/29/2019
1,4-Dichlorobenzene	ND	0.21		g/Kg-dry	1	1/29/2019
3,3'-Dichlorobenzidine	ND	0.21	m	g/Kg-dry	1	1/29/2019
2,4-Dichlorophenol	ND	0.21		g/Kg-dry	1	1/29/2019
Diethyl phthalate	ND	0.21		g/Kg-dry	1	1/29/2019
2,4-Dimethylphenol	ND	0.21		g/Kg-dry	1	1/29/2019
Dimethyl phthalate	ND	0.21		g/Kg-dry	1	1/29/2019
4,6-Dinitro-2-methylphenol	ND	0.40		g/Kg-dry	1	1/29/2019
2,4-Dinitrophenol	ND	1.0		g/Kg-dry	1	1/29/2019
2,4-Dinitrotoluene	ND	0.040		g/Kg-dry	1	1/29/2019
2,6-Dinitrotoluene	ND	0.040		g/Kg-dry	1	1/29/2019
Di-n-butyl phthalate	ND	0.21		g/Kg-dry	1	1/29/2019
Di-n-octyl phthalate	ND	0.21		g/Kg-dry	1	1/29/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:**

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID:

Franklin - EB

19010622-017

ANALYTICAL RESULTS

Client Sample ID: A-34

Collection Date: 1/23/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL C	Qualifier \	Units .	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35	550B)	Prep	Date: 1/28/2019	Analyst: FP
Fluoranthene	ND	0.040	mg	/Kg-dry	1	1/29/2019
Fluorene	ND	0.040	mg	/Kg-dry	1	1/29/2019
Hexachlorobenzene	ND	0.21	mg	/Kg-dry	1	1/29/2019
Hexachlorobutadiene	ND	0.21	mg	/Kg-dry	1	1/29/2019
Hexachlorocyclopentadiene	ND	0.21		/Kg-dry	1	1/29/2019
Hexachloroethane	ND	0.21		/Kg-dry	1	1/29/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg	/Kg-dry	1	1/29/2019
Isophorone	ND	0.21	. mg	/Kg-dry	1	1/29/2019
2-Methylnaphthalene	ND	0.21	mg	/Kg-dry	1	1/29/2019
2-Methylphenol	ND	0.21	mg	/Kg-dry	1	1/29/2019
4-Methylphenol	ND	0.21	mg	/Kg-dry	1	1/29/2019
Naphthalene	ND	0.040	mg	/Kg-dry	1	1/29/2019
2-Nitroaniline	ND	0.21	mg	/Kg-dry	1	1/29/2019
3-Nitroaniline	ND	0.21	mg	/Kg-dry	1	1/29/2019
4-Nitroaniline	ND	0.21	mg	/Kg-dry	1	1/29/2019
2-Nitrophenol	ND	0.21	mg	/Kg-dry	1	1/29/2019
4-Nitrophenol	ND	0.40	mg	/Kg-dry	1	1/29/2019
Nitrobenzene	ND	0.040	mg	/Kg-dry	1	1/29/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg	/Kg-dry	1	1/29/2019
N-Nitrosodimethylamine	ND	0.21	mg	/Kg-dry	1	1/29/2019
N-Nitrosodiphenylamine	ND	0.21	mg	/Kg-dry	1	1/29/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg	/Kg-dry	1	1/29/2019
Pentachlorophenol	ND	0.082	mg	/Kg-dry	1	1/29/2019
Phenanthrene	ND	0.040	mg	/Kg-dry	1	1/29/2019
Phenol	ND	0.21	mg	/Kg-dry	1	1/29/2019
Pyrene	ND	0.040	mg	/Kg-dry	1	1/29/2019
Pyridine	ND	0.82	mg	/Kg-dry	1	1/29/2019
1,2,4-Trichlorobenzene	ND	0.21	mg	/Kg-dry	1	1/29/2019
2,4,5-Trichlorophenol	ND	0.21	mg	/Kg-dry	1	1/29/2019
2,4,6-Trichlorophenol	ND	0.21	mg	/Kg-dry	1	1/29/2019
PCBs	SW80	082A (SW35	550B)	Prep	Date: 1/29/2019	Analyst: GVC
Aroclor 1016	ND	0.10	•	/Kg-dry	1	1/29/2019
Aroclor 1221	ND	0.10	mg	/Kg-dry	1	1/29/2019
Aroclor 1232	ND	0.10	mg	/Kg-dry	1	1/29/2019
Aroclor 1242	ND	0.10	mg	/Kg-dry	1	1/29/2019
Aroclor 1248	ND	0.10	mg	/Kg-dry	1	1/29/2019
Aroclor 1254	ND	0.10	mg	/Kg-dry	1	1/29/2019
Aroclor 1260	. ND	0.10	mg	/Kg-dry	1 •	1/29/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits,

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019 **Date Printed:** February 01, 2019

ANALYTICAL RESULTS

Client: Environmental Group Services, Ltd.

19010622 Revision 1 Work Order:

Project: Franklin - EB Lab ID: 19010622-017 Client Sample ID: A-34

Collection Date: 1/23/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3	550B) Prep	Date: 1/29/2019	Analyst: GVC
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	1/29/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	1/29/2019
Aldrin	ND	0.0020	mg/Kg-dry	1 '	1/29/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Chlordane	ND	0.020	mg/Kg-dry	1	1/29/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	1/29/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	1/29/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	1/29/2019
gamma-BHC	ND	0.0020	. mg/Kg-dry	1	1/29/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	1/29/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	1/29/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	1/29/2019
Metals by ICP/MS	SW6	020A (SW3)50B) Prep	Date: 1/25/2019	Analyst: MDT
Aluminum	14000	23	mg/Kg-dry	10	1/26/2019
Antimony	ND	2.3	mg/Kg-dry	10	1/26/2019
Arsenic	9.0	1.1	mg/Kg-dry	10	1/26/2019
Barium	91	1.1	mg/Kg-dry	10	1/26/2019
Beryllium	0.85	0.56	mg/Kg-dry	10	1/26/2019
Cadmium	ND	0.56	mg/Kg-dry	10	1/26/2019
Calcium	79000	68	mg/Kg-dry	10	1/26/2019
Chromium	28	1.1	mg/Kg-dry	10	1/26/2019
Cobalt	19	1.1	mg/Kg-dry	10	1/26/2019
Copper	32	2.8	mg/Kg-dry	10	1/26/2019
Iron	27000	34	mg/Kg-dry	10	1/26/2019
Lead	15	0.56	mg/Kg-dry	10	1/26/2019
Magnesium	37000	34	mg/Kg-dry	10	1/26/2019
Manganese	550	1.1	mg/Kg-dry	10	1/26/2019
Nickel	46	1.1	mg/Kg-dry	10	1/26/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: February 01, 2019

ANALYTICAL RESULTS

Date Printed:

February 01, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19010622 Revision 1

Project: Lab ID: Franklin - EB 19010622-017 Client Sample ID: A-34

Collection Date: 1/23/2019 10:00:00 AM

Matrix: Soil

Metals by ICP/MS Potassium	SW6 3700 ND	020A (SW	3050B)	Pren	Date: 4/05/0040	
*	3700	•		1100	Date: 1/25/2019	Analyst: MDT
· otassiaiii	ND	34	·	mg/Kg-dry	10	1/26/2019
Selenium	110	1.1		mg/Kg-dry	10	1/26/2019
Silver	ND	1.1		mg/Kg-dry	10	1/26/2019
Sodium	250	68		mg/Kg-dry	10	1/26/2019
Thallium	ND	1.1		mg/Kg-dry	10	1/26/2019
Vanadium	30	1.1		mg/Kg-dry	10	1/26/2019
Zinc	60	5.6		mg/Kg-dry	10	1/26/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 1/29/2019	Analyst: MDT
Antimony	ND	0.015	·	mg/L	5	1/29/2019
Arsenic	ND	0.010		mg/L	5	1/29/2019
Barium	0.84	0.050		mg/L	5	1/29/2019
Beryllium .	ND	0.0050		mg/L	5	1/29/2019
Cadmium	ND	0.0050		mg/L	5	1/29/2019
Chromium	ND	0.010		mg/L	5	1/29/2019
Cobalt	0.064	0.010		mg/L	5	1/29/2019
Copper	ND	0.10		mg/L	5	1/29/2019
Iron	ND	0.25		mg/L	5	1/29/2019
Lead	ND	0.0050		mg/L	5	1/29/2019
Manganese	2.6	0.010		mg/L	5	1/29/2019
Nickel	0.13	0.020		mg/L	5	1/29/2019
Selenium	ND	0.010		mg/L	5	1/29/2019
Silver	ND	0.010		mg/L	5	1/29/2019
Thallium	ND	0.0050		mg/L	5	1/29/2019
Vanadium	ND	0.010		mg/L	5	1/29/2019
Zinc	ND	0.050		mg/L	5	1/29/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 1/29/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	1/29/2019
Mercury	SW7	471B		Prep	Date: 1/28/2019	Analyst: LB
Mercury	0.024	0.022	•	mg/Kg-dry	1	1/29/2019
Cyanide, Total	SW9	012A			Date: 1/27/2019	Analyst: MD
Cyanide	ND	0.31	•	mg/Kg-dry	1	1/27/2019
pH (25 °C)	SW9	045C		Prep	Date: 1/25/2019	Analyst: JT
pH	8.05			pH Units	1	1/25/2019
Percent Moisture	D297	' 4		Prep	Date: 1/24/2019	Analyst: RW
Percent Moisture	20.4	0.2	•	wt%	1	1/25/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

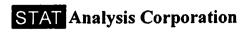
HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits


E - Value above quantitation range

Analysis Corporation
2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386

e-mail address: STATinfo@STATAnalysis.com

19010622

Company: EGSL					CH	ΙΑΙ	N OF CL	JST	OD1	Y RE	COI	RD	. ,.	, .	N	<u>o</u> .					_					
Project Number:									O. N												Ya	ge:		of	-	
Project Name: FRANKLIN - EB			Clien	t Trac	king	No.:]_								/	_	_	_		7				_	
Project Location:]Qı	uote]	No.:				,	X)	/,	//	//	//	//	//	//	//,	//	٦	
Sampler(s):														/\$	V/	//	//	//	//	//		//	//,	//		
Report To: Bill G EGUL. C	200	D)]					Æ,	Χ,	//	//	//	//	//	//	//	//	//,			
	0701	Phone:						4				A		/,	//	/,	//	//	//	//	//	//	//			
QC Level: 1 2 3	4	Fax:						4				6/	/	/	/,	/,	//	/,	//	//	//	//		n Around	<u>!</u> :	
	-	e-mail:		-	-	-		╛		K	//	/		/	/;	//	//	//	//	//	//	<u> </u>	4-	<u>DA Y</u>)
Client Sample Number/Description:	Date Taken	Time Taken	Matrix	Comp	gg gg	Peserv	No. of			KY/				/,	/,	//	//	//	//	//	//	_	Resul	s Neede	<u>!</u>	_
A-18	1/23	 		10	_	Æ	Containers	/					/	/,	//	//	//	//	//	//			/	am/p	m	
A.A	1 1/43	0600	2	+-	X		4	\times	1				7	7	1	1	/	/	-		Ren	narks		The Store		
A-20	 	0630	-	+	Ш			11					\neg	7	+	╅╴	┿	╁╴	┼-	┼				erio Ann Table±	001	ı
A-21	 	0645		┼	++1			11						7	1	+	+-	┿	╁	┼					002	Ļ
A-23		0700		┼—	H	_		11						$\neg \uparrow$	_	十	+	┿	╁	┼──					003	,
A-23		0715		┼	HH			\bot	Ц_							†	†-	†-	╆	┼			_ 3		JO6	
A-24		0730	-+-	┼	╀┦			\perp	Ш_						1	╈	†-	╁	┼-	┼				4	ردن 🖁	
A-25	++	0745		╀	Ш			$\perp 1$		Γ^{-}	П		7	•	+	╅	+-	╁╌	╄	┼			1.0	6.5		
A-26	 	0800		-	Щ			Ш		Γ			7	_	+	┿	┿	╄┈	╄						001	
A-37	+	0815		1-	Щ			\coprod	Γ	T			_	+	+-	┿	+	+-	┼	├					008	5
A-23	+	0830		-	H			\prod					\dashv	十	+	┿	┿	╄╌	┼	 			V Vac	, , , , , , , , , , , , , , , , , , ,	009	
A-29	 	0845	-	┼	HH			\coprod					\neg	+	╁	+-	╁	┼╌	╄	├					010	7
A-30	 	900		-	Ш			Ш				7	\neg	_	+	╁	+-	╁╾	┼	├			12 Year		OU	
A-31		0915	-+-	╂╌	44	_		Ш	\perp			7	7	+	╅	+	┿	╁╌	├	 				1,000	012	
A-3)		0930	-+	 	44			Ш				┪		_	╅	+-	┿	╁	├-	 			- 127	ar angl	013	
A-33		0945		1				\coprod	_				7	_	+	+-	┿	╆	├						014	
A-34		1000	- J-	╂╌┤	\downarrow			Ц,	_					1	+	+-	┿	╁╌		├					015	
				╀╌┤	*		-¥	V	↓_						7	+-	+-	┼-	├-	 					016	
				╁╌┤		\dashv		 	╄					\Box		1	1	1	┝	 					017	
				╁╌┤	-+			-	↓_	_		_			\top	1	1	_	-	 					劃	
Relinquished by: (Signature)		<u> </u>			- /	-)		_	丄						1	T	1	_	-	 				1	Ä	
Received by: (Signature)	1 60	}	Date/			3//		Con	nmen	ts: /	' / -	<u>س</u>			بر	-	4	ــــــــــــــــــــــــــــــــــــــ	-		A 20 - 120	er area		/ e <u></u> 1	Ē	
Relinquished by: (Signature)	1	9-		Timo:	120		99.50	1		(1	VA	Y	Ī	Al		,				Star We	200 Circle	in Prox		A	
Received by: (Signature)	- 6	Z	Date/		12		19938	1				۔۔	1				/								4	
Relinquished by: (Signature)	911		Date/		111	14	199:3	8				[]	4111	IK	AT Y	00	ſ			L.:				n la c	j	
Received by: (Signature)			Date/1					Pres	serval	tion C	ode: A	\ = N	One	R - 1	UNIO.	_				103	Pay 1	Y	egal Turking	1:0	A	
			Date/1	Time:				D	~ H ₂ 5	SO ₄	E - H	CI	Fe "	1357E-		C =	NaOI	{			27.15.4			100-0	A	

Sample Receipt Checklist

Client Name EGSL		Date and Tin	ne Received:	1/24/2019 9:38:00 AM
Work Order Number 19010622		Received by:	EAA	,
Checklist completed by:	24/19	Reviewed by:	Initials	1/24/19 bate
Matrix: Carrier name	STAT Analysis			
Shipping container/cooler in good condition?	Yes 🗹	No 🗆	Not Present	
Custody seals intact on shippping container/cooler?	Yes 🗌	No 🗆	Not Present	
Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present	
Chain of custody present?	Yes´ 🗹 ·	No 🗆	,	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗆		
Chain of custody agrees with sample labels/containers?	Yes 🗹	No 🗆		,
Samples in proper container/bottle?	Yes 🗹	No 🗆		
Sample containers intact?	Yes 🗹	No 🗆		
Sufficient sample volume for indicated test?	Yes 🗹	No 🖂		
All samples received within holding time?	Yes 🗹	No 🗆		
Container or Temp Blank temperature in compliance?	Yes 🗹	No 🗆	Temperature	4.2 °C
Water - VOA vials have zero headspace? No VOA vials subm	nitted 🖪	Yes 🗳	No 🗃	
Water - Samples pH checked?	Yes 🕮	No 🛍	Checked by:	·
Water - Samples properly preserved?	Yes 🖽 🤺	No 🔠	pH Adjusted?	
Any No response must be detailed in the comments section below.				
Comments:				
		-		······································
Client / Person Date contacted:		Conta	cted by:	
Response:		•		
· .				

APPENDIX I – IEPA January 18, 2019 Comment Letter and Requested Maps

APPENDIX E

IEPA Site Remediation Program Summary, March 29, 2019

Site	Remediation Pr	ogram (SRP) Checklist	,
LPC#: 0310965121	LP52: 07D	Date: March 29, 2019	
A		Summary	
1. SRP File Heading		0310965121/Cook County	
		Franklin Park/Magellan Pipeline	
		Site Remediation/Technical Reports	
2. General Site Inform	ation	Magellan Pipeline	
•		10601 Franklin Avenue	
•		Franklin Park, IL 60131	
		Size of the Site: 48 acres	,
2 Daniel Ameliana	(DA)	PIN(s): 12-20-401-020	
3. Remedial Applicant	(RA)	Bridge Development Partners Attn: Mark Houser	
		1000 Irving Park Road, Suite 150	
		Itasca, IL 60143	
		847-531-3980	
4. Consultant		EGSL	
		Attn: Bill Lennon IEPA-DIMSION OF F	ECORDS MANAGEMENT
		557 West Polk Street Suite 201	D F 2040
		Chicago, IL 60607	9 5 2019
•		312-447-1200 REVIE	VER: SAB
·		bill@egsl.com	NEK: SAB
5. Property Owner		Melanie Little	
		Magellan Pipeline Company, L.P.	
		One Williams Center MD 28	•
		Tulsa, OK 74172	
		918-574-7531	
6. RELPE	·	NA	
7. Illinois EPA Project	Manager	Andrew Catlin	
	•	217-524-3290	
· · · · · · · · · · · · · · · · · · ·		andrew.catin@illinois.gov	
8. DRM-1		Date Received: July 26, 2017	
0 Disha Te 17 (IA4	C D 1 (00)	Log No: 17-65156	
9. Right To Know (IA)	2 Part 1600)	Date Completed: June 6, 2011	
		Reviewed Not Referred: ⊠	
40 70	• •	Reviewed Referred:	
10. Environmental Just		NA	,
11. Site Investigation R		Date Received: 08/15/17 Log No. 17-65297	1
12. Remedial Objectives 13. Remedial Action Pla		Date Received: 08/15/17 Log No. 17-65297 Date Received: 08/15/17 Log No. 17-65297	
14. Remedial Action Co			
(RACR)	inpletion Report	Supplement: 05/30/19 Log No. 19-69413	
15. LUST Incidents		903578 – LUST NFR issued 12/22/98	
16. IEMA Incidents		991878, 990556, 20140897	
17. Consent Order/CCA	.s	NA	
		I Company of the Comp	j

В.	Project Summary:						
1.	Type of NFR Letter Requested:						
-	Land Use: Residential and/or Industrial Commercial □ Industrial/Commercial □						
	Investigation: Comprehensive ⊠ Focused □						
2.	Site Description:						
	Physical Description of the Site including past, current and future land use:						
	Physical Description of the Site including past, current and future land use: The site was previously occupied by Magellan Pipeline Company since at least 1931 and was used for the bulk storage of petroleum products. Prior to redevelopment, the site was improved with one 2,240 square foot office building, one 6,000 square foot loading rack building, one 800 square foot garage building and 20 above ground storage tanks (ASTs) ranging in size from 500 to 2,300,000 gallons. The property also contained underground and aboveground pipelines, gravel roads throughout the property and abandoned railroad tracks on the northeastern portion of the property. All of these historic structures (buildings, tanks, pipelines, rail road tracks, etc.) were removed from the site as part of the redevelopment activities. Redevelopment consisted of the construction of three large, slab-on-grade, single story warehouse buildings of 174,646, 277, 805 and 203,802 square feet, construction of associated asphalt and concrete parking areas and sidewalks, construction of two stormwater retention basins and placement of an alternative barrier in landscaped areas. The site is relatively flat and largely covered by buildings and associated parking areas. Undeveloped areas include the retention basins and the western edge of the site where Silver Creek runs through the site from north to south. Are there buildings (as defined for indoor inhalation) on-site: Yes No If yes, description of Building(s): Three slab-on-grade warehouse buildings are present on-site covering 174,646, 277, 805 and 203,802 square feet.						
	Regional location and Surrounding Land Uses: The site is located in a largely industrial/commercial area of Franklin Park. It is bounded on the north by Franklin Avenue and Interstate 294, on the east and west by developed industrial/commercial properties and on the south by Belmont Avenue across which are developed industrial/commercial properties. Adjacent to the southeast corner of the property across Belmont avenue is a residential area.						
	Investigation Summary:						
3a.	Investigation History and Recognized Environmental Conditions (RECs):						
	November 1986 – In November of 1986 24,000 gallons of gasoline were released near Tank 272. 10,400 gallons were immediately recovered. Limited soil excavation and discing activities were then conducted to address the release. In 1987 a subsurface investigation was conducted in						

response to the release consisting of seven soil borings (TB-1 through TB-7), installation of seven monitoring wells (MW-1 through MW-7) and the collection of surface water samples. Little information about this investigation is available.

1998 – An additional ten monitoring wells (MW-08 through MW-17) were installed at the site to form a perimeter monitoring network. No details concerning this work were available.

March 1999 – 42-48 gallons of a mixture of gasoline, diesel fuel and water were released from a product recovery sump. IEMA incident number 991878 was assigned to this release. Absorbent pads and absorbent booms were placed around the area and standing product was vacuumed and placed back into the sump. Affected soil, grass and crushed stone were then excavated to a depth of 3 to 6 inches. Approximately 10 cubic yards of soil were removed for off-site disposal. The excavated area was backfilled with clean soil.

April 1999 – Environmental Strategies Consulting, LLC (ESC) collected soil samples from nine soil borings (P-1 through P-9) to evaluate soil conditions following the March 1999 release. Two additional samples (P-4a and P-5a) were collected following additional soil excavation work that was conducted after the initial soil excavation activities. The soil samples were analyzed for BETX and PNAs.

August 1999 – Approximately 90 gallons of a gasoline and diesel fuel mixture was released from the sump system in the same area as the march 1999 release. IEMA Incident number 990556 was assigned to this release. Absorbent pads, buckets and a vacuum truck were used to collect product immediately following the release. Affected soil was then excavated from the release area to a depth of 3 to 8 feet below grade. A total of approximately 225 cubic yards of soil were removed and disposed of off-site. The excavation was backfilled with clean soil. An additional monitoring well (MW-19) was also installed sometime in 1999.

April 2004 – Environmental Strategies Consultants (ESC) conducted slug test on three wells (MW-8, MW-16 and MW-19) resulting in values of 3.54×10⁻⁶ to 3.08×10⁻⁴ cm/sec. and sampled monitoring wells MW-01 through MW-08, MW-10, MW-12 through 14 and MW-16 through MW-19. The groundwater samples were analyzed for BETX and Hexane.

April 2017 – Weaver Consulting Group (WCG) advanced 74 soil borings and collected 82 soil samples and two sediment samples from Silver Creek. The samples were analyzed for the Target Compound List parameters, or some combination of VOCs, PNAs, RCRA metals TPH, TCLP metals, SPLP metals, foc and pH. In addition, all existing monitoring wells (installed previously at the site with little background concerning dates and details of their installation) were sampled (twelve existing wells MW-01, MW-03 through MW-06, MW-08, MW-10, MW-12, and MW-14A through MW-19) and two temporary monitoring wells (TW-01 and TW-02) were installed and sampled. Groundwater samples were analyzed for the Target Compound List parameters or BTEX, MTBE, PNAs, total and dissolved RCRA metals.

November 2017 – EGSL removed 11,834 tons of impacted soils from four excavation areas and disposed of the soil off-site. A total of 40 floor and sidewall samples were collected from the excavations and disposed of off-site. The samples were analyzed for BETX and GRO, DRO and ERO range TPH. [Excavation area #3 included the former location of the 6,000-gallon diesel UST associated with LUST Incident #903578]

May 2018 – EGSL collected 9 soil gas samples (SG-1N, SG-1C, SG-1S, SG-2N, SG-2C, SG-2S, SG-3N, SG-3C, and SG-3S) throughout the site.

July 2018 – EGSL advanced five soil borings (B-101 through B-105) at the site to complete delineation of contaminants. Soil sample were collected and analyzed for either benzene, 2-methylnapthalene or 1,1,2,2-tetrachlorethane or a combination of these parameters.

	·
•	
	October 2018 – EGSL excavated two areas along Silver Creek to address Arsenic exceedances that will not be covered by proposed engineered barriers. A total of ten floor and sidewall
	samples were collected from the excavations and analyzed for arsenic.
	April 2019 – EGSL excavated two areas west of Silver Creek at sampling locations HA-03 and HA-05 where arsenic concentrations were identified above applicable soil ingestion objectives. Approximately 0.25 cubic yards of material were removed, and ten confirmation samples were collected (4 sidewall and one floor from each excavation location) and analyzed for total arsenic.
	May 2019 – EGSL returned to over excavate the previous excavation at the HA-05 location to address two sidewall samples that exceeded the applicable soil ingestion objectives. An additional 0.125 cubic yards of material was removed, and two sidewall samples were collected and sent for analysis for total arsenic. Both samples were below the applicable Tier 1 soil ingestion objective (13 mg/kg) for total arsenic.
	PCBs No □ Yes < 1 ⊠ Yes >1 □
	Soil Gas Samples Collected: Yes 🖾 No 🗆
	Free Product Yes 🗵 No 🗆
3b.	Geology and Hydrogeology: Class I ⊠ Class II □
	Soil:
	On-site investigative activities generally encountered topsoil or fill materials consisting of gravel and or silty/sand from the ground surface to six inches to two feet below ground surface (bgs). Beneath the surface materials was brown and gray mottled silty clay containing some gravel and sand to depths of nine to ten feet bgs. Beneath the silty clay is a lean clay that extends to the maximum depth investigated of 30 feet bgs. Within the silty clay unit gray sandy silt and grey silty sand were encountered in some borings.
	foc: Value: Five samples were collected that ranged from 1.13 to 5.8 percent. FOC samples were not approved for calculating Tier 2 objectives.
	<u>Groundwater</u> :
	Groundwater was generally encountered at between four and seven feet below ground surface.
	Hydrogeologic Data: Hydraulic Conductivity: 3.08×10 ⁻⁴ cm/sec (value used in modeling) Hydraulic Gradient: 0.009 ft/ft
	Groundwater Flow Direction: Variable to the south/southwest on the western portion of the site and to the south/southeast on the eastern portion of the site.
	<u>Surface Water:</u> The nearest surface water body is Silver Creek which runs through the western edge of the site.
	• Is the site within the setback zone of a potable well: Yes □ No ☒
	 Are any potable private wells within 1000 feet or public wells within 2500 feet of the site? Yes □ No ☒
	the state of the s

.

search radius. • Is contamination measures □ No⊠	red or modeled within the setb	
Remediation Objectives:	latory Requirements/Determ	Inations:
Tier Level: Tier 1 ⊠ Tie Land Use Scenario: Reside	er 2	
		I II E A JJ
Exposure Route and Medium	Contaminants exceeding Tier 1 objectives	How Exceedances are Addresse
Mediuiti	SOIL	
	J	The exposure route was exclude
Soil Ingestion (mg/kg):	Arsenic	utilizing engineered barriers consisting of building foundations, concrete and asphapavement and an alternate barriconsisting of 18 inches of clean soil over a Mirafi 180N geotext that will cover the entire site with exception of the area immediately along and west of Silver Creek. Soil excavation are removal was used to address exceedances within, immediate along and west of Silver Creek that will not be covered by engineered barriers.
Soil Outdoor Inhalation (mg/kg):	Benzene Naphthalene Ethylbenzene	The exposure route was exclude utilizing the concrete building foundation and concrete and asphalt pavement as engineered barriers to eliminate exposure to the contaminants.
	Construction Worker Expos	sure Route
Soil Ingestion (mg/kg) Soil Outdoor Inhalation	None Benzene Naphthalene Ethylbenzene	The exposure route was exclude utilizing an institutional control requiring a worker safety plan f

- Son Compon	nent to the Groundwater Inge	estion Exposure Route
Soil Component of Groundwater Ingestion (mg/kg) □ SPLP/TCLP (mg/L) □	Benzene Ethylbenzene Xylene 1,1,2,2-Tetrachloretheane 2-Methylnapthalene	The exposure route was excluded utilizing an on-site groundwater use restriction as an institutional control.
·	GROUNDWATER	<u> </u>
Groundwater Ingestion (mg/L)	Benzene Iron	The exposure route was excluded utilizing an on-site groundwater use restriction as an institutional control.
	INDOOR INHALATI	
	cals Detected Soil 🛛 Grou	undwater ⊠ Soil Gas ⊠ ab on-grade restriction needed.
Groundwater (mg/L)	Benzene	Soil gas samples were collected in areas of groundwater exceedances. Soil gas sample results did not exceed the Tier 1, Table H remediation objectives.
Soil Gas (mg/m³)	None	
ription of how the remediati	•	l Approach to Corrective Action
ectives ("TACO") criteria (3 Alternative Assessments Pe	·	npliance:
Alternative Assessments Per ProUCL Explain:	5 Ill. Adm. Code 742): rformed to Demonstrate Con	npliance:
Alternative Assessments Per ProUCL □ Explain: Alternate Barrier □	rformed to Demonstrate Con a soil over a Mirafi 180N geote: 18, 2019 ain:	npliance: xtile for exclusion of the ingestion
Alternative Assessments Per ProUCL ☐ Explain: Alternate Barrier ☒ Type: 18 inches of clean exposure route. Approval Date: March Area Background ☐ Explain	rformed to Demonstrate Con a soil over a Mirafi 180N geote: 18, 2019 ain:	

_	·					
5b	Remedial Action(s) Performed:					
	Limited remedial efforts were conducted in response to releases at the site and are discussed in					
	Section 3a above. After entrance into the SRP program, remediation conducted in pursuit of the					
	NFR determination included the excavation of soil above soil saturation limits and soil					
	attenuation limits in four excavations resulting in the removal and off-site disposal of 11,834					
	tons of impacted soil. In addition, four small excavations were conducted to address arsenic					
	exceedances along and west of silver creek resulting in the removal and off-site disposal of three					
	55-gallon drums of impacted soil.					
	For PCBs >1 ppm, was USEPA approval received? No Yes Date: NA					
5.	Site Specific Modeling:					
	Groundwater modeling was conducted utilizing equations S17, R14 and R26 to determine the					
	maximum distance contaminants might migrate before meeting the Class 1 groundwater					
	standards and the surface water quality standards. Modeling demonstrated that contaminants would not migrate beyond the Remediation Site boundary above the Class 1 standard and would					
	not migrate to Silver Creek above the surface water quality standards.					
	The same of the second decree and continue of the second decree of the s					
	If R26 was used, does modeling indicate contamination may migrate off-site? Yes □ No ☒					
7.	NFR Letter Restrictions					
	Institutional Controls:					
	G. 7.					
	Soil: • Industrial/Commercial Land Use ⊠					
	Construction Worker Caution ⊠					
	Highway Authority Agreement					
	• Environmental Land Use Control (ELUC) □					
	• Other Explain:					
	- Cinci - Explain.					
	Groundwater:					
	Municipal Ordinance □ Number: Notification Required? Yes □ No □					
	On-site Groundwater Use Restriction ⊠					
	Highway Authority Agreement (HAA) □					
	Environmental Land Use Control (ELUC) □					
	Indoor Inhalation:					
	Any existing or potential building has a full concrete slab-on-grade or full concrete					
	basement floor and walls.					
	■ Building Control □ Current □ Future □					
	Sub-slab depressurization (SSD) system □					
	Sub-membrane depressurization (SMD) system □					
	Membrane barrier system □					

	Vented raised floors □)			
	Other Details:		•		
	 Sealed Sump Environmental Land Use Control 	ol 🗆			
•	Engineered Barriers:	,			
	Type of Barrier:	•		·	
	• Clean Soil □ 3' □ Ingestion	10' □	Ingestion	Inhalation □	
	 Asphalt ⊠ 		Ingestion 🖾 :	Inhalation ⊠	
	• Concrete Pavement ⊠		Ingestion 🗵	Inhalation ⊠	
	Concrete Building Slab ⊠		Ingestion 🖾	Inhalation 🖾	
	• Alternative Barrier ⊠ Details: 18 inches of clean soil ove	er a Mirafi	Ingestion ⊠ 180N geotextile.	Inhalation	
	Other:				
8.	USEPA involvement: NA				

. . .

•

NFR Institutional Control-SRP Form 2

JUL 05 2019

REVIEWER: SAB

LPC # 0310965121 -Cook County Franklin Park/Magellan Pipeline SRP/Technical Reports

The Remaining soil or groundwater concentrations for the contaminants of concern:

Soil – Inhalation and Ingestion				
☑ Less than 100X the Tier I Residential				•
□ 100X to 1000X the Tier I Residential Criteria				
□ 1000X to 10,000X the Tier I Residential			-	
Greater than 10,000X the Tier I Residential Criteria		•		
Groundwater				
Less than 100X the Tier I Criteria			•	
☐ 100X to 1000X the Tier I Criteria				
☐ 1000X to 10,000X the Tier I Criteria				
☐ Greater than 10,000X the Tier I Criteria	•			
☐ No groundwater encountered				
	•			
Determination			•	
Special Category		\$		
Recommended Inspection Frequency Every	Years			
Special Category Requires Section Manager Signature				

APPENDIX F

Supplement to the February 1, 2019 RACR

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 -(217)782-3397

JB PRITZKER, GOVERNOR

ALEC MESSINA, DIRECTOR

217/524-3290

January 17, 2019

Mr. Mark Houser Bridge Development Partners 1000 Irving Park Road, Suite 150 Itasca, IL 60143

Re:

LPC# 0310965121 - Cook County Franklin Park/Magellan Pipeline Site Remediation/Technical Reports

Dear Mr. Houser:

The Illinois Environmental Protection Agency (Illinois EPA) has reviewed the Response to IEPA's Comments from the June 8, 2018 Comment Letter Disapproving the EGSL Comprehensive Site Investigation Report/Remediation Objectives Report/Remedial Action Plan Report and Addendums (CSIR/ROR/RAP), dated July 20, 2018 and the Supplement to EGSL's July 20, 2018 Response Letter to IEPA, dated October 25, 2018 (Illinois EPA Log Nos. 18-67565 and 18-68243) prepared by Environmental Group Services Limited for the Site Remediation Project located at 10601 Franklin Avenue, Franklin Park, Illinois. The documents referenced above have been approved with the following comments.

- 1. In a January 15, 2019 e-mail, EGSL provided the Illinois EPA with an electronic copy of a site base map showing the locations of soil gas sampling locations in relationship to the groundwater sampling locations. Please include a hard copy of this map in the Remedial Action Completion Report for inclusion in the Illinois EPA's permanent file.
- 2. Figures 3 and 2B were not included in the hard copy of the Supplement to EGSL's July 20, 2018 Response Letter to IEPA, dated October 25, 2018. Please include hard copies of these maps in the Remedial Action Completion Report for inclusion in the Illinois EPA's permanent file.

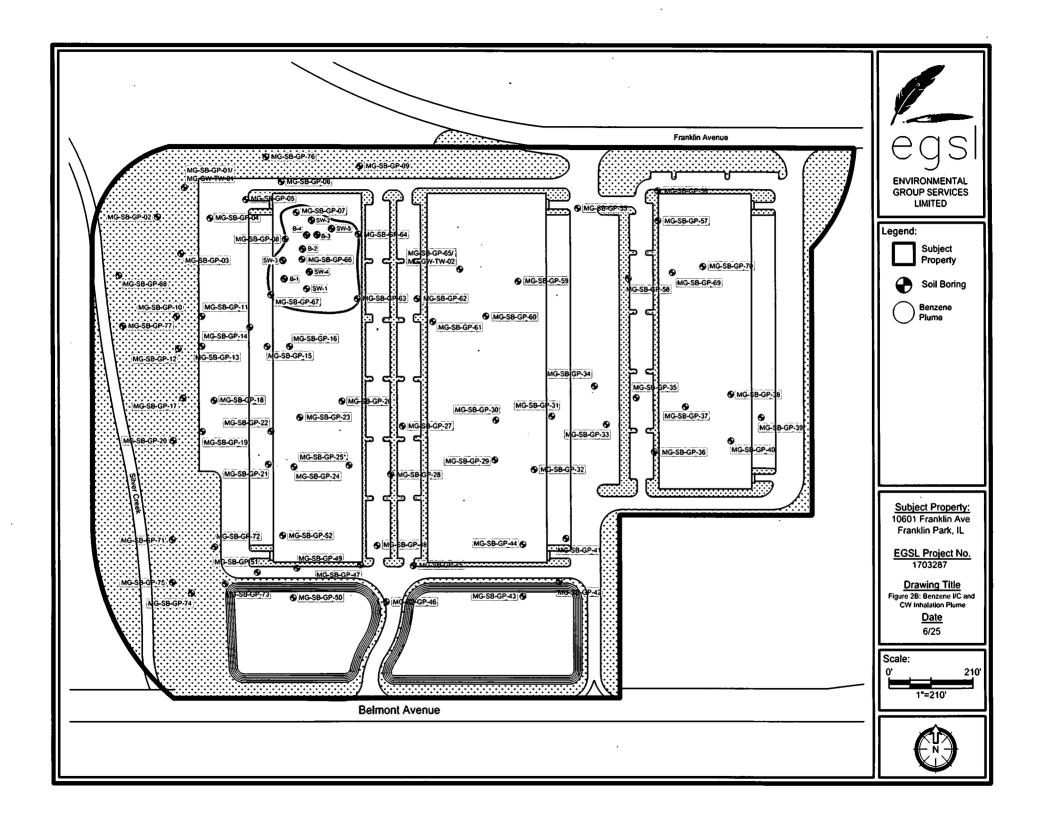
Please submit two (2) copies of all future reports or correspondence to the Illinois EPA regarding this site. Also, the Illinois EPA requests not less than fourteen (14) calendar days notification of all future site investigation and remedial activities in order to coordinate Illinois EPA oversight. This notification is particularly important when groundwater or soil samples are being collected. Failure to notify the Illinois EPA may invalidate sample analysis results and/or other site

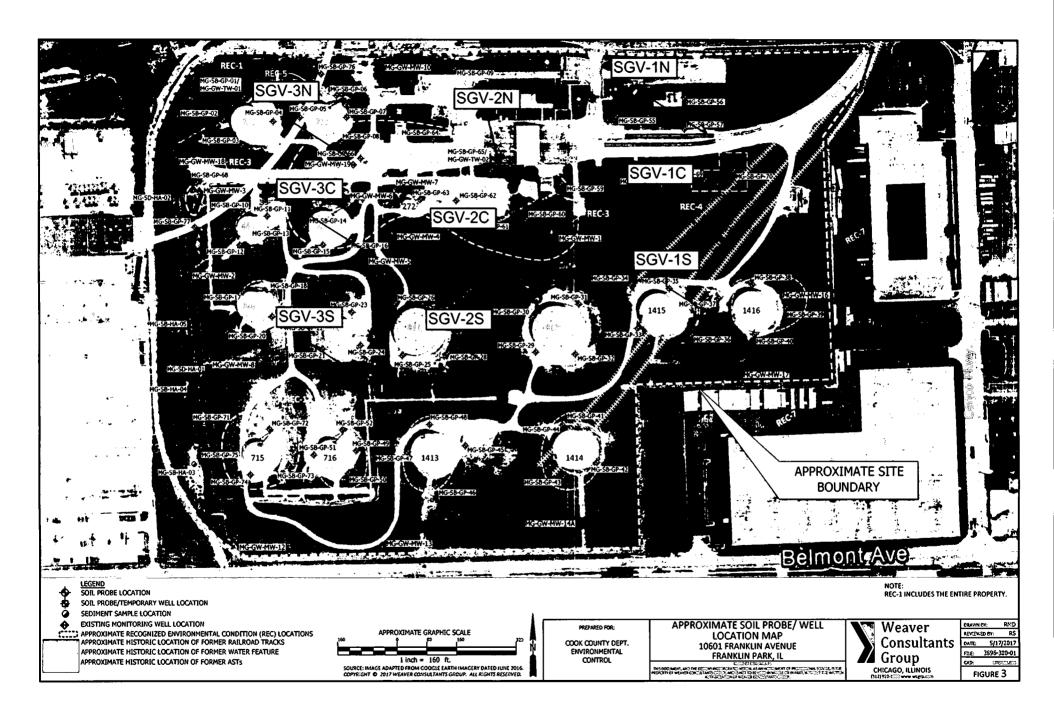
activities. If you have any questions regarding the comments above, I may be contacted at the address or telephone number above.

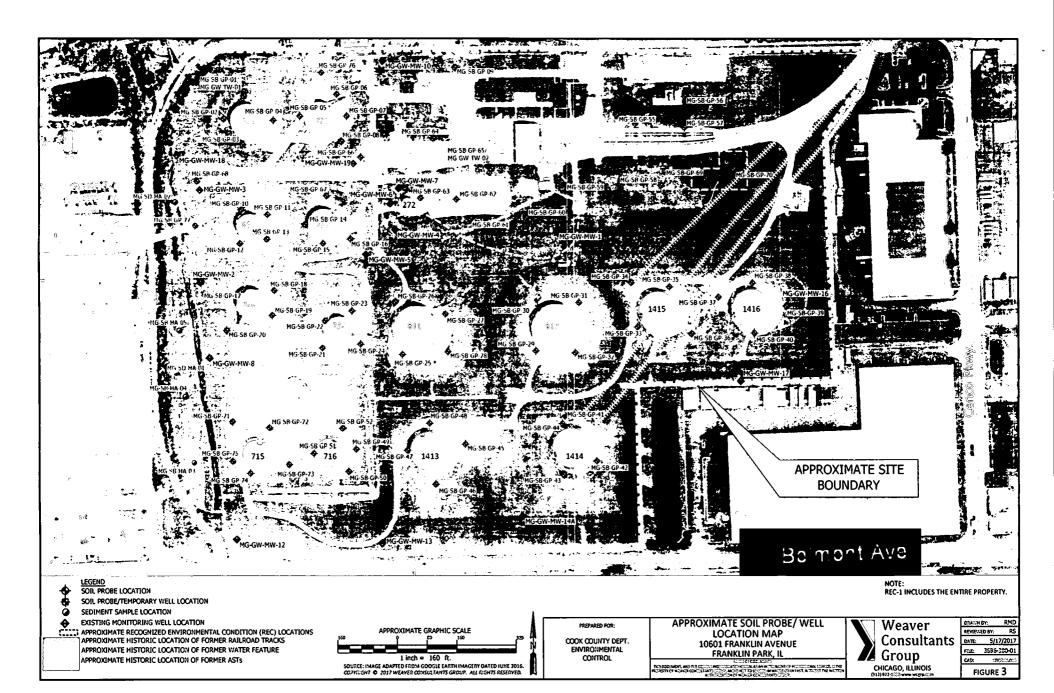
Sincerely,

Andrew M. Catlin, L.P.G.

Project Manager


Voluntary Site Remediation Unit Remedial Project Management Section Division of Remediation Management Bureau of Land


cc: Melanie Little


Magellan Pipeline Company, L.P. One Williams Center MD 28 Tulsa, OK 74172

William Lennon EGSL bill@egsl.com

Bureau of Land File

APPENDIX J - Mirafi® 180N Spec Sheet

Mirafi® 180N

Mirafi® 180N is a needlepunched nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. Mirafi® 180N is inert to biological degradation and resists naturally encountered chemicals, alkalis, and acids. Mirafi® 180N meets AASHTO M288-15 Class 1 for Elongation > 50%.

TenCate Geosynthetics Americas Laboratories are accredited by Geosynthetic Accreditation Institute – Laboratory Accreditation Program (GAI-LAP). NTPEP Listed

Mechanical Properties	Test Method	Unit	Minimum Roll \	
·			MD	CD
Grab Tensile Strength	ASTM D4632	lbs (N)	205 (912)	205 (912)
Grab Tensile Elongation	ASTM D4632	%	50	50
Trapezoid Tear Strength	ASTM D4533	lbs (N)	80 (356)	80 (356)
CBR Puncture Strength	ASTM D6241	lbs (N)	500 (2	2224)
			Maximum O	pening Size
Apparent Opening Size (AOS)	ASTM D4751	U.S. Sieve (mm)	80 (0).18)
			Minimum	Roll Value
Permittivity	ASTM D4491	sec-1	1.	4
Flow Rate	ASTM D4491	gal/min/ft² (l/min/m²)	95 (3	870)
			Minimum	Test Value
UV Resistance (at 500 hours)	ASTM D4355	% strength retained	7	0

Physical Properties	Unit	Roll	Sizes
Roll Dimensions (width x length)	ft (m)	12.5 x 360 (3.8 x 110)	15 x 300 (4.57 x 91.4)
Roll Area	yd² (m²)	500	(418)

Disclaimer: TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

Mirafi® is a registered trademark of Nicolon Corporation.

Copyright © 2015 Nicolon Corporation. All Rights Reserved.

365 South Holland Drive Pendergrass, GA 30567

Tel 706 693 2226 Tel 888 795 0808 Fax 706 693 4400 www.tencate.com

FILE COPY O310965: Illinois Environmental Prote(SR/TECH

0310965121-Cook Franklin Park/Magellan Pipeline Co.

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

Site Remediation Program Form (DRM-2)
ILEPA - DIVISION OF RECORDS MANAGEMENT
(To be Submitted with all Plans and Reports)
RELEASABLE

You may complete this form online, save a copy, print, sign and mail it to the address above.

I. Site Identifi	cation:			JUN 26 2019
Site Name:	Magellan Pipeline Chicago Ter	minal		>-\ /1-\ //-> \ \
Street Address:	10601 Franklin Avenue			REVIEWER: RDH P.O. Box:
City:	Franklin Park	State: <u>IL</u>	Zip Code: 60131	Phone: 847 531 3980
-	D Number: 0310965121		Incident Number:	
II. Remediation	•	12110		
Applicant's Name		ser		
Company:	Bridge Development Partners			
Street Address:	1000 Irving Park Rd. Suite 150		· · · -	P.O. Box:
			Zip Code: 60143	Phone: 847 531 3980
City: Email Address:	mhouser@bridgedev.com	State. <u>!</u>	Zip Code. <u>*** ***</u>	Filone. Ottobal
		evaluate the attac	hed project documents in	accordance with the terms and
conditions of the	Environmental Protection Act (4)	15/LCS \$), imple	menting regulations, and	the review and evaluation
services agreeme		/ ////		1-10
Remediation App	licant's Signature:	w & Hour	u	Date: <u>\$/\\$/_/</u> *
III. Contact Po	erson for Remediation Ap	plicant:		
Contact's Name:	Mr./Ms. Mr. Mark Hous	er		
Company:	Bridge Development Partners			
Street Address:	1000 Irving park Rd.			_ P.O. Box:
City:	Itasca	State: <u>II</u>	Zip Code: <u>60143</u>	Phone: <u>847 531 3980</u>
Email Address:	mhouser@bridgedev.com			
Contact Perso	on for Consultant:			
Contact's Name:	Mr./Ms. Mr. Bill Lennon			
Company:	EGSL			
Street Address:	557 West Polk Street, Suite 20	1		_ P.O. Box:
City:	Chicago	State: <u>IL</u>	Zip Code: 60607	Phone: (312)447-1200
Email Address:	bill@EGSL.com			
IV. Review &	Evaluation Licensed Prof	fessional Eng	ineer or Geologist ("RELPEG"), if applicable:
RELPEG's Name	e: Mr./Ms. <u>Mr.</u>			
Company:				
Street Address:			,	P.O. Box:
City:		State:	Zip Code:	Phone:
Email Address:				
			REC	EIVED

MAY 3 0 2019

IEPA/BOL

Page 3 of 4 V. Project Documents Being Submitted: **Date of Preparation** Document Title: RACR Supplement of Plan or Report: 5/22/19 **EGSL** Prepared For: IEPA Prepared by: Type of Document Submitted: Site Investigation Report - Comprehensive Sampling Plan Site Investigation Report - Focused Health and Safety Plan ☐ Community Relations Plan Remediation Objectives Report - Tier 1 or 2 Remediation Objectives Report - Tier 3 Risk Assessment Remedial Action Plan Containment Fate & Transport Modeling Other: RACR Supplement Remedial Action Completion Report Date of Preparation Document Title: of Plan or Report: Prepared For: Prepared by: Type of Document Submitted: Site Investigation Report - Comprehensive Sampling Plan Health and Safety Plan Site Investigation Report - Focused Remediation Objectives Report - Tier 1 or 2 ☐ Community Relations Plan Remediation Objectives Report - Tier 3 ☐ Risk Assessment Remedial Action Plan Containment Fate & Transport Modeling Remedial Action Completion Report Other: _____ Date of Preparation of Plan or Report: Document Title: Prepared by: Prepared For: _____ Type of Document Submitted: Sampling Plan Site Investigation Report - Comprehensive Health and Safety Plan Site Investigation Report - Focused Community Relations Plan Remediation Objectives Report - Tier 1 or 2 Remediation Objectives Report - Tier 3 Risk Assessment Remedial Action Plan Containment Fate & Transport Modeling Remedial Action Completion Report Other:

The appearance of some of the images following this page is due to

Poor Quality Original Documents

and not the scanning or filming processes.

Com Microfilm Company (217) 525-5860

.....

VI. Professional Engineer's or Geologist's Seal or Stamp:

Remedial Action Completion Reports.

I attest that all site investigations or remedial activities that are subject of this plan(s) or report(s) were parformed under my direction, and this document and all attachments were prepared under my direction or reviewed by me, and to the best of my knowledge and belief, the work described in the plan and report has been designed or completed in accordance with the tilinois Environmental Protection Act (415 ILCS 5), 35 II. Adm. Code 740, and generally accepted engineering practices or principles of professional geology, and the information presented is accurate and complete.

Any person who knowingly makes a false, Scilious, or fraudulent material statement, emily a second or subsequent effects offer conviction is a Class 3 latenty. (415 LCS S/44(h))	of in writing, to the timeic EPA signal SURIA (Englary, A
Engineer's or Geologist's Name: Harold A. Smith, P.E.	GOOD Sea of Stamp:
Company: EGSL	062-90217
Registration Number: 062-030217 Phone: 312-447-	1200
License Expiration Date: 11/30/2019	Mary No.
Signature: Allered a. /mith	Date: 5/08/19 OF ILLINOIS
Note: The authority of a Licensed Professional Geologist to certify documents submits and evaluation personnent to Title XVII of the Environmental Protection Act is limited to 1 A. \$2-0735, effective July 25, 2002. A Licensed Professional Geologist community or the Research Control of Control Control of Con	and to the Minois Environmental Protection Agency for review Stip Investigation Reports M35 R CS 88 270, as appeared by 9

All information submitted is available to the public except when specifically designated by the Remediation Applicant to be treated confidentially so a trade expense or secret process in accordance with the Unios Compiled Statutes, Section 7(e) of the Emvironmental Protection Act, applicable Rules and Regulations of the Winess Pollution Control Board and applicable Minds EPA rules and guidelines. The Illinois EPA is authorized to require this information under Sections 415 ILCS 5/36 - 58.12 of the Emvironmental Protection Act and regulations proventingstod thereunded. Disclosure of this information is required as a condition of positiopetion in the Site Remediation Program. Peaker to do so may prevent this form from treing processed and could result in your plan(s) or report(s) being rejected. This form has been approved by the Forms Management Center.

Mr. Andrew Catlin, L.P.G.
Illinois Environmental Protection Agency
Voluntary Site Remediation Unit
Remedial Project Management Section
Division of Remediation Management
Bureau of Land

FILE COPY

_May 22, 2019

19-69413

0310965121-Cook Franklin Park/Magellan Pipeline Co. SR/TECH

Regarding:

SUPPLEMENT to EGSL's February 1, 2019 RACR

0310965121-Cook County Franklin Park/Magellan Pipeline

Site Remediation Program/Technical Reports

RECEIVED

MAY 3 0 2019

Dear Mr. Catlin,

IEPA/BOL

The purpose of this letter is to formally provide you with supplemental information pertaining to EGSL's February 1, 2019 RACR that was previously submitted to the IEPA (received February 7, 2019), which was approved by the IEPA on April 3, 2019. At the time of submittal of the RACR, engineered barriers were only in place for the eastern 2/3 of the Subject Property (aka Buildings/Lots 1 and 2) and were subsequently approved by the IEPA.

It should be noted that site development of the western 1/3 (aka Building/Lot 3) has since been completed and engineered barriers are in place. The following information is provided as a supplement to the previously approved RACR:

- During Weston's 2017 Phase II Subsurface Investigation (previously submitted), three samples were obtained from the undeveloped grassy area west of Silver Creek along the far western portion of the site. Of those three samples no chemicals of concern were detected above IEPA Tier 1 ROs with the exception of Arsenic. Arsenic was detected in HA-03 and HA-05 at concentrations of 15 mg/Kg and 31 mg/Kg, respectively. In order to eliminate the need for an engineered barrier requirement in the undeveloped grassy portion of Silver Creek, EGSL excavated the soils from HA-03 and HA-05. On April 30, 2019, approximately 0.25 cubic yards of soil were removed and collected by North Branch Environmental for disposal at an approved Subtitle-D landfill. EGSL obtained ten (10) total confirmation soil samples from the excavation areas (four wall samples and one floor sample from each excavation area) and submitted the samples to STAT Analysis Corporation (STAT) for analysis of Arsenic. According to the analytical results, two of the wall samples from the HA-05 excavation area contain Arsenic at concentrations of 17 mg/Kg and 21 mg/Kg. As such, on May 21, 2019, EGSL excavated an additional 0.125 cubic yards of soil, and two additional wall samples were submitted to STAT for analysis of Arsenic. According to the laboratory results, neither of these samples contained Arsenic at concentrations above Tier 1 ROs. As such, based on Weston's previous sampling activities and the recent excavation of Arsenic impacted soils, EGSL has determined that the need for an engineered barrier requirement for the undeveloped grassy area located west of Silver Creek is no longer necessary.
- EGSL had previously submitted documentation pertaining to the landscaped areas and associated engineered barriers for Lots 1 and 2 which has been approved and implemented. The landscaped areas for Lot 3 are now complete and have followed the previously approved Remedial Action

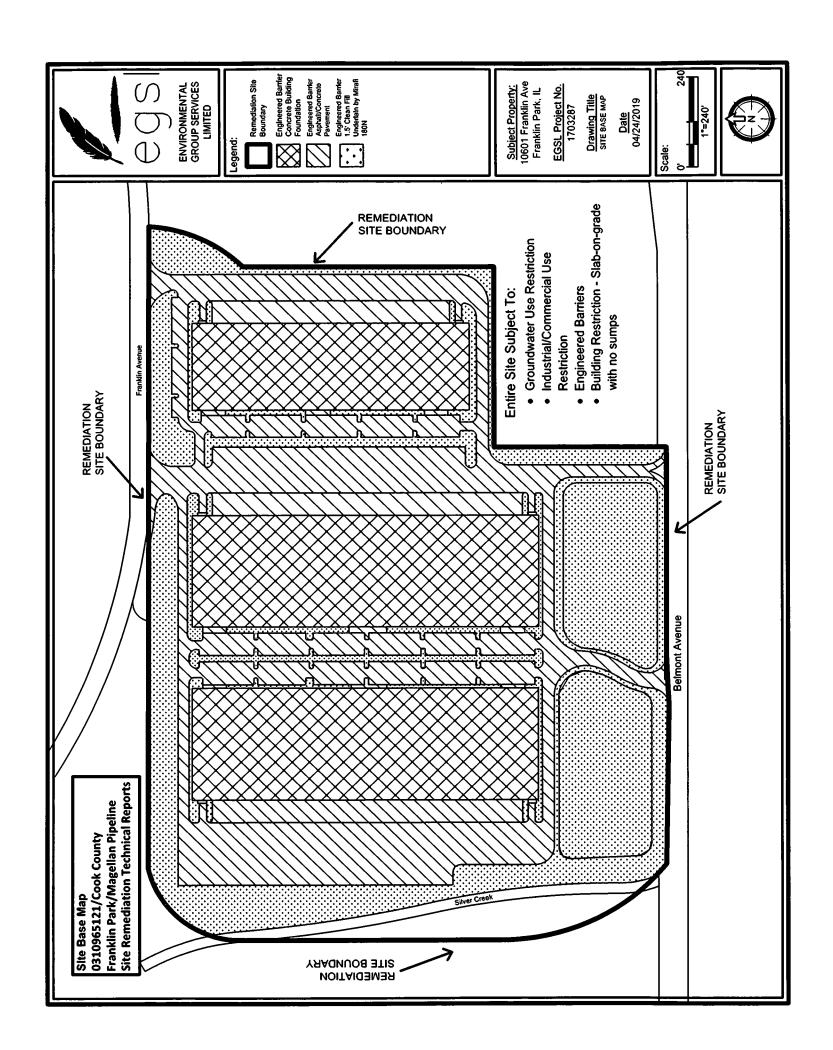
Plan and Alternative Barriers. Approximately 7,500 cubic yards of clean soil was utilized for the 1.5' barrier in the landscaped areas; as such, sixteen (16) soil samples were submitted to STAT for analysis of TCL indicator contaminants. According to the analytical results, no chemicals of concern were detected above any Tier 1 Remediation Objectives.

• An updated Site Base Map has been completed and is attached.

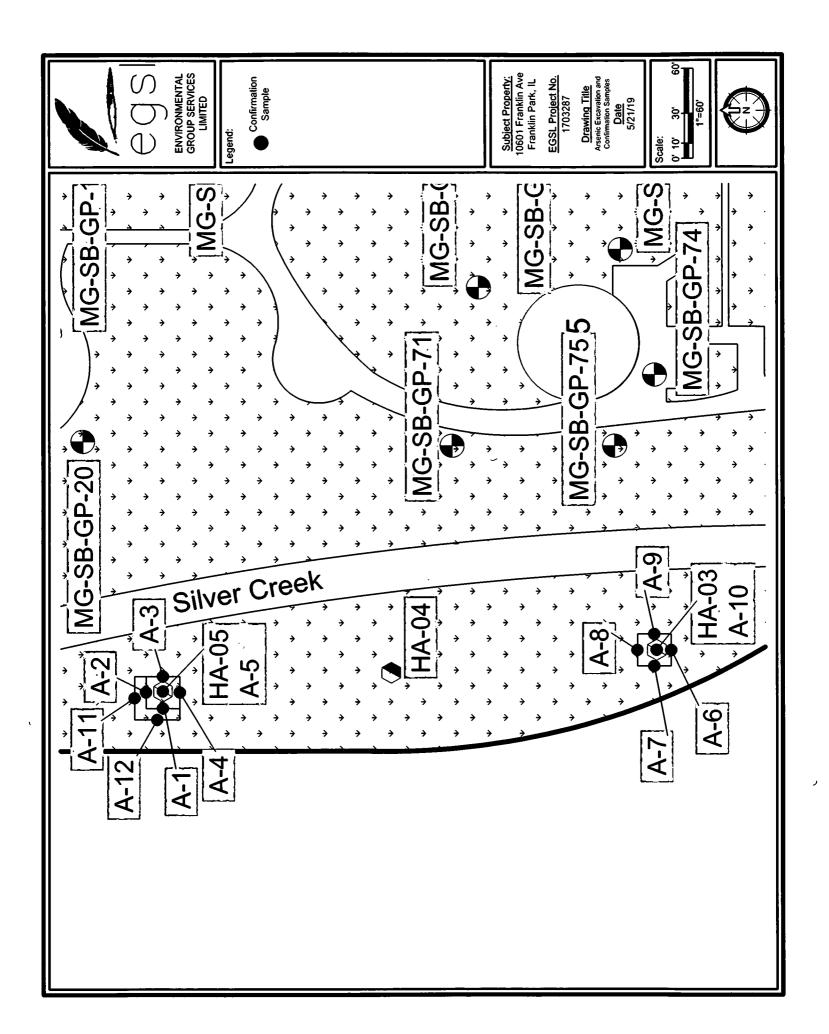
Based on the previously approved RACR and subsequent draft NFR, EGSL has provided this supplemental information in order to obtain a comprehensive NFR letter for the entire site at this time.

Thank'you for all of your help on this project. Please do not hesitate to let us know if you need any additional information.

Sincerely,
ENVIRONMENTAL GROUP SERVICES, LIMITED


List of Attachments:

A-Updated Site Base Map
B-Arsenic Excavation Areas (west of Silver Creek)
C-Arsenic Confirmation Sample Analytical Results
D-Waste Manifests
E-Target Compound List Analytical Results


ATTACHMENT A – Site Base Map

ATTACHMENT B – Arsenic Excavation Areas

ATTACHMENT C – Arsenic Analytical Results

Client: Environmental Group Services, Ltd. Project: Franklin (A) Laboratory: STAT ANALYSIS

19041195-001 Laboratory ID : Client Sample ID :

19041195-002 19041195-003 19041195-004 A-2 A-3 A-4 04/30/2019 08:10 04/30/2019 08:20 04/30/2019 08:30 19041195-004 A-4 A-1 04/30/2019 08:00 Date Collected:

Construction Worker Soil Component of Residential Route Specific Route Specific Values for Soil Exposure Route Values Values for Soil Soil Exposure Route Values Analyte Ingestion Inhalation Inhalation 13.0/11.3 750 61 25,000 13.0/11.3
Construction Worker Residential Route Specific Route Specific Values for Soil Soil E Values for Soil Soil E Analyte Ingestion Inhalation 13.0/11.3 750 61 25,000
Residential Route Specific R Values for Soil Analyte Ingestion 13.0/11.3 750
Residential Route Specific R Values for Soil Analyte Ingestion 13.0/11.3 750
Residential Route S Values for Soi Analyte Ingestion Inh
Reside
Analyte

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

Client: Environmental Group Services, Ltd. Project: Franklin (A)
Laboratory: STAT ANALYSIS

 Laboratory ID:
 19041195-005
 19041195-006
 19041195-007
 19041195-008

 Client Sample ID:
 A-5
 A-6
 A-7
 A-8

 Date Collected:
 04/30/2019 08:40
 04/30/2019 08:50
 04/30/2019 09:00
 04/30/2019 09:10

8.4	8.4	9.8	7.3			25.000	19	750	13.0/11.3	Arsenic	7440-38-2
				Class II	Class I	Inhalation	Ingestion	Inhalation	Ingestion	Analyte	CAS No.
				xposure Route Values	Exposure R	Soil	Sc	alues for Soil	Values		
				er Ingestion	Groundwat	Route Specific Values for Groundwater Ingestion	Route Specif	toute Specific	Residential Route Sp		
				ponent of	Soil Component o	on Worker	Construction Worker				

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

Client: Environmental Group Services, Ltd. Project: Franklin (A) Laboratory: STAT ANALYSIS

Client Sample ID : 19041195-009 19041195-010
Client Sample ID : A-9 A-10
Date Collected : 04/30/2019 09:20 04/30/2019 09:30

4.7	6.9			23,000	10	00/	13.0/11.3	Arsenic	7-90-044/
	00			000 30	1.7	750	120/113	Assession	7440 20 7
		Class II	Class I	Inhalation	Ingestion	Inhalation	Ingestion	Analyte	CAS No.
		Exposure Route Values	Exposure R	oil	Š	Values for Soil	Values		
	•	ter Ingestion	Groundwa	toute Specific Values for Groundwater Ingestion	Route Specif	Residential Route Specific	Residential R		
		Soil Component of	Soil Com	Construction Worker	Constructi				

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A. Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Report (Background)

Client: Environmental Group Services, Ltd. Project: Franklin (A) Laboratory: STAT ANALYSIS

			: . 5	Laboratory ID: Client Sample ID: Date Collected: 0	Laboratory ID: 1904 1195-001 ient Sample ID: A-1 Date Collected: 04/30/2019 08:00	19041195-002 A-2 04/30/2019 08:10	19041195-003 A-3 04/30/2019 08:20	19041195-002 19041195-003 19041195-004 A-2 A-3 A-3 A-4 04/30/2019 08:10 04/30/2019 08:30	19041195-005 A-5 04/30/2019 08:40	19041195-005 19041195-007 A-5 A-6 A-7 04/30/2019 08:40 04/30/2019 08:50 04/30/2019 09:00	19041195-007 A-7 04/30/2019 09:00
		Concer	Concentration of Chemicals in	micals in							
		T	Background Soils	ils							
		City of									
	Analyte		Chicago Within MSA Outside MSA	Outside MSA							
INORG Arsenic	Arsenic		13.0	11.3	11 THE PARTY OF TH	CONTRACTOR	7.5	11	7.3	8.6	4.8

MSA - Metropolitan Statistical Area All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table G and Table H. Bolded/Shaded values exceed the within MSA background level.

TACO Tier I Soil Remediation Objectives - Supplemental Report (Background)

Client: Environmental Group Services, Ltd. Project: Franklin (A)
Laboratory: STAT ANALYSIS

19041195-010 A-10 04/30/2019 09:30

		Concen	tration of Chem	micals in			
		-	3ackground So	ils			
		City of					
Analyte	nalyte	Chicago	Within MSA	Outside MSA			
INORG Arsen	nic		13.0	11.3	8.4	6.8	4.7

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin (A)

Laboratory: STAT ANALYSIS

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
		A-1	17	13.0/11.3	Residential Ingestion
INORG	Arsenic	A-2	21	13.0	Within MSA Background
				11.3	Outside MSA Background

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin (A)

Laboratory: STAT ANALYSIS

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Arsenic	A-1	17	13.0/11.3	Residential Ingestion
INORG	Arsenic	A-2	21	13.0/11.3	Residential Ingestion
INORG	Arsenic	A-1	17	13.0	Within MSA Background
INORG	Arsenic	A-2	21	13.0	Within MSA Background
INORG	Arsenic	A-1	17	11.3	Outside MSA Background
INORG	Arsenic	A-2	21	11.3	Outside MSA Background

Client: Environmental Group Services, Ltd. Project: Franklin (A2) Laboratory: STAT ANALYSIS

Laboratory ID: 19050815-001 19050815-002
Client Sample ID: A-11 A-12
Date Collected: 05/21/2019 13:00 05/21/2019 13:00

				П
				< 2.5
				<2.7
ponent of	er Ingestion	Exposure Route Values	Class II	
Soil Component of	Groundwat	Exposure R	Class I	
Construction Worker	ic Values for	il	Ingestion Inhalation	25,000
Construction	Route Specific Values for Groundwater Ingestion	Soil		19
	ي	Values for Soil	Inhalation	750
	Residential Route Specifi	Values	Ingestion	13.0/11.3
			Analyte	Arsenic
			CAS No.	7440-38-2

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Report (Background)

Client: Environmental Group Services, Ltd. Project: Franklin (A2) Laboratory: STAT ANALYSIS

Laboratory ID : Client Sample ID :

Laboratory ID: 19050815-001 19050815-002
lient Sample ID: A-11 A-12
Date Collected: 05/21/2019 13:00 05/21/2019 13:00

Concentration of Chemicals in	Background Soils	City of	Chicago Within MSA Outside MSA	13.0 11.3 <2.7 <2.5	
			Analyte	NORG Arsenic	

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 16, 2019

Environmental Group Services, Ltd.

557 W. Polk

Chicago, IL 60610

Telephone: (312) 447-1200 Fax: (312) 447-0922

Analytical Report for STAT Work Order: 19041195 Revision 0

RE: Franklin (A)

Dear Environmental Group Services, Ltd.:

STAT Analysis received 10 samples for the referenced project on 4/30/2019 4:33:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAP standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Justice Kwateng

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples as received and tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: May 16, 2019

Client: Environmental Group Services, Ltd.

Project: Franklin (A)
Work Order: 19041195 Revision 0

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
19041195-001A	A-1		4/30/2019 8:00:00 AM	4/30/2019
19041195-002A	A-2		4/30/2019 8:10:00 AM	4/30/2019
19041195-003A	A-3		4/30/2019 8:20:00 AM	4/30/2019
19041195-004A	A-4		4/30/2019 8:30:00 AM	4/30/2019
19041195-005A	A-5		4/30/2019 8:40:00 AM	4/30/2019
19041195-006A	A-6		4/30/2019 8:50:00 AM	4/30/2019
19041195-007A	A-7		4/30/2019 9:00:00 AM	4/30/2019
19041195-008A	A-8		4/30/2019 9:10:00 AM	4/30/2019
19041195-009A	A-9		4/30/2019 9:20:00 AM	4/30/2019
19041195-010A	A-10	•	4/30/2019 9:30:00 AM	4/30/2019

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: Date Printed:	May 16, 2019 May 16, 2019				ANA	LYTICAL	RESULT
		Series Ind		<u> </u>		-	<u>:</u>
Client:	Environmental Group	Services, Ltd.		v	Vork Ord	er: 19041195	Pavision 0
Project:	Franklin (A)				VOIR OIL	——————————————————————————————————————	
Lab ID:	19041195-001			Coll	ection Da	te: 4/30/2019 8	3:00:00 AM
Client Sample ID	A-1				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 17	(SW 0.94	•	Prep mg/Kg-dry	Date: 5/15/2019 10	Analyst: MD 1 5/15/2019
Percent Moisture Percent Moisture		D2974 10.9	0.2	•	Prep wt%	Date: 5/1/2019	Analyst: FN 5/2/2019
	19041195-002			Call	ection Da	te: 4/30/2019 8	R:10:00 AM
Client Sample ID				C011		ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 21	(SW		Prep mg/Kg-dry	Date: 5/15/2019	Analyst: MD ' 5/15/2019
Percent Moisture Percent Moisture		D2974 10.9	0.2	•	Prep wt%	Date: 5/1/2019 1	Analyst: FN 5/2/2019
Lab ID:	19041195-003			Coll	ection Da	te: 4/30/2019 8	3:20:00 AM
Client Sample ID	A-3				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 7.5	(SW 0.97	•	Prep ng/Kg-dry	Date: 5/3/2019 10	Analyst: JG 5/4/2019
Percent Moisture Percent Moisture		D2974 10.7	0.2	•	Prep wt%	Date: 5/1/2019 1	Analyst: FN 5/2/2019
Lab ID:	19041195-004			Coll	ection Da	te: 4/30/2019 8	3:30:00 AM
Client Sample ID	A-4				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A	(SW 1.0		Prep mg/Kg-dry	Date: 5/3/2019	Analyst: JG 5/4/2019
Percent Moisture Percent Moisture		D2974 11.1	0.2	•	Prep wt%	Date: 5/1/2019	Analyst: FN 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:	May 16, 2019				ANA	LYTICAL	L RESULT
Date Printed:	May 16, 2019						
Client:	Environmental Group	Services, Ltd.					
Project:	Franklin (A)			V	Vork Ord	er: 19041195	Revision 0
Lab ID:	19041195-005			Coll	ection Da	te: 4/30/2019	8:40:00 AM
Client Sample ID	A-5				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 7.3	(SW 0.95	•	Prep mg/Kg-dry	Date: 5/3/2019 10	Analyst: JG 5/4/2019
Percent Moisture Percent Moisture		D2974 10.2	0.2	•	Prep wt%	Date: 5/1/2019	Analyst: FN 5/2/2019
Lab ID:	19041195-006			Coll	ection Da	te: 4/30/2019	8:50:00 AM
Client Sample ID	A-6				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 8.6	(SW 1.0	•	Prep mg/Kg-dry	Date: 5/3/2019 10	Analyst: JG 5/4/2019
Percent Moisture Percent Moisture		D2974 10.4	0.2	•	Prep wt%	Date: 5/1/2019 1	Analyst: FN 5/2/2019
Lab ID:	19041195-007			Coll	ection Da	te: 4/30/2019	9:00:00 AM
Client Sample ID	A-7				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 4.8	(SW 1.1	•	Prep mg/Kg-dry	Date: 5/3/2019 10	Analyst: JG 5/5/2019
Percent Moisture Percent Moisture		D2974 20.8	0.2	•	Prep wt%	Date: 5/1/2019 1	Analyst: FN 5/2/2019
Lab ID:	19041195-008			Coll	ection Da	te: 4/30/2019	9:10:00 AM
Client Sample ID	A-8			_	Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 8.4	(SW 1.2		Prep mg/Kg-dry	Date: 5/3/2019 10	Analyst: JG 5/5/2019
Percent Moisture Percent Moisture		D2974 23.3	0.2	. •	Prep wt%	Date: 5/1/2019	Analyst: FN 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: Date Printed:	May 16, 2019 May 16, 2019				ANA	LYTICAL	L RESULTS
Client:	Environmental Group	Services, Ltd.				.	
Project:	Franklin (A)			,	Work Ord	er: 19041195	Revision 0
Lab ID:	19041195-009			Col	lection Da	ite: 4/30/2019	9:20:00 AM
Client Sample ID	A-9				Matr	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A 8.9	(SW	•	Prep mg/Kg-dry	Date: 5/3/2019 10	Analyst: JG 5/5/2019
Percent Moisture		D2974			Prep	Date: 5/1/2019	Analyst: FN
Percent Moisture		21.2	0.2	•	wt%	1	5/2/2019
Lab ID:	19041195-010			Col	lection Da	ite: 4/30/2019	9:30:00 AM
Client Sample ID	A-10				Matı	ix: Soil	
Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS Arsenic		SW6020A	(SW	•	Prep mg/Kg-dry	Date: 5/3/2019	Analyst: JG 5/5/2019
Percent Moisture		D2974			Prep	Date: 5/1/2019	Analyst: FN

0.2

21.8

Qualifiers:

Percent Moisture

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

5/2/2019

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

22d2 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com CHAIN OF CUSTODY RECORD

ð

Nº: 921193

Lab No 5.7 10 Tum Around Time (Days): Additional Information: Results Needed: Quote No.: P.O. No.: Preservation Code: A = None B = HNO, C = NaOH G = Other $D = H_2SO_4$ E = HCl F = 5035/EnCore 4/30/19 (6: 33 ARSENIC 04/ No. of Containers 20/191633 Client Tracking No.: Grab Date/Time: Date/Time Date/Time: Date/Time: Date/Time: Date/Time: Сошр. Matrix 050 0430 aggo 060 0/60 овы 0630 0670 3 0810 Phone: Time Taken e-mail: Fax: Date Taken 4/20 B:116 E636. Com Client Sample Number/Description: FRANKIN EGSL Relinquished by: (Signature) (Signature) Relinquished by: (Signatur eceived by: (Signathre) Received by: (Signature) Received by: (Signature) Project Location: Project Number: Project Name: QC Level: 1 Report To: Sampler(s): Company: 4- W ASS 4-3 9-B A-10 C- W A-7 *A*-8 P-4 1-4

Sample Receipt Checklist

Client Name EGSL		Date and Tim	e Received:	4/30/2019 4:33:00 PM		
Work Order Number 19	041195			Received by:	EAA	
Checklist completed by: 5	4 L	Date	30/19	Reviewed by:	A. J.	1/01/19 Date
Matrix:		Carrier name	STAT Analysis	:		
Shipping container/cooler is	n good condition?		Yes 🗹	No 🗆	Not Present	
Custody seals intact on shi	ippping container/cooler?		Yes 🗌	No 🗆 🕠	Not Present 🗹	
Custody seals intact on sar	mple bottles?		Yes 🗆	No 🗆	Not Present 🗹	
Chain of custody present?			Yes 🗹	No 🗆		
Chain of custody signed wh	hen relinquished and recei	ved?	Yes 🗹	No 🗀	,	
Chain of custody agrees wi	ith sample labels/containe	rs?	Yes 🗹	No 🗀		
Samples in proper containe	er/bottle?		Yes 🗹	No 🗆		
Sample containers intact?			Yes 🗹	No 🗆		
Sufficient sample volume for	or indicated test?		Yes 🗹	No 🗆		
All samples received within	holding time?		Yes 🗹	No 🗆		
Container or Temp Blank to	emperature in compliance	· ·	Yes 🗹	No 🗆	Temperatur	e 4.1 °C
Water - VOA vials have zer	ro headspace? No	VOA vials subn	nitted 🕮	Yes 🖾	No 🖾	
Water - Samples pH check	ed?		Yes 🖾	No 🔡	Checked by:	
Water - Samples properly p	preserved?		Yes 🖾	No 🖾	pH Adjusted?	
Any No response must be	detailed in the comments :	section below.	=====	=====	=====	
Comments:						
					100	
Client / Person contacted:	Date	contacted:		Conta	cted by:	
Response:	·		10.4%			

Justice Kwateng

From:

Bill Lennon <Bill@egsl.com>

Sent:

Tuesday, May 07, 2019 3:14 PM

To:

Justice Kwateng

Subject:

RE: Franklin (A) STAT 19041195

Please re-run both thanks justice

Bill Lennon EGSL

557 West Polk Street Suite 201 Chicago, IL 60607 t. 312.447.1200 x315 f. 312.447.0922 bill@egsl.com www.egsl.com

From: Justice Kwateng < <u>JKwateng@STATAnalysis.com</u>>

Sent: Tuesday, May 7, 2019 3:07 PM

To: Bill Lennon < Bill@egsl.com >; Mary Cappellini < Mary@egsl.com >

Subject: Franklin (A) STAT 19041195

Hey Bill,

The first two samples has a high hit. Check and let me know if you want me to issue a final report. Please find the attached preliminary EDDs for your Franklin (A) project. STAT 19041195

Thank you for choosing STAT for your testing needs.

In an effort to increase efficiency and conserve resources, STAT Analysis has adopted paperless reporting. The attached pdf files can be printed as the final copy. You will not receive a hardcopy in the mail.

Best Regards,

Justice Kwateng

Project Manager STAT Analysis Corporation

2242 W. Harrison St, Suite 200 Chicago, IL 60612

Tel: 1-312-733-0551 Fax: 1-312-733-2386

The information contained in this e-mail message and any attachments is confidential information intended only for the use of the individual or entities named above. If the reader of this message is not the intended recipient you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 23, 2019

Environmental Group Services, Ltd. 557 W. Polk Chicago, IL 60610 Telephone: (312) 447-1200

Fax:

(312) 447-0922

Analytical Report for STAT Work Order: 19050815 Revision 0

RE: Franklin (A2)

Dear Environmental Group Services, Ltd.:

STAT Analysis received 2 samples for the referenced project on 5/22/2019 10:32:00 AM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAP standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Justice Kwateng

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples as received and tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

STAT Analysis Corporation

Date: May 23, 2019

Client: Environ

Environmental Group Services, Ltd.

Project: Work Order:

Franklin (A2)

19050815 Revision 0

Work Order Sample Summary

Lab Sample ID Client Sample ID Tag Number Collection Date Date Received

19050815-001A A-11 19050815-002A A-12 5/21/2019 1:00:00 PM

5/22/2019

5/21/2019 1:00:00 PM 5/22/2019

Page 2 of 5

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date	Reported:
Date	Printed:

May 23, 2019

ANALYTICAL RESULTS May 23, 2019

Client:

Environmental Group Services, Ltd.

Project:

Franklin (A2)

Work Order: 19050815 Revision 0

Lab ID:

Analyses

19050815-001

Collection Date: 5/21/2019 1:00:00 PM

Client Sample ID A-11

Matrix: Soil RL Qualifier Units

Date Analyzed

Metals by ICP/MS

Prep Date: 5/22/2019

Analyst: MDT

Arsenic

SW6020A (SW3050B) ND 2.7

mg/Kg-dry 10 5/22/2019

Percent Moisture Percent Moisture

D2974 66.8

0.2

Prep Date: 5/22/2019

Analyst: FN 5/23/2019

Lab ID:

Analyses

19050815-002

mg/Kg-dry

Collection Date: 5/21/2019 1:00:00 PM

Client Sample ID A-12

Result

Result

Matrix: Soil

Date Analyzed

Metals by ICP/MS Arsenic

ND

RL Qualifier Units

Prep Date: 5/22/2019 10

DF

Analyst: MDT 5/22/2019

Percent Moisture

D2974

Prep Date: 5/22/2019 Analyst: FN

Percent Moisture

63.4

0.2

2.5

SW6020A (SW3050B)

5/23/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

Analysis Corporation STAT

CHAIN OF CUSTODY RECORD 2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com

am/pm 過光区 2 S 5 0 Han Around Time (Days): Additional Information Page: 12 3 Results Needed: Quote No.: P.O. No.: 921210 Preservation Code: A = None B = HNO, C = NaOH G = OtherŠ D=H₂SO₄ E=HCl F=5035/EnCore Comments: ARSENIC 070 No. of Containers 69 19/06 Client Tracking No.: Preserv Grab Date/Time: Date/Time: Date/Time: Comp Pate/Time: Date/Time: Date/Time: Matrix 300 1300 Phone: Time Taken e-mail: Fax: Date Taken 10-5 B111 & EGSL. Can Client Sample Number/Description: FRANKLIN たるらん Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature (eccived by: (Signature) Received by: (Signature) (eceived by: (Signature) roject Location: Project Number: C1-8-00 Project Name: QC Level: 1 Report To: Sampler(s): Сотрапу: 11-W

STAT Analysis Corporation

Sample Receipt Checklist

Client Name EGSL		Date and Tin	ne Received:	5/22/2019 10:32:00 AM
Work Order Number 19050815		Received by:	: JOK	
Checklist completed by: Signature Date Matrix: Carrier name	STAT Analysis	Reviewed by	: A-A	5/22/19 Date
Shipping container/cooler in good condition?	Yes 🗹	No 🗀	Not Present	
Custody seals intact on shippping container/cooler?	Yes 🗆	No 🗆	Not Present	
Custody seals intact on sample bottles?	Yes 🗆	No 🗆	Not Present	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗆		•
Chain of custody agrees with sample labels/containers?	Yes 🗹	No 🗆		
Samples in proper container/bottle?	Yes 🗹	No 🗆	•	
Sample containers intact?	Yes 🗹	No 🗆		•
Sufficient sample volume for indicated test?	Yes 🗹	No 🗆		
All samples received within holding time?	Yes 🗹	No 🗌		
Container or Temp Blank temperature in compliance?	Yes 🗹	No 🗆	Temperatur	e 4.6 °C
Water - VOA vials have zero headspace? No VOA vials subm	nitted 🖽	Yes 🖾	No 🔣	
Water - Samples pH checked?	Yes 🖺	No 🖫	Checked by:	
Water - Samples properly preserved?	Yes 🕮	No 🖾	pH Adjusted?	
Any No response must be detailed in the comments section below.				=======
Comments:	· · · · · · · · · · · · · · · · · · ·			
	,		····	
				,
Client / Person Contacted: Date contacted:		Conta	cted by:	
Response:				

ATTACHMENT D – Waste Manifests

Driver: Date: Time: Size: Special Requirements:		50 Phon info	1212 Group, b/a North Branch E N. Garden Ave., Ro ie: 630-529-0240 • Fo @northbranchenvi w.northbranchenvi	nvironmental selle, IL 60172 ax: 630-529-0837 ronmental.com
Order Date:	Profile #:		Manifest Number: 20620123 Disp Facility:	Work Order No: 122445
Driver:	P.O. #			WITS
Start Time:	1	Finish Time:	Date:	50.80
Site Location:	AGE	LIAN	PIPELINE LIN AVE PRODE:	5
	6011	FRANK	LIN AVE	
<i>P</i>	KANK	LINE	ARK /C	
Contact:			Frione.	
Contact: Bill To:		EGSI		
Bill To: Contact:		EGSI	Phone:	
Bill To: Contact: Product/Service			<u> </u>	Amount
Contact: Product/Service Freight/Handling: Disposal:	Uni	EG SI	Phone:	Amount
Contact: Product/Service Freight/Handling: Disposal: Pump Time:	Uni	EGSI	Phone:	
Contact: Product/Service Freight/Handling: Disposal: Pump Time: Environmental Fee:	Uni	EG SI	Phone:	Amount
Contact: Product/Service Freight/Handling: Disposal: Pump Time: Environmental Fee: Analytical:	Uni	EGS/	Phone:	Amount
Contact: Product/Service Freight/Handling: Disposal: Pump Time: Environmental Fee: Analytical:	Uni	EGS/	Phone: Price	Amount
Contact: Product/Service Freight/Handling: Disposal: Pump Time: Environmental Fee: Analytical:	Uni	EGS/	Phone: Price	Amount
Contact: Product/Service reight/Handling: tisposal: ump Time: invironmental Fee: inalytical: Generat	Uni	EGS/	Phone: Price	Amount 420.00

•

•

ATTACHMENT E – Target Compound Analytical Results

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (VOC)

Project: Franklin (EB-1)

Laboratory: STAT ANALYSIS

04/29/2019 09:00 19041196-004 104 Date Collected: 04/29/2019 08:00 04/29/2019 08:15 04/29/2019 08:30 19041196-003 103 19041196-002 102 19041196-001 101 Laboratory ID : Client Sample ID :

				Constructi	Construction Worker	Soil Component of	noment of				
		Decidential D	Carrier of	Don't Carrie	is Volume for		The state of				
		Residential Route Specific Values for Soil	oute Specific	Koure Specific	oute Specific Values for Soil	Groundwater Ingestion Exposure Route Values	er ingestion				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion		Class I	Class II				
67-64-1	Acetone	70,000	100,000		100,000	25	25	< 0.091	< 0.11	< 0.083	< 0.13
71-43-2	Benzene	12	8.0	2,300	2.2	0.03	0.17	< 0.0061	< 0.0074	< 0.0055	< 0.0087
75-27-4	Bromodichloromethane	01	3,000	2,000	3.000	9.0	9.0	< 0.0061	< 0.0074	< 0.0055	< 0.0087
75-25-2	Bromoform	81	53	16,000	140	8.0	8.0	< 0.0061	< 0.0074	< 0.0055	< 0.0087
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	1.2	< 0.012	< 0.015	< 0.011	< 0.017
78-93-3	2-Butanone							< 0.091	< 0.11	< 0.083	< 0.13
75-15-0	Carbon disulfide	7,800	720	20,000	0.6	32	160	< 0.061	< 0.074	< 0.055	< 0.087
56-23-5	Carbon tetrachloride		0.3	410	06:0	0.07	0.33	< 0.0061	< 0.0074	< 0.0055	< 0.0087
108-90-7	Chlorobenzene	1.600	130	4,100	1.3	1	6.5	< 0.0061	< 0.0074	< 0.0055	< 0.0087
75-00-3	Chloroethane							< 0.012	< 0.015	< 0.011	< 0.017
67-66-3	Chloroform	001	0.3	2,000	92'0	9.0	2.9	< 0.0061	< 0.0074	< 0.0055	< 0.0087
74-87-3	Chloromethane							< 0.012	< 0.015	< 0.011	< 0.017
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0061	< 0.0074	< 0.0055	< 0.0087
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0061	< 0.0074	< 0.0055	< 0.0087
107-06-2	1,2-Dichloroethane	7	0.4	1,400	66'0	0.02	1.0	< 0.0061	< 0.0074	< 0.0055	< 0.0087
75-35-4	1.1-Dichloroethene	3,900	290	10,000	3.0	90.0	0.3	< 0.0061	< 0.0074	< 0.0055	< 0.0087
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0061	< 0.0074	< 0.0055	< 0.0087
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0061	< 0.0074	< 0.0055	< 0.0087
78-87-5	1,2-Dichloropropane	6	15	008'1	0.50	0.03	0.15	< 0.0061	< 0.0074	< 0.0055	< 0.0087
10061-01-5		9]	1.1	1,200	0.39	0.004	0.02	< 0.0024	< 0.0030	< 0.0022	< 0.0035
10061-02-6	trans-1,3-Dichloropropene	_ 9	1.1	1,200	0.39	0.004	0.02	< 0.0024	< 0.0030	< 0.0022	< 0.0035
100-41-4	Ethylbenzene	7,800	400	20,000	58	13	61	< 0.0061	< 0.0074	< 0.0055	< 0.0087
591-78-6	2-Hexanone							< 0.024	< 0.030	< 0.022	< 0.035
108-10-1	4-Methyl-2-pentanone							< 0.024	< 0.030	< 0.022	< 0.035
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.012	< 0.015	< 0.011	< 0.017
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0061	< 0.0074	< 0.0055	< 0.0087
100-42-5	Styrene	16,000	1,500	41,000	430	4	81	< 0.0061	< 0.0074	< 0.0055	< 0.0087
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0061	< 0.0074	< 0.0055	< 0.0087
127-18-4	Tetrachloroethene	12	11	2,400	28	90:0	6.0	< 0.0061	< 0.0074	< 0.0055	< 0.0087
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0061	< 0.0074	< 0.0055	< 0.0087
71-55-6	1,1,1-Trichloroethane	:	1,200	•	1,200	2	9.6	< 0.0061	< 0.0074	< 0.0055	< 0.0087
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0061	< 0.0074	< 0.0055	< 0.0087
9-10-62	Trichloroethene	58	5	1,200	12	90.0	0.3	< 0.0061	< 0.0074	< 0.0055	< 0.0087
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0061	< 0.0074	< 0.0055	< 0.0087
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.018	< 0.022	< 0.017	< 0.026

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.
Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

04/29/2019 11:00 19041196-008 108 19041196-006 19041196-007 106 107 04/29/2019 10:00 04/29/2019 10:30 04/29/2019 09:30 19041196-005 105 Date Collected: Laboratory ID : Client Sample ID :

				Constructi	Construction Worker	Soil Component of	ponent of				
		Residential Route S Values for Soil	Residential Route Specific Values for Soil	Route Specific	oute Specific Values for Soil	Groundwater Ingestion Exposure Route Values	er Ingestion				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
67-64-1	Acetone	70,000	100,000		100,000	25	25	< 0.11	< 0.10	<0.19	< 0.11
71-43-2	Benzene	12	8.0	2,300	2.2	0.03	0.17	< 0.0073	< 0.0070	< 0.013	< 0.0075
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	9.0	9.0	< 0.0073	< 0.0070	< 0.013	< 0.0075
75-25-2	Bromoform	81	53	16,000	140	8.0	8.0	< 0.0073	< 0.0070	< 0.013	< 0.0075
74-83-9	Bromomethane	110	01	1,000	3.9	0.2	1.2	< 0.015	< 0.014	< 0.025	< 0.015
78-93-3	2-Butanone							< 0.11	< 0.10	< 0.19	< 0.11
75-15-0	Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.073	< 0.070	< 0.13	< 0.075
56-23-5	Carbon tetrachloride	5	0.3	410	06.0	0.07	0.33	< 0.0073	< 0.0070	< 0.013	< 0.0075
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0073	< 0.0070	< 0.013	< 0.0075
75-00-3	Chloroethane							< 0.015	< 0.014	< 0.025	< 0.015
67-66-3	Chloroform	100	0.3	2,000	92.0	9.0	2.9	< 0.0073	< 0.0070	< 0.013	< 0.0075
74-87-3	Chloromethane							< 0.015	< 0.014	< 0.025	< 0.015
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0073	< 0.0070	< 0.013	< 0.0075
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0073	< 0.0070	< 0.013	< 0.0075
107-06-2	1,2-Dichloroethane	7	0.4	1,400	0.99	0.02	0.1	< 0.0073	< 0.0070	< 0.013	< 0.0075
75-35-4	1,1-Dichloroethene	3,900	290	10,000	3.0	90.0	0.3	< 0.0073	< 0.0070	< 0.013	< 0.0075
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0073	< 0.0070	< 0.013	< 0.0075
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0073	< 0.0070	< 0.013	< 0.0075
78-87-5	1,2-Dichloropropane	6	15	1,800	0.50	0.03	0.15	< 0.0073	< 0.0070	< 0.013	< 0.0075
10061-01-5	cis-1,3-Dichloropropene	9	1.1	1,200	0.39	0.004	0.02	< 0.0029	< 0.0028	< 0.0050	< 0.0030
10061-02-6	trans-1,3-Dichloropropene	6	1.1	1,200	0.39	0.004	0.02	< 0.0029	< 0.0028	< 0.0050	< 0.0030
100-41-4	Ethylbenzene	7,800	400	20,000	88	13	61	< 0.0073	< 0.0070	< 0.013	< 0.0075
591-78-6	2-Hexanone							< 0.029	< 0.028	< 0.050	< 0.030
108-10-1	4-Methyl-2-pentanone							< 0.029	< 0.028	< 0.050	< 0.030
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.015	< 0.014	< 0.025	< 0.015
1634-04-4	Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0073	< 0.0070	< 0.013	< 0.0075
100-42-5	Styrene	16,000	1,500	41,000	430	4	18	< 0.0073	< 0.0070	< 0.013	< 0.0075
79-34-5	1,1,2,2-Tetrachloroethane							< 0.0073	< 0.0070	< 0.013	< 0.0075
127-18-4	Tetrachloroethene	12	11	2,400	28	90.0	0.3	< 0.0073	< 0.0070	< 0.013	< 0.0075
108-88-3	Toluene	16,000	650	410,000	42	12	29	< 0.0073	< 0.0070	< 0.013	< 0.0075
71-55-6	1,1,1-Trichloroethane	:	1,200	:	1,200	2	9.6	< 0.0073	< 0.0070	< 0.013	< 0.0075
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0073	< 0.0070	< 0.013	< 0.0075
79-01-6	Trichloroethene	58	5	1,200	12	90.0	0.3	< 0.0073	< 0.0070	< 0.013	< 0.0075
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0073	< 0.0070	< 0.013	< 0.0075
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.022	< 0.021	< 0.038	< 0.023

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PNA)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

19041196-003 19041196-002 19041196-001 Laboratory ID : Client Sample ID : Date Collected :

04/29/2019 08:30 04/29/2019 08:15 04/29/2019 08:00

					< 0.040	< 0.040 < 0.040	< 0.040 < 0.040 < 0.040	< 0.040 < 0.040 < 0.040 < 0.040	 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 	 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040
		•		0 >	0 >	0 >	_	0 >	0 0	0 0									
				< 0.041	< 0.041	< 0.041	***	< 0.041	< 0.041	< 0.041 < 0.041 < 0.041	<0.041 < 0.041 < 0.041	< 0.041 < 0.041 < 0.041 < 0.041 < 0.041	 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 	 0.041 0.041 0.041 0.041 0.041 0.041 0.041 	 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 	 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 	 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 	 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 	 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041
				< 0.041	< 0.041	< 0.041		< 0.041	< 0.041 < 0.041	< 0.041 < 0.041 < 0.041	< 0.041 < 0.041 < 0.041 < 0.041	<0.041 <0.041 <0.041 <0.041	<0.041 <0.041 <0.041 <0.041 <0.041	<pre></pre>	<pre></pre>	<pre> < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 </pre>	<pre> < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041</pre>	<pre> < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041</pre>	<pre> < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041</pre>
onent of	er Ingestion	oute Values	Class II	2,900		29,000		8	828	8 82 25	8 82 25	8 82 25 25 250	8 82 25 250 800	8 82 25 250 800 7.6	8 82 25 250 800 7.6 21,000	8 82 25 25 250 800 7.6 21,000 2,800	8 82 25 25 250 800 7.6 21,000 2,800 69	8 82 25 25 250 800 7.6 21,000 2,800 69	8 82 25 25 250 800 7.6 21,000 2,800 69
Soil Component of	Groundwater Ingestion	Exposure Route Values	Class I	570		12,000		2	8 2	\$ 8	\$ 8	2 8 5 49	2 8 8 5 5 49 160	2 8 8 5 5 49 160 2	2 8 8 8 8 49 160 160 4,300	2 8 8 5 5 160 160 4,300 560	2 8 8 8 8 7 160 160 4,300 560 14	2 8 8 5 5 160 160 4,300 560 14	2 8 8 5 5 160 2 2 2 4,300 560 14
Construction Worker	ic Values for	il	Inhalation			***			1 1		a a a a a a a a a a a a a a a a a a a	1 1 1	1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 8:	1 1 8 1 1 8
Constructic	Route Specific Values for	Soil	Ingestion	120,000		610,000		170	170 17	170 17 170	170 17 170	170 17 170 1,700	170 17 170 1,700 17,000	170 170 1,700 17,000	170 170 1,700 1,700 17,000 17,000	170 17 170 1,700 17,000 17,82,000 82,000	170 170 1,700 17,000 17,000 17 82,000 82,000	170 170 1,700 17,000 17,000 17,82,000 82,000 170 170	170 170 1,700 17,000 17,000 17 82,000 82,000 170 4,100
	Specific	for Soil	Inhalation	•••		1		ı			1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		
	Residential Route	Values for Soil	Ingestion	4,700		23,000		6.0	0.0 0.09	0.9 0.09 0.9	0.09	6.0	0.0 0.09 0.9 9	6.0 0.09 0.9 88 88	0.09 0.09 0.9 9 88 88 0.09 3,100	0.09 0.09 0.9 9 88 88 0.09 3,100	0.09 0.09 0.9 9 88 88 0.09 3,100 3,100	0.9 0.09 0.9 9 88 0.09 3,100 3,100 0.9 0.9	0.9 0.09 0.9 0.9 8 8 8 0.09 3,100 3,100 0,9
			Analyte	Acenaphthene	208-96-8 Acenaphthylene	120-12-7 Anthracene		Benz(a)anthracene	56-55-3 Benz(a)anthracene 50-32-8 Benzo(a)pyrene	56-55-3 Benz(a)anthracene 50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene	 6-55-3 Benz(a)anthracene 60-32-8 Benzo(a)pyrene 805-99-2 Benzo(b)fluoranthene 191-24-2 Benzo(g,h,i)perylene 	56-55-3 Benz(a)anthracene 50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 191-24-2 Benzo(g,h,i)perylene 207-08-9 Benzo(k)fluoranthene	Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	56-55-3 Benz(a)anthracene 50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 191-24-2 Benzo(g,h,i)perylene 207-08-9 Benzo(k)fluoranthene 218-01-9 Chrysene 53-70-3 Dibenz(a,h)anthracene	56-55-3 Benz(a)anthracene 50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 191-24-2 Benzo(g,h,i)perylene 207-08-9 Benzo(k)fluoranthene 218-01-9 Chrysene 53-70-3 Dibenz(a,h)anthracene 206-44-0 Fluoranthene	Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,j)perylene Benzo(k)fluoranthene Chrysene Chrysene Dibenz(a,h)anthracene Fluoranthene	56-55-3 Benz(a)anthracene 50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 191-24-2 Benzo(g,h,i)perylene 207-08-9 Benzo(k)fluoranthene 218-01-9 Chrysene 53-70-3 Dibenz(a,h)anthracene 206-44-0 Fluoranthene 86-73-7 Fluorene 193-39-5 Indeno(1,2,3-cd)pyrene	Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene	Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene
			CAS No.	83-32-9	208-96-8	120-12-7		56-55-3	56-55-3 50-32-8	56-55-3 50-32-8 205-99-2	56-55-3 50-32-8 205-99-2 191-24-2	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	56-55-3 Benz(a)an 50-32-8 Benzo(a)p 205-99-2 Benzo(b)f 191-24-2 Benzo(g,h 207-08-9 Benzo(k)f 218-01-9 Chrysene	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 53-70-3 193-39-5 91-20-3	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 193-39-5 193-39-5 86-73-7 193-39-5 85-01-8

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PNA)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

19041196-005 19041196-006 105 106 04/29/2019 09:30 04/29/2019 10:00 19041196-004 104 Laboratory ID : Client Sample ID : Date Collected :

04/29/2019 09:00

				Constructiv	Construction Worker	Soil Com	Soil Component of			
		Residential Route	toute Specific	Route Specific Values for	ic Values for	Groundwater Ingestion	er Ingestion			
		Values for So	for Soil	Soil	lic	Exposure R	Exposure Route Values			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II			
83-32-9	83-32-9 Acenaphthene	4,700	·	120,000	•••	025	2,900	< 0.042	< 0.040	< 0.041
208-96-8	208-96-8 Acenaphthylene							< 0.042	< 0.040	< 0.041
120-12-7	120-12-7 Anthracene	23,000		610,000		12,000	29,000	< 0.042	< 0.040	< 0.041
56-55-3	Benz(a)anthracene	6.0	• • • •	170		2	8	< 0.042	< 0.040	< 0.041
50-32-8	Benzo(a)pyrene	0.09	•	17	•••	8	82	< 0.042	< 0.040	< 0.041
205-99-2	205-99-2 Benzo(b)fluoranthene	6.0	i	170		3	25	< 0.042	< 0.040	< 0.041
191-24-2	91-24-2 Benzo(g,h,i)perylene							< 0.042	< 0.040	< 0.041
207-08-9	207-08-9 Benzo(k)fluoranthene	6	i	1,700		64	250	< 0.042	< 0.040	< 0.041
218-01-9	218-01-9 Chrysene	88	i	17,000	-	091	008	< 0.042	< 0.040	< 0.041
53-70-3	53-70-3 Dibenz(a,h)anthracene	0.09	•••	11		2	9.7	< 0.042	< 0.040	< 0.041
206-44-0	206-44-0 Fluoranthene	3,100		82,000	•	4,300	21,000	< 0.042	< 0.040	< 0.041
86-73-7	Fluorene	3,100	•	82,000	ı	09\$	2,800	< 0.042	< 0.040	< 0.041
193-39-5	193-39-5 Indeno(1,2,3-cd)pyrene	6.0		170		14	69	< 0.042	< 0.040	< 0.041
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.042	< 0.040	< 0.041
85-01-8	85-01-8 Phenanthrene							< 0.042	< 0.040	< 0.041
129-00-0	129-00-0 Pyrene	2,300		000'19	:	4,200	21,000	< 0.042	< 0.040	< 0.041

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PNA)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

19041196-007 19041196-008 107 108 04/29/2019 10:30 04/29/2019 11:00 Laboratory ID: Client Sample ID: Date Collected:

				Construction	Construction Worker	Soil Com	Soil Component of		
		Residential R	Residential Route Specific	Route Specific Values for	ic Values for	Groundwater Ingestion	er Ingestion		
		Values	Values for Soil	Soil	ii	Exposure R	Exposure Route Values		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
83-32-9	Acenaphthene	4,700	***	120,000		570	2,900	< 0.040	< 0.041
8-9	208-96-8 Acenaphthylene							< 0.040	< 0.041
2-7	20-12-7 Anthracene	23,000	•••	610,000	•••	12,000	000'65	< 0.040	< 0.041
56-55-3	Benz(a)anthracene	6.0	•••	170		2	8	< 0.040	< 0.041
8.	50-32-8 Benzo(a)pyrene	0.09	•••	17	***	8	82	< 0.040	< 0.041
2-5	205-99-2 Benzo(b)fluoranthene	6.0		170		5	25	< 0.040	< 0.041
1-2	191-24-2 Benzo(g,h,i)perylene							< 0.040	< 0.041
6-8	207-08-9 Benzo(k)fluoranthene	6	***	1,700	***	49	250	< 0.040	< 0.041
6-	218-01-9 Chrysene	88		17,000	•	160	008	< 0.040	< 0.041
3	53-70-3 Dibenz(a,h)anthracene	60.0		17	***	2	9.7	< 0.040	< 0.041
0-1	206-44-0 Fluoranthene	3,100		82,000	i	4,300	21,000	< 0.040	< 0.041
.7	86-73-7 Fluorene	3,100		82,000	•••	260	2,800	< 0.040	< 0.041
3-5	193-39-5 Indeno(1,2,3-cd)pyrene	6.0	***	170	***	14	69	< 0.040	< 0.041
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	81	< 0.040	< 0.041
85-01-8	Phenanthrene							< 0.040	< 0.041
0-0	129-00-0 Pyrene	2,300	•••	61,000		4,200	21,000	< 0.040	< 0.041
l									

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-001 Client Sample ID: 101 Date Collected: 04/29/2019 08:00

Residential Route Specific Values for Soil Soil Specific Values V			<u> </u>		Constructi	on Worker	Soil Com	ponent of	
Values for Soil			Decidential E	Poute Specific				•	
CAS No.				•					
120-82-1 12-4-Trichtorbenzene	CAS No	Analyte							
95-95-1 1,2-Dichlorobenzene 1-7,000 560 18,000 310 17 43 <0.21 106-46-7 1,4-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene 106-46-7 1,4-Dichlorobenzene 110,000 340 2 11 <0.21 108-90-1 2,2-oxybist [Chloroprepane] 95-95-8 2,4-5-Trichlorophenol 17,800 200,000 270 1,400 <0.21 120-83-2 2,4-Dichlorophenol 188-90-1 2,4-5-Trichlorophenol 188-90-2 2,4-5-Trichlorophenol 188-90-2 2,4-5-Trichlorophenol 188-90-2 2,4-5-Trichlorophenol 188-90-2 2,4-5-Trichlorophenol 189-90-3 2,4-Dichlorobenol 180-0 41,000 9 9 <0.21 120-83-2 2,4-Dichlorophenol 180-0 41,000 9 9 <0.21 120-83-2 2,4-Dichlorophenol 180 4100 9 9 <0.21 121-14-2 2,4-Dichlorophenol 180 4100 9 9 <0.21 121-14-2 2,4-Dinitrophenol 180 0,0008 0,0008 <0.041 190-66-20-2 2,6-Dinitrotolucne 0,9 180 0,0007 0,0007 0,0007 <0.041 191-38-7 2-Chlorophenol 191-38-7 2-Chlorophenol 191-38-7 2-Chlorophenol 191-39-7 2-Methylaphthalane 191-39-39-30-30-30-30-30-30-30-30-30-30-30-30-30-									< 0.21
Section Sect									
10646-7 14-Dichlorobenzene			7,000	300	10,000	310	17	77	
108.60-1 2 - 2 - 2 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			1	11,000		340	2	11	
95.954 2.45-Trichlorophenol 7,800 200,000 270 1,400 < 0.21			1 333	11,000		340			
September Sept			7 800		200,000		270	1 400	
103-82-2 2.4-Distlorophenol 230									
105-67-9 2,4-Dimethylphenol 1,600 41,000 9 9 < 0.21									
121-14-2 2.4-Dinitrotoluene									
91-58-7 2-Chloronaphthalene 390 53,000 10,000 53,000 4 4 < 0.21 95-57-8 2-Chlorophenol 390 53,000 10,000 53,000 4 4 < 0.21 95-57-8 2-Chlorophenol 3,900 100,000 15 15 < 0.21 95-48-7 2-Methylphenol 3,900 100,000 15 15 < 0.21 88-75-5 2-Nitrophenol 280 0.007 0.033 < 0.21 99-09-2 3-Nitroaniline 0.01 0.01 99-09-2 3-Nitroaniline 0.01 0.01 99-09-3 4-Chloro									
Section Sect			V.2				0.0007	0.000	
91-57-6 2-Methylphenol 3,900 100,000 15 15 < 0.21			390	53,000	10,000	53,000	4	4	
System S			1 2,70	22,000	,,,,,,,				
88-74-4 2-Nitrophenol			3,900		100,000	•••	15	15	
Section Sect			†		,,,,,,,				
91-94-1 3,3'-Dichlorobenzidine 1			† · · · · ·						
99-09-2 3-Nitroaniline			1		280		0.007	0.033	
S34-52-1 4,6-Dinitro-2-methylphenol								0.000	
101-55-3 4-Bromophenyl phenyl ether									
Section Sect									
106-47-8 4-Chloroaniline 310 820 0,7 0.7 < 0.21	<u> </u>								
Tools-72-3 4-Chlorophenyl phenyl ether			310		820		0.7	0.7	
100-01-6			1	·	020			• • • • • • • • • • • • • • • • • • • •	
100-01-6									
100-02-7 4-Nitrophenol				-				-	
Column C									< 0.41
92-87-5 Benzidine									< 0.41
65-85-0 Benzoic acid 310,000 820,000 400 400 <1.0				ĺ					< 0.41
100-51-6 Benzyl alcohol			310.000		820,000		400	400	< 1.0
111-91-1 Bis(2-chloroethoxy)methane									< 0.21
111-44-4 Bis(2-chloroethyl)ether 0.6 0.2 75 0.66 0.0004 0.0004 < 0.21 117-81-7 Bis(2-ethylhexyl)phthalate 46 31,000 4,100 31,000 3,600 31,000 < 1.0 85-68-7 Butyl benzyl phthalate 16,000 930 410,000 930 930 930 < 0.21 86-74-8 Carbazole 32 6,200 0.6 2.8 < 0.21 84-74-2 Di-n-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 < 0.21 117-84-0 Di-n-octyl phthalate 1,600 10,000 4,100 10,000 10,000 10,000 < 0.21 132-64-9 Dibenzofuran			1	_					< 0.21
117-81-7 Bis(2-ethylhexyl)phthalate			0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
S5-68-7 Butyl benzyl phthalate 16,000 930 410,000 930 930 930 930 <0.21					4,100	31,000	3,600	31,000	< 1.0
86-74-8 Carbazole 32 6,200 0.6 2.8 < 0.21 84-74-2 Di-n-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 < 0.21			16,000			930	930	930	< 0.21
84-74-2 Di-n-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 < 0.21									< 0.21
117-84-0 Di-n-octyl phthalate 1,600 10,000 4,100 10,000 10,000 10,000 < 0.21 132-64-9 Dibenzofuran				2,300		2,300	2,300	2,300	< 0.21
132-64-9 Dibenzofuran							10,000	10,000	< 0.21
Result R			,						< 0.21
131-11-3 Dimethyl phthalate			63,000	2,000	1,000,000	2,000	470	470	< 0.21
118-74-1 Hexachlorobenzene 0.4 1 78 2.6 2 11 < 0.21									< 0.21
87-68-3 Hexachlorobutadiene < 0.21	118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
77-47-4 Hexachlorocyclopentadiene 550 10 14,000 1.1 400 2,200 < 0.21 67-72-1 Hexachloroethane 78 2,000 0.5 2.6 < 0.21									< 0.21
67-72-1 Hexachloroethane 78 2,000 0.5 2.6 < 0.21 78-59-1 Isophorone 15,600 4,600 410,000 4,600 8 8 < 0.21			550	10	14,000	1.1	400	2,200	< 0.21
78-59-1 Isophorone 15,600 4,600 410,000 4,600 8 8 < 0.21 621-64-7 N-Nitrosodi-n-propylamine 0.09 18 0.00005 < 0.041		Hexachloroethane					0.5		< 0.21
621-64-7 N-Nitrosodi-n-propylamine 0.09 18 0.00005 < 0.041				4,600					< 0.21
62-75-9 N-Nitrosodimethylamine							0.00005	0.00005	< 0.041
86-30-6 N-Nitrosodiphenylamine 130 25,000 1 5.6 < 0.21				T					< 0.21
98-95-3 Nitrobenzene 39 92 1,000 9.4 0.1 0.1 < 0.041			130		25,000		1	5.6	< 0.21
87-86-5 Pentachlorophenol 3 520 0.03 0.14 < 0.083 108-95-2 Phenol 23,000 61,000 100 100 < 0.21						9.4	0.1		< 0.041
108-95-2 Phenol 23,000 61,000 100 100 < 0.21									
								100	< 0.21
1110-00-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110-86-1	Pyridine	1						< 0.83

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-002
Client Sample ID: 102
Date Collected: 04/29/2019 08:15

		<u> </u>		Constructi	on Worker	Soil Com	ponent of	
	•	Residential F	Route Specific	Route Specif	ic Values for	Groundwat	er Ingestion	
		Values	for Soil	S	oil	Exposure R	oute Values_	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene							< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.21
105-67-9	2.4-Dimethylphenol	1,600		41,000	•••	9	9	< 0.21
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.041
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.041
91-58-7	2-Chloronaphthalene							< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
91-57-6	2-Methylnaphthalene	1	,,,,,,	,	7.2.7		·	< 0.21
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.21
88-74-4	2-Nitroaniline	1		7		-,		< 0.21
88-75-5	2-Nitrophenol							< 0.21
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline	-					1,7455	< 0.21
534-52-1	4,6-Dinitro-2-methylphenol			-		-		< 0.41
101-55-3	4-Bromophenyl phenyl ether	†						< 0.21
59-50-7	4-Chloro-3-methylphenol	 						< 0.41
106-47-8	4-Chloroaniline	310	•••	820		0.7	0.7	< 0.21
7005-72-3	4-Chlorophenyl phenyl ether	310		020		U. ,	"	< 0.21
106-44-5	4-Methylphenol	 						< 0.21
100-01-6	4-Nitroaniline	1		_				< 0.21
100-01-0	4-Nitrophenol	Ì						< 0.41
62-53-3	Aniline	 						< 0.42
92-87-5	Benzidine	1						< 0.41
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol	310,000		020,000		400	700	< 0.21
111-91-1	Bis(2-chloroethoxy)methane	 						< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran	1,000	10,000	7,100	10,000	10,000	10,000	< 0.21
84-66-2		63,000	2,000	1,000,000	2,000	470	470	< 0.21
131-11-3	Diethyl phthalate Dimethyl phthalate	05,000	2,000	1,000,000	2,000	7/0	7/0	< 0.21
118-74-1		0.4	 ,	78	2.6	2	11	< 0.21
	Hexachlorobenzene	0.4	- ' -	/8	2.0		 - '' - 	< 0.21
87-68-3	Hexachlorobutadiene	550	10	14,000	1.1	400	2,200	< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000			2,200	< 0.21
67-72-1	Hexachloroethane	78	4 600	2,000	4,600	0.5 8	8	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	_		0.00005	< 0.041
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	
62-75-9	N-Nitrosodimethylamine	122	ļ	25,000			5.2	< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000	0.4	1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041 < 0.084
87-86-5	Pentachlorophenol	3		520	•••	0.03	0.14	
108-95-2	Phenol	23,000		61,000		100	100.	< 0.21
110-86-1	Pyridine							< 0.84

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-003 Client Sample ID: 103 Date Collected: 04/29/2019 08:30

				Constructi	on Worker	Soil Com	ponent of	ı
		Residential F	Route Specific	Route Specif	ic Values for	Groundwat	er Ingestion	
		Values	for Soil	Se	oil	Exposure R	oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene							< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
	2,4-Dichlorophenol	230	•••	610		1	9	< 0.21
	2,4-Dimethylphenol	1,600	•••	41,000		0.2	0.2	< 0.21 < 1.0
51-28-5	2,4-Dinitrophenol	160		410 180		0.0008	0.0008	< 0.040
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.040
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.21
91-58-7 95-57-8	2-Chloronaphthalene 2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
	2-Methylnaphthalene	390	33,000	10,000	33,000	-	-	< 0.21
91-57-6 95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.21
88-74-4	2-Methylphenol 2-Nitroaniline	3,900		100,000		13	13	< 0.21
88-75-5	2-Nitrophenol							< 0.21
91-94-1	3.3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline	· · · · · ·		200		0.007	0.000	< 0.21
534-52-1	4.6-Dinitro-2-methylphenol		-			-		< 0.40
	4-Bromophenyl phenyl ether							< 0.21
59-50-7	4-Chloro-3-methylphenol	 						< 0.40
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.21
	4-Chlorophenyl phenyl ether	7.0				***		< 0.21
106-44-5	4-Methylphenol							< 0.21
100-01-6	4-Nitroaniline							< 0.21
100-02-7	4-Nitrophenol							< 0.40
62-53-3	Aniline							< 0.41
92-87-5	Benzidine	T T						< 0.40
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol							< 0.21
111-91-1	Bis(2-chloroethoxy)methane							< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200	•••	0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran							< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
131-11-3	Dimethyl phthalate							< 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene							< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78		2,000		0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.040
62-75-9	N-Nitrosodimethylamine	ļ						< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040
87-86-5	Pentachlorophenol	3		520	•••	0.03	0.14	< 0.082
108-95-2	Phenol	23,000		61,000		100	100	< 0.21
110-86-1	Pyridine	<u> </u>	l					< 0.82

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-004 Client Sample ID: 104 Date Collected: 04/29/2019 09:00

					1			1
					on Worker		ponent of	
		1	toute Specific	• .	ic Values for		er Ingestion	
			for Soil		oil		oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.22
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.22
541-73-1	1,3-Dichlorobenzene							< 0.22
106-46-7	1,4-Dichlorobenzene		11,000	•••	340	2	11	< 0.22
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.22
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.22
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.22
120-83-2	2,4-Dichlorophenol	230	•••	610	•••	1	1	< 0.22
105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.22
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.1
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.042
606-20-2	2,6-Dinitrotoluene	0.9		180	•••	0.0007	0.0007	< 0.042
91-58-7	2-Chloronaphthalene							< 0.22
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.22
91-57-6	2-Methylnaphthalene							< 0.22
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.22
88-74-4	2-Nitroaniline							< 0.22
88-75-5	2-Nitrophenol							< 0.22
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.22
99-09-2	3-Nitroaniline	·						< 0.22
534-52-1	4,6-Dinitro-2-methylphenol							< 0.42
	4-Bromophenyl phenyl ether				-			< 0.22
59-50-7	4-Chloro-3-methylphenol			-				< 0.42
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.22
	4-Chlorophenyl phenyl ether			- 020		• • • • • • • • • • • • • • • • • • • •		< 0.22
106-44-5	4-Methylphenol	 				_		< 0.22
100-01-6	4-Nitroaniline							< 0.22
100-01-0	4-Nitrophenol	 						< 0.42
62-53-3	Aniline							< 0.42
92-87-5	Benzidine							< 0.42
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.1
100-51-6	Benzyl alcohol	310,000		020,000		700	100	< 0.22
111-91-1								< 0.22
	Bis(2-chloroethoxy)methane	0.6	0.2	75	0.66	0.0004	0.0004	< 0.22
111-44-4 117-81-7	Bis(2-chloroethyl)ether	46	31,000	4,100	31,000	3,600	31,000	< 1.1
	Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate		930	410,000	930	930	930	< 0.22
85-68-7		16,000 32	930	6,200	930	0.6	2.8	< 0.22
86-74-8	Carbazole					2,300	2,300	< 0.22
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	10,000	10,000	< 0.22
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.22
132-64-9	Dibenzofuran	(2.000	2.000	1,000,000	2,000	470	470	< 0.22
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	4/0	< 0.22
131-11-3	Dimethyl phthalate			30			1,	
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.22
87-68-3	Hexachlorobutadiene			14.000	<u> </u>	400	2 2 2 2	< 0.22
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.22
67-72-1	Hexachloroethane	78		2,000		0.5	2.6	< 0.22
78-59-1	lsophorone	15,600	4,600	410,000	4,600	8	8	< 0.22
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.042
62-75-9	N-Nitrosodimethylamine							< 0.22
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.22
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.042
87-86-5	Pentachlorophenol	3		520	•••	0.03	0.14	< 0.085
108-95-2	Phenol	23,000	•••	61,000		100	100	< 0.22
110-86-1	Pyridine							< 0.85

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID:

19041196-005

Client Sample ID :

105

Date Collected: 04/29/2019 09:30

				G	13/1	S-9 C		
		 			on Worker		ponent of	
			Route Specific	•	ic Values for	Groundwat	-	
			for Soil	S			oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	(0.21
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene		41.000		240	•	• • • • • • • • • • • • • • • • • • • •	< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)			200 000		270	1.400	< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000	540	270	1,400	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.21
105-67-9	2,4-Dimethylphenol	1,600		41,000		0.2	9 0.2	< 0.21 < 1.0
51-28-5	2,4-Dinitrophenol	160		410 180		0.0008	0.0008	< 0.040
121-14-2	2,4-Dinitrotoluene	0.9					0.0008	< 0.040
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.21
91-58-7	2-Chloronaphthalene	200	62.000	10.000	62,000	4	4	
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	+	< 0.21 < 0.21
91-57-6	2-Methylnaphthalene	2.000		100.000		15	15	< 0.21
95-48-7	2-Methylphenol	3,900		100,000		13	13	< 0.21
88-74-4	2-Nitroaniline							< 0.21
88-75-5	2-Nitrophenol 3,3'-Dichlorobenzidine	 		280		0.007	0.033	< 0.21
91-94-1		1	•	280		0.007	0.033	< 0.21
99-09-2 534-52-1	3-Nitroaniline		-					< 0.40
	4,6-Dinitro-2-methylphenol							< 0.40
101-55-3	4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol							< 0.40
59-50-7 106-47-8	4-Chloroaniline	310	•••	820		0.7	0.7	< 0.21
	4-Chlorophenyl phenyl ether	310		620		0.7	0.7	< 0.21
106-44-5		 						< 0.21
	4-Methylphenol							< 0.21
100-01-6 100-02-7	4-Nitroaniline 4-Nitrophenol							< 0.40
	Aniline	<u> </u>						< 0.41
62-53-3	Benzidine		_					< 0.40
92-87-5 65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol	310,000		820,000		700	400	< 0.21
111-91-1	Bis(2-chloroethoxy)methane							< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran	1,000	10,000	7,100	10,000	10,000	10,000	< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
	Dimethyl phthalate	05,000	2,000	1,000,000	2,000	1,70	· ·/·	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene	V.4	<u> </u>		2.0	-		< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78		2,000		0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09	4,000	18		0.00005	0.00005	< 0.040
62-75-9	N-Nitrosodimethylamine	V.U3		10		0.0000	0.0000	< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040
87-86-5	Pentachlorophenol	39		520	2.4	0.03	0.14	< 0.082
108-95-2	Phenol	23,000		61,000		100	100	< 0.21
110-86-1	Pyridine	23,000		01,000		100		< 0.82
110-00-1	i yriduic							- 0.02

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-006 Client Sample ID: 106 Date Collected: 04/29/2019 10:00

				Constructi	on Worker	Soil Com	ponent of	
		Posidential E	Route Specific		ic Values for		er Ingestion	
			for Soil	•	oil		oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene	7,000	500	10,000				< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21
	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
120-83-2	2,4-Dichlorophenol	230	•••	610	•••	1	1	< 0.21
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9	•••	180		0.0008	0.0008	< 0.041
	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.041
91-58-7	2-Chloronaphthalene							< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
91-57-6	2-Methylnaphthalene		,		·			< 0.21
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.21
88-74-4	2-Nitroaniline							< 0.21
88-75-5	2-Nitrophenol							< 0.21
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline							< 0.21
534-52-1	4,6-Dinitro-2-methylphenol							< 0.41
101-55-3	4-Bromophenyl phenyl ether							< 0.21
59-50-7	4-Chloro-3-methylphenol							< 0.41
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.21
	4-Chlorophenyl phenyl ether			_				< 0.21
106-44-5	4-Methylphenol							< 0.21
100-01-6	4-Nitroaniline		2			-		< 0.21
100-02-7	4-Nitrophenol						- ' '	< 0.41
62-53-3	Aniline							< 0.42
92-87-5	Benzidine							< 0.41
65-85-0	Benzoic acid	310,000	•••	820,000		400	400	< 1.0
100-51-6	Benzyl alcohol	·						< 0.21
111-91-1	Bis(2-chloroethoxy)methane							< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran					1.5		< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
	Dimethyl phthalate							< 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene					26.5		< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78	•••	2,000		0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.041
62-75-9	N-Nitrosodimethylamine							< 0.21
86-30-6	N-Nitrosodiphenylamine	130	•••	25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041
87-86-5	Pentachlorophenol	3		520		0.03	0.14	< 0.084
108-95-2	Phenol	23,000		61,000		100	100	< 0.21
110-86-1	Pyridine	L						< 0.84

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-007 Client Sample ID: 107 Date Collected: 04/29/2019 10:30

		Posidential T	loute Specific		on Worker ic Values for		ponent of er Ingestion	
			for Soil	•	oil		oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene							< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800	•	200,000	•••	270	1,400	< 0.21
	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
	2,4-Dichlorophenol	230		610	•••	1	1	< 0.21
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21
	2,4-Dinitrophenol	160	•••	410		0.2	0.2	< 1.0
	2,4-Dinitrotoluene	0.9		180	•••	0.0008	0.0008	< 0.040
	2,6-Dinitrotoluene	0.9	•••	180		0.0007	0.0007	< 0.040
	2-Chloronaphthalene	200	62.000	10.000	52.000	4		< 0.21
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21 < 0.21
	2-Methylnaphthalene	2 000		100,000		15	15	< 0.21
	2-Methylphenol 2-Nitroaniline	3,900		100,000		13	13	< 0.21
-	2-Nitrophenol	 						< 0.21
	3,3'-Dichlorobenzidine	1		280	***	0.007	0.033	< 0.21
	3-Nitroaniline	1		280		0.007	0.055	< 0.21
	4,6-Dinitro-2-methylphenol						i	< 0.40
	4-Bromophenyl phenyl ether	 						< 0.21
	4-Chloro-3-methylphenol	 						< 0.40
	4-Chloroaniline	310		820		0.7	0.7	< 0.21
	4-Chlorophenyl phenyl ether				-			< 0.21
	4-Methylphenol							< 0.21
	4-Nitroaniline							< 0.21
	4-Nitrophenol							< 0.40
62-53-3	Aniline							< 0.41
92-87-5	Benzidine							< 0.40
65-85-0	Benzoic acid	310,000	•••	820,000		400	400	< 1.0
100-51-6	Benzyl alcohol							< 0.21
111-91-1	Bis(2-chloroethoxy)methane							< 0.21
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
	Dibenzofuran	(2.222		1 000 000		450	470	< 0.21
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
	Dimethyl phthalate	0.4	,	70	3.		 ,, 	< 0.21
	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
	Hexachlorobutadiene	550	10	14 000	1 1	400	2 200	< 0.21 < 0.21
	Hexachlorocyclopentadiene Hexachloroethane	550 78		14,000 2,000	1.1	400 0.5	2,200 2.6	< 0.21
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
	N-Nitrosodi-n-propylamine	0.09	4,000	18	4,000	0.00005	0.00005	< 0.040
	N-Nitrosodimethylamine	0.09		10		0.00003	0.00003	< 0.21
	N-Nitrosodiphenylamine	130		25,000	•••	1	5.6	< 0.21
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040
	Pentachlorophenol	3		520	- 2.4	0.03	0.14	< 0.082
	Phenol	23,000		61,000		100	100	< 0.21
	Pyridine	25,000		,,,,,,,,,				< 0.82

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (SVOC)

Client: Environmental Group Services, Ltd.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-008
Client Sample ID: 108
Date Collected: 04/29/2019 11:00

				Constructi			ponent of	
			toute Specific	Route Specif			er Ingestion	
		Values	for Soil	Sc		_	oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene							< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.21
105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21
51-28-5	2,4-Dinitrophenol	160	•••	410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.041
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.041
91-58-7	2-Chloronaphthalene							< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
91-57-6	2-Methylnaphthalene							< 0.21
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.21
88-74-4	2-Nitroaniline							< 0.21
88-75-5	2-Nitrophenol					2 2 2 2		< 0.21
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline	ļ						< 0.21
534-52-1	4,6-Dinitro-2-methylphenol							< 0.41
101-55-3	4-Bromophenyl phenyl ether	<u> </u>						< 0.21
59-50-7	4-Chloro-3-methylphenol							< 0.41
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.21
7005-72-3	4-Chlorophenyl phenyl ether		·					< 0.21
106-44-5	4-Methylphenol	ļ						< 0.21
100-01-6	4-Nitroaniline							< 0.21
100-02-7	4-Nitrophenol							< 0.41
62-53-3	Aniline							< 0.41
92-87-5	Benzidine			000 000		100	100	< 0.41
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol							< 0.21
111-91-1	Bis(2-chloroethoxy)methane				0.66	0.0004	0.0004	< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32	2 200	6,200	2 200	0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran	(2.000	2.000	1,000,000	2.000	430	430	< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
131-11-3	Dimethyl phthalate	0.4		70		2	11	< 0.21 < 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6		11	< 0.21
87-68-3	Hexachlorobutadiene	660	10-	14.000	— ,,	400	2 200	< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78	4.600	2,000	4.600	0.5	2.6	
78-59-1	Isophorone	15,600	4,600	410,000	4,600	0.0006	0.00005	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00003	< 0.041
62-75-9	N-Nitrosodimethylamine	120		26,000			- 5 4	< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041
87-86-5	Pentachlorophenol	3 22 000	•••	520	•••	0.03	0.14	< 0.082 < 0.21
108-95-2	Phenol	23,000		61,000		100	100	
110-86-1	Pyridine			L			J	< 0.82

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PCB)

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

19041196-003 102 04/29/2019 08:15 19041196-002 19041196-001 Laboratory D: Client Sample D:

04/29/2019 08:00

Date Collected:

04/29/2019 09:00

04/29/2019 08:30

19041196-004

< 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095 < 0.095 × 0.098 × 0.098 < 0.098 < 0.098 < 0.098 < 0.098 < 0.098 < 0.099 < 0.099 < 0.099 < 0.099 < 0.099 < 0.099 < 0.099 Groundwater Ingestion **Exposure Route Values** Class II Soil Component of 1 ŀ 1 Class I ł 1 Route Specific Values for Inhalation Construction Worker Ingestion Residential Route Specific Inhalation Values for Soil Ingestion Analyte Aroclor 1248 Aroclor 1242 Aroclor 1254 1096-82-5 Aroclor 1260 Aroclor 1016 Aroclor 1221 Aroclor 1232 2672-29-6 1104-28-2 53469-21-9 1097-69-1 2674-11-2 141-16-5 CAS No.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PCB)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

 Laboratory ID :
 19041196-005
 19041196-006
 19041196-007

 Client Sample ID :
 105
 107

 Date Collected :
 04/29/2019 09:30
 04/29/2019 10:30

04/29/2019 11:00 19041196-008 108

				,,,,,,,		Call Can	30,000				
			,	Construction	CHOIL WOTKE	Son Component of	ponent of				
		Residential R	Residential Route Specific Route Spe	Route Specifi	cific Values for	Groundwater Ingestion	er Ingestion				
		Values	Values for Soil	Soil	į.	Exposure Route Values	oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2 Aroclor 1016	Aroctor 1016	1		ı	ı	i	••	< 0.095	< 0.10	< 0.099	< 0.098
11104-28-2 Aroclor 1221	Vrocior 1221	1	1	1				< 0.095	< 0.10	< 0.099	< 0.098
11141-16-5 Aroclor 1232	Aroclor 1232	1	i	1	i	1	-	< 0.095	< 0.10	< 0.099	< 0.098
53469-21-9 Aroclor 1242	Aroclor 1242	1		1	:			< 0.095	< 0.10	660'0>	< 0.098
12672-29-6 Aroclor 1248	Aroclor 1248	1	ı	1			***	< 0.095	< 0.10	660'0>	< 0.098
11097-69-1 Aroclor 1254	Aroclor 1254	1	1	1	•••	***		< 0.095	< 0.10	< 0.099	< 0.098
11096-82-5 Aroclor 1260	Aroclor 1260	1	1	1	i	-		< 0.095	< 0.10	< 0.099	< 0.098

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.
Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

19041196-004 104 04/29/2019 08:30 19041196-003 103 04/29/2019 08:15 19041196-002 102 Laboratory ID: 19041196-001 Client Sample ID: 101 Date Collected: 04/29/2019 08:00

04/29/2019 09:00

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

04/29/2019 11:00 19041196-008 108 04/29/2019 10:30 19041196-007 107 19041196-006 106 04/29/2019 10:00 Laboratory ID: 19041196-005 Client Sample ID: 105 Date Collected: 04/29/2019 09:30

	_										
		Residential R	Residential Route Specific	Route Sp	ecific Values for	Groundwater Ingestion	roundwater Ingestion				
		Values for Soil	for Soil	Soil	i i	Exposure R	Exposure Route Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
72-54-8	4,4'-DDD	3	•••		••	16	08	< 0.0019	< 0.0020	< 0.0020	< 0.0020
72-55-9	4,4'-DDE	2		370	i	54	270	< 0.0019	< 0.0020	< 0.0020	< 0.0020
20-53	4,4'-DDT	2	ı	100	2,100	32	091	< 0.0019	< 0.0020	< 0.0020	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0019	< 0.0020	< 0.0020	< 0.0020
319-84-6	alpha-BHC	0.1	8.0	20	2.1	0.0005	0.003	< 0.0019	< 0.0020	< 0.0020	< 0.0020
5103-71-9	alpha-Chlordane							< 0.0019	< 0.0020	< 0.0020	< 0.0020
319-85-7	beta-BHC							< 0.0019	< 0.0020	< 0.0020	< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	48	< 0.019	< 0.020	< 0.020	< 0.020
319-86-8	delta-BHC							< 0.0019	< 0.0020	< 0.0020	< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0019	< 0.0020	< 0.0020	< 0.0020
8-86-656	Endosulfan I	470	-	1,200	-	18	06	< 0.0019	< 0.0020	< 0.0020	< 0.0020
33213-65-9	Endosulfan II	470		1,200	•	18	06	< 0.0019	< 0.0020	< 0.0020	< 0.0020
1031-07-8	Endosulfan sulfate							< 0.0019	< 0.0020	< 0.0020	< 0.0020
72-20-8	Endrin	23		19		1		< 0.0019	< 0.0020	< 0.0020	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0019	< 0.0020	< 0.0020	< 0.0020
53494-70-5 Endrin ketone	Endrin ketone							< 0.0019	< 0.0020	< 0.0020	< 0.0020
58-89-9	gamma-BHC	0.5		96	-	0.009	0.047	< 0.0019	< 0.0020	< 0.0020	< 0.0020
5566-34-7	gamma-Chlordane							< 0.0019	< 0.0020	< 0.0020	< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	91	23	110	< 0.0019	< 0.0020	< 0.0020	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0019	< 0.0020	< 0.0020	< 0.0020
72-43-5	Methoxychlor	390	-	1,000	1	160	780	< 0.0019	< 0.0020	< 0.0020	< 0.0020
8001-35-2	Toxaphene	9.0	68	011	240	31	051	< 0.039	< 0.041	< 0.041	< 0.040

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (INORG)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANAL YSIS

19041196-002 102 04/29/2019 08:15 19041196-001 101 Laboratory ID: Client Sample ID:

19041196-003 103 04/29/2019 08:30 04/29/2019 08:00 Date Collected:

		1	_	_	_	$\overline{}$						_						_	_							$\overline{}$
٠			14000	< 2.0	11	- 19	0.86	< 0.51	57000	26	13	20	< 0.31	21000	8.6	27000	400	< 0.022	35	3900	< 1.0	< 1.0	200	< 1.0	27	48
			11000	< 2.1	7.1	49	0.76	< 0.54	90019	23	12	22	< 0.31	22000	13	30000	410	< 0.021	34	3000	<1.1	<1.1	140	<1.1	_ 23	45
			13000	< 2.2	3.1	75	0.79	< 0.56	63000	26	12	17	< 0.31	21000	6.8	28000	430	< 0.019	33	3500	< 1.1	< 1.1	230	< 1.1	24	45
onent of	r Ingestion	Class II																								
Soil Component of	Groundwater Ingestion	Class I																								
Construction Worker	Route Specific Values for	Inhalation			25,000	870,000	44,000	29,000	•	069				••		•••	8,700	0.1	440,000		•••	1			***	1
Constructi	Route Specif	Ingestion		82	19	14,000	410	200	1	4,100	12,000	8,200	4,100		200	730,000	4,100	19	4,100		1,000	1,000	1	160	1,400	000'19
	ential Route Specific	Inhalation			05/	000,069	1,300	1,800	-	270	i	i	•••		1		000'69	01	13,000				•••	***		
	Residential Route S	Ingestion		31	13.0/11.3	5,500	160	78	:	230	4,700	2,900	1,600		400	325,000	1,600	23	1,600		390	390	***	6.3	550	23,000
		Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Cyanide	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
		CAS No.	7429-90-5 Aluminum	7440-36-0	7440-38-2	7440-39-3 Barium	7440-41-7	7440-43-9	7440-70-2	7440-47-3 Chromium	7440-48-4 Cobalt	7440-50-8	57-12-5	7439-89-6 Iron	7439-92-1	7439-95-4 Magnesium	7439-96-5 Manganese	7439-97-6 Mercury	7440-02-0 Nickel	7440-09-7 Potassium	7782-49-2 Selenium	7440-22-4 Silver	7440-23-5 Sodium	7440-28-0 Thallium	7440-62-2	7440-66-6 Zinc

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.
Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (INORG)

Client: Environmental Group Services, Ltd.

Project: Franklin (EB-1)

Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-004 19041196-005 19041196-006 Client Sample ID: 104 105 Date Collected: 04/29/2019 09:00 04/29/2019 09:30 04/29/2019 10:00

< 0.023 < 0.55 57000 < 0.32 22000 28000 3500 430 _ v 160 83 \$ 25 < 0.024 14000 59000 26000 13 30000 < 0.31 < 1.0 × 1.0 0.I × < 0.51 3800 0.98 470 8 56 14 59 39 %|<u>\</u> < 0.023 25000 12 27000 15000 < 0.58 53000 < 0.32 4300 < 1.2 < 1.2 0.97 430 87 14 56 న క 28 Groundwater Ingestion Exposure Route Values Class II Soil Component of Class I Route Specific Values for Inhalation 870,000 Construction Worker 44,000 25,000 59,000 440,000 8,700 9 1 ľ 1 <u>_</u> i Ingestion 700 730,000 4,100 14,000 12,000 1,000 1,400 4,100 8,200 4,100 4,100 100, 200 99 82 Inhalation Residential Route Specific 690,000 13,000 69,000 1,800 55 1270 1 2 I Values for Soil Ingestion 325,000 13.0/11.3 23,000 5,500 230 2,900 1,600 8 23 400 9 1 88 390 550 6.3 78 Analyte Magnesium Manganese Aluminum Chromium Potassium Vanadium Beryllium /440-36-0 |Antimony Cadmium Selenium Thallium Calcium Cyanide Mercury Copper Sodium Arsenic 7440-39-3 |Barium Nickel Cobalt Silver Zinc Lead Iron 1439-95-4 57-12-5 7439-89-6 7439-97-6 440-09-7 7440-62-2 7440-66-6 440-43-9 440-70-2 440-47-3 440-48-4 440-02-0 440-22-4 7440-23-5 7440-28-0 439-92-1 440-41-7 440-50-8 782-49-2 429-90-5 439-96-5

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (INORG)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID : Client Sample ID :

19041196-007 19041196-008 107 108 04/29/2019 10:30 04/29/2019 11:00 Date Collected:

																	П									П
			15000	< 2.1	8.0	83	0.95	< 0.53	00009	28	15	22	< 0.31	22000	12	30000	440	< 0.024	39	4500	< 1.1	< 1.1	180	< 1.1	29	51
			14000	< 2.2	2.6	19	98.0	< 0.56	61000	27	91	20	< 0.31	21000	12	29000	430	< 0.019	42	4000	< 1.1	< 1.1	180	<1.1	27	50
Soil Component of Groundwater Ingestion	outelValues	∵-Class Π [−]																								
Soil Com Groundwat	ExposureR	—Class I																								
onWorker eValuesfor	il	Inhalation		-	25,000	870,000	44,000	29,000		069	ı	+		-	-	•••	8,700	0.1	440,000	ı	ı			i		ı
ConstructionWorker RouteSpecificValues for	Soil	_Ingestion_		82	19	14,000	410	200	-	4,100	12,000	8,200	4,100		200	730,000	4,100	61	4,100		1,000	1,000		160	1,400	61,000
outeSpecific	or. Soil	_ Inhalation_			750	000'069	1,300	1,800	***	270	i	1	•••	1		•••	000'69	10	13,000		-	-	***	į		!
Residential Route Specific	Values for Soil	Ingestion		31	13.0/11.3	5,500	160	78	***	230	4,700	2,900	1,600		400	325,000	1,600	23	1,600	•••	390	390		6.3	550	23,000
		Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	dmium	alcium	romium	obalt	Copper	Cyanide	ac	ad	Magnesium	Manganese	ercury	ickel	Potassium	Selenium	Silver	Sodium	hallium	Vanadium	nc
		CAS No.	7429-90-5 AI	7440-36-0 Ar	7440-38-2 Ar	7440-39-3 Ba	7440-41-7 Be	7440-43-9 Cadmium	7440-70-2 Calcium	7440-47-3 Chromium	7440-48-4 Cobalt	7440-50-8 Cc	57-12-5 C	7439-89-6 Iron	7439-92-1 Lead	7439-95-4 M	7439-96-5 M	7439-97-6 Mercury	7440-02-0 Nickel	7440-09-7 Po	7782-49-2 Se	7440-22-4 Si	7440-23-5 So	7440-28-0 Thallium	7440-62-2 V ₂	7440-66-6 Zinc

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.
Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

19041196-004 19041196-003 19041196-002 19041196-001 Laboratory ID : Client Sample ID : Date Collected :

04/29/2019 09:00 04/29/2019 08:30 04/29/2019 08:15 04/29/2019 08:00

	•										
				Construction	ction Worker	Soil Component of	onent of				
		Residential Ro	oute Specific	Residential Route Specific Route Specific Values for	ic Values for	Groundwater Ingestion	r Ingestion				
		Values for Soil	or Soil	Soil	lic	Exposure Route Values	oute Values				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
7429-90-5 Aluminum	Aluminum							< 0.10	0.15	< 0.10	< 0.10
7440-36-0 Antimony	Antimony					9000	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic	Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium	Barium					2.0	2.0	0.49	0.44	0.52	0.47
7440-41-7 Beryllium	Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium	Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 Chromium	Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt	Cobalt					1.0	1.0	0.013	0.038	0.020	0.029
7440-50-8 Copper	Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6 Iron	Iron					5.0	5.0	< 0.25	0.78	< 0.25	< 0.25
7439-92-1 Lead	Lead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7439-96-5 Manganese	Manganese					0.15	10.0	3:6	5:8	118	3:0
7439-97-6 Mercury	Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 Nickel	Nickel					0.1	2.0	0.042	0.065	090.0	0.071
7782-49-2 Selenium	Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver	Silver					0.05		< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 Thallium	Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium	Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Zinc	Zinc					5.0	10	< 0.050	< 0.050	< 0.050	< 0.050
										-	

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

04/29/2019 11:00 19041196-008 108 04/29/2019 10:30 19041196-007 04/29/2019 10:00 19041196-006 04/29/2019 09:30 19041196-005 105 Laboratory ID : Client Sample ID : Date Collected :

			Construction Worker	on Worker	Soil Component of	ponent of				
	Residen	Residential Route Specific Route Specific Values for	Route Specif	ic Values for	Groundwater Ingestion	er Ingestion				
	Na Va	Values for Soil	Soil	ii	Exposure Route Values	oute Values				
CAS No. Ana	Analyte Ingestion	ion Inhalation	Ingestion	Inhalation	Class I	Class II				
7429-90-5 Aluminum	1						< 0.10	< 0.10	< 0.10	< 0.10
7440-36-0 Antimony					900'0	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium					2.0	2.0	0.54	0.51	24.0	0.55
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium					0.005	0.05	< 0.0050	< 0.0050	0500'0>	< 0.0050
7440-47-3 Chromium	_				0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt					1.0	1.0	0.020	0.022	0.013	910'0
7440-50-8 Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6 Iron					5.0	5.0	< 0.25	< 0.25	< 0.25	< 0.25
7439-92-1 Lead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7439-96-5 Manganese	9				0.15	10.0	8:8	2:9	3:2 6 6	$\iota_{i \Omega}$
7439-97-6 Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 Nickel					0.1	2.0	090.0	090'0	0.044	0.048
7782-49-2 Selenium		, ,			0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver					0.05		< 0.010	< 0.010	< 0.010	010.0>
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	010'0>	< 0.010
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	< 0.050	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A. Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

04/29/2019 09:30 19041196-005 pH = 7.9204/29/2019 09:00 19041196-004 pH = 7.9404/29/2019 08:30 19041196-003 pH = 7.9204/29/2019 08:15 19041196-002 pH = 7.9304/29/2019 08:00 19041196-001 19.7 = 1.91Date Collected: Laboratory ID : Client Sample ID :

			14000	< 2.0	6.4	94	86:0	< 0.51	29000	26	14	29	< 0.31	26000	13	30000	470	< 0.024	39	3800	< 1.0	< 1.0	170	< 1.0	28	51
			15000	< 2.3	4.8	87	26.0	< 0.58	23000	28	14	26	< 0.32	25000	12	27000	430	< 0.023	37	4300	< 1.2	< 1.2	170	< 1.2	29	99
			14000	< 2.0	11	19	0.86	< 0.51	57000	26	13	20	< 0.31	21000	8.6	27000	400	< 0.022	35	3900	< 1.0	< 1.0	200	< 1.0	27	48
			11000	< 2.1	7.1	· 49	0.76	< 0.54	61000	23	12	22	< 0.31	22000	13	30000	410	< 0.021	34	3000	<1.1	< 1.1	140	< 1.1	23	45
			13000	< 2.2	3.1	75	0.79	< 0.56	93000	26	12	17	< 0.31	21000	6.8	28000	430	< 0.019	33	3500	< 1.1	< 1.1	230	< 1.1	24	45
Component of tion Route Values	Class II			20	120	2,100	1,000,000	4,300		No Data	See TCLP/SPLP	330,000	120	See TCLP/SPLP	1,420		See TCLP/SPLP	40	76,000		2.4			38	See TCLP/SPLP	110,000
pH Specific Soil Component of Groundwater Ingestion Route Values	Class I	pH Range 7.75 to 8.24		\$	31	2,100	8,000	430		28	See TCLP/SPLP	330,000	40	See TCLP/SPLP	107		See TCLP/SPLP	8.0	3,800		2.4	110		3.8	086	53,000
Residential Route Specific Values for Soil	Inhalation	pH Rang			150	690,000	1,300	1,800	•••	270	•••		. •••		i	•	*000 / 8,700*	10/01	13,000							•••
Residential I Values	Ingestion	i i		31	13.0/11.3	5,500	160	28	•••	230	4,700	2,900	1,600		400	325,000	1,600	23	1.600		390	390	•	6.3	955	23,000
		INORG Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Cyanide	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective. Chromium Class I / II objectives based on hexavalent chromium.

• - Construction Worker Inhalation Objective from Appendix B, Table B.

TACO Tier I pH Specific Soil Remediation Objectives - Supplemental Residential Report

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

19041196-008 108 19041196-007 107 Laboratory ID: 19041120-20.
Client Sample ID: 106

Date Collected: 04/29/2019 10:00 0

pH = 7.93

04/29/2019 11:00 pH = 8.0704/29/2019 10:30 pH = 8.07

	Residential I	Residential Route Specific	pH Specific Soil Component of	l Component of			
	Values	Values for Soil	Groundwater Inge	Groundwater Ingestion Route Values			
	Ingestion	Inhalation	Class I	Class II			
NORG Analyte		pH Ran	pH Range 7.75 to 8.24				
Aluminum					13000	14000	15000
Antimony	31	•••	\$	20	< 2.2	< 2.2	< 2.1
Arsenic	13.0/11.3	150	31	120	6.4	6.7	8.0
Barium	5,500	000'069	2,100	2,100	83	19	83
Beryllium	160	1,300	8,000	1,000,000	0.87	98.0	0.95
Cadmium	28	1,800	430	4,300	< 0.55	< 0.56	< 0.53
Calcium	-	•••			27000	61000	00009
Chromium	230	270	28	No Data	26	27	28
Cobalt	4,700	***	See TCLP/SPLP	See TCLP/SPLP	15	16	15
Copper	2,900	•••	330,000	330,000	23	20	22
Cyanide	1,600	•••	40	120	< 0.32	< 0.31	< 0.31
Iron		••	See TCLP/SPLP	See TCLP/SPLP	22000	21000	22000
Lead	400		101	1,420	13	12	12
Magnesium	325,000	:			28000	29000	30000
Manganese	1,600	*000'8' / 000'69	See TCLP/SPLP	See TCLP/SPLP	430	430	440
Mercury	23	10 / 0.1*	8.0	40	< 0.023	< 0.019	< 0.024
Nickel	1,600	13,000	3,800	76,000	40	42	39
Potassium		•••			3500	4000	4500
Selenium	390		2.4	2.4	<1.1	<1.1	< 1.1
Silver	390	•••	110		<1.1	<1.1	<1.1
Sodium	•••	•••			160	180	180
Thallium	6.3	•••	3.8	38	<1.1	<1.1	<1.1
Vanadium	550	•••	086	See TCLP/SPLP	25	27	29
Zinc	23,000	:	53,000	110,000	50	20	15

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective. Chromium Class I / II objectives based on hexavalent chromium.
• - Construction Worker Inhalation Objective from Appendix B, Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Report (Background)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

19041196-006 106 04/29/2019 10:00 19041196-005 105 04/29/2019 09:30 19041196-004 104 04/29/2019 09:00 04/29/2019 08:30 19041196-003 103 19041196-002 102 04/29/2019 08:15 Date Collected: 04/29/2019 08:00 19041196-001 101 Laboratory ID : Client Sample ID :

TACO Tier I Soil Remediation Objectives - Supplemental Report (Background)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-007 19041196-008 Client Sample ID: 107 108 Date Collected: 04/29/2019 10:30 04/29/2019 11:00

Analyte Acenaphthene Acenaphthylene Anthracene Benz(a)anthrace Benz(a)anthrace	- dried	City of	SHOW THE PARTY			
	Amolyto	•	ANTICAL LA NACA			
	Alialyte	Chicago	Within MSA	Outside MSA		
Acenaph Anthrace Benz(a)e Benzo(a	ıthene	0.09	0.13	0.04	< 0.040	< 0.041
Anthrace Benz(a)a Benzo(a)	ıthylene	0.03	20'0	0.04	< 0.040	< 0.041
Benz(a)z Benzo(a	sne	0.25	0.40	0.14	< 0.040	< 0.041
Benzo(a)	Benz(a)anthracene	1.1	8.1	0.72	< 0.040	< 0.041
Donas, L)pyrene	1.3	2.1	86.0	< 0.040	< 0.041
ממומח	Benzo(b)fluoranthene	1.5	2.1	0.70	< 0.040	< 0.041
Benzo(g	Benzo(g,h,i)perylene	99.0	1.7	0.84	< 0.040	< 0.041
Benzo(k	Benzo(k)fluoranthene	0.99	1.7	0.63	< 0.040	< 0.041
Chrysene	a	1.2	2.7	1:1	< 0.040	< 0.041
Dibenz(Dibenz(a,h)anthracene	0.20	0.42	0.15	< 0.040	< 0.041
Fluoranthene	hene	2.7	4.1	P.'	< 0.040	< 0.041
Fluorene		0.10	0.18	0.04	< 0.040	< 0.041
Indeno(1	ndeno(1,2,3-cd)pyrene	98.0	1.6	0.51	< 0.040	< 0.041
Naphthalene	lene	0.04	0.20	0.17	< 0.040	< 0.041
Phenanthrene	hrene	1.3	2.5	66.0	< 0.040	< 0.041
Pyrene		1.9	3.0	1.2	< 0.040	< 0.041
NORG Aluminum	m		005'6	9,200	14000	15000
Antimony	lλ		4.0	3.3	<2.2	< 2.1
Arsenic			13.0	11.3	6.7	8.0
Barium			011	122	19	83
Beryllium	u.		65.0	0.56	98.0	0.95
Cadmium	n		9.0	0.50	< 0.56	< 0.53
Calcium			9,300	5,525	00019	00009
Chromium	ш		16.2	13.0	27	28
Cobalt			6.8	6.8	91	15
Copper			9.61	12.0	20	22
Cyanide			0.51	0.50	< 0.31	< 0.31
Iron			15,900	15,000	21000	22000
Lead			36.0	20.9	12	12
Magnesium	un		4,820	2,700	29000	30000
Manganese	ese		989	630	430	440
Mercury			90'0	0.05	< 0.019	< 0.024
Nickel			0.81	13.0	42	39
Potassium	E		1,268	1,100	4000	4500
Selenium			0.48	0.37	<1.1	<1.1
Silver			0.55	0.50	<1.1	<1.1
Sodium			130	130.0	180	180
Thallium	ı		0.32	0.42	< 1.1	<1.1
Vanadium	m		25.2	25.0	27	29
Zinc			95.0	60.2	50	51

MSA - Metropolitan Statistical Area All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table G and Table H. Bolded/Shaded values exceed the within MSA background level.

Project: Franklin (EB-1) Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-001 19041196-002 8:15

Client Sample ID :	101	102
Date Collected:	04/29/2019 08:00	04/29/2019 08

			1	ts for Chemicals With bint < 30°C		
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route		
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
VOC	67-64-1	Acetone	100,000	200,000	< 0.091	< 0.11
	71-43-2	Benzene	800	580	< 0.0061	< 0.0074
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0061	< 0.0074
	75-25-2	Bromoform	2,000	1,200	< 0.0061	< 0.0074
	74-83-9	Bromomethane	3,100	3,600	< 0.012	< 0.015
	78-93-3	2-Butanone	25,000	45,000	< 0.091	< 0.11
	75-15-0	Carbon disulfide	850	520	< 0.061	< 0.074
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0061	< 0.0074
	108-90-7	Chlorobenzene	620	290	< 0.0061	< 0.0074
	67-66-3	Chloroform	3,400	2,500	< 0.0061	< 0.0074
	124-48-1	Dibromochloromethane	1,400	890	< 0.0061	< 0.0074
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0061	< 0.0074
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0061	< 0.0074
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0061	< 0.0074
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0061	< 0.0074
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0061	< 0.0074
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0061	< 0.0074
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0024	< 0.0030
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0024	< 0.0030
	100-41-4	Ethylbenzene	350	150	< 0.0061	< 0.0074
	75-09-2	Methylene chloride	2,500	3,000	< 0.012	< 0.015
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0061	< 0.0074
	100-42-5	Styrene	630	260	< 0.0061	< 0.0074
	127-18-4	Tetrachloroethene	800	310	< 0.0061	< 0.0074
	108-88-3	Toluene	580	290	< 0.0061	< 0.0074
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0061	< 0.0074
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0061	< 0.0074
	79-01-6	Trichloroethene	1,200	650	< 0.0061	< 0.0074
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0061	< 0.0074
	1330-20-7	Xylenes, Total	280	110	< 0.018	< 0.022
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.041	< 0.041
	98-95-3	Nitrobenzene	710	590	< 0.041	< 0.041
INORG	7439-97-6	Mercury	3.1	N/A	< 0.019	< 0.021

All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table A.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID: 1904

19041196-003

19041196-004

Client Sample ID :

103

104

Date Collected :	04/29/2019 08:30	04/29/2019 09:00

CAS No. VOC 67-64-1 71-43-2 75-27-4	Analyte Acetone Benzene Bromodichloromethane Bromoform	Outdoor Inhalation Exposure Route Value C _{sat} (mg/Kg) 100,000 800	Soil Component of Groundwater Ingestion Exposure Route C _{sat} (mg/Kg) 200,000		
VOC 67-64-1 71-43-2 75-27-4	Acetone Benzene Bromodichloromethane	100,000	5.11 (C C)		
71-43-2 75-27-4	Benzene Bromodichloromethane	100,000	200,000		
75-27-4	Bromodichloromethane	800	200,000	< 0.083	< 0.13
			580	< 0.0055	< 0.0087
	Bromoform	2,800	2,000	< 0.0055	< 0.0087
75-25-2		2,000	1,200	< 0.0055	< 0.0087
74-83-9	Bromomethane	3,100	3,600	< 0.011	< 0.017
78-93-3	2-Butanone	25,000	45,000	< 0.083	< 0.13
75-15-0	Carbon disulfide	850	520	< 0.055	< 0.087
56-23-5	Carbon tetrachloride	1,200	560	< 0.0055	< 0.0087
108-90-7	Chlorobenzene	620	290	< 0.0055	< 0.0087
67-66-3	Chloroform	3,400	2,500	< 0.0055	< 0.0087
124-48-1	Dibromochloromethane	1,400	890	< 0.0055	< 0.0087
75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0055	< 0.0087
107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0055	< 0.0087
75-35-4	1,1-Dichloroethene	1,400	910	< 0.0055	< 0.0087
156-59-2	cis-1.2-Dichloroethene	1,300	1,000	< 0.0055	< 0.0087
156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0055	< 0.0087
78-87-5	1,2-Dichloropropane	1,200	870	< 0.0055	< 0.0087
10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0022	< 0.0035
10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0022	< 0.0035
100-41-4	Ethylbenzene	350	150	< 0.0055	< 0.0087
75-09-2	Methylene chloride	2,500	3,000	< 0.011	< 0.017
1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0055	< 0.0087
100-42-5	Styrene	630	260	< 0.0055	< 0.0087
127-18-4	Tetrachloroethene	800	310	< 0.0055	< 0.0087
108-88-3	Toluene	580	290	< 0.0055	< 0.0087
71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0055	< 0.0087
79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0055	< 0.0087
79-01-6	Trichloroethene	1,200	650	< 0.0055	< 0.0087
75-01-4	Vinyl chloride	2,600	2,900	< 0.0055	< 0.0087
1330-20-7	Xylenes, Total	280	110	< 0.017	< 0.026
SVOC 120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.22
95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.22
105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.22
95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.22
111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.22
117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.1
85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.22
84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.22
117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.22
84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.22
77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.22
78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.22
621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.040	< 0.042
98-95-3	Nitrobenzene	710	590	< 0.040	< 0.042
INORG 7439-97-6	Mercury	3.1	N/A	< 0.022	< 0.023

Project: Franklin (EB-1) Laboratory: STAT ANALYSIS

Laboratory ID: 19041196-005 19041196-006 105 106

Client Sample ID: 04/29/2019 10:00 Date Collected: 04/29/2019 09:30

				ts for Chemicals With pint < 30°C		
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route		
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
VOC	67-64-1	Acetone	100,000	200,000	< 0.11	< 0.10
	71-43-2	Benzene	800	580	< 0.0073	< 0.0070
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0073	< 0.0070
	75-25-2	Bromoform	2,000	1,200	< 0.0073	< 0.0070
	74-83-9	Bromomethane	3,100	3,600	< 0.015	< 0.014
	78-93-3	2-Butanone	25,000	45,000	< 0.11	< 0.10
	75-15-0	Carbon disulfide	850	520	< 0.073	< 0.070
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0073	< 0.0070
	108-90-7	Chlorobenzene	620	290	< 0.0073	< 0.0070
	67-66-3	Chloroform	3,400	2,500	< 0.0073	< 0.0070
	124-48-1	Dibromochloromethane	1,400	890	< 0.0073	< 0.0070
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0073	< 0.0070
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0073	< 0.0070
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0073	< 0.0070
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0073	< 0.0070
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0073	< 0.0070
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0073	< 0.0070
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0029	< 0.0028
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0029	< 0.0028
	100-41-4	Ethylbenzene	350	150	< 0.0073	< 0.0070
	75-09-2	Methylene chloride	2,500	3,000	< 0.015	< 0.014
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0073	< 0.0070
	100-42-5	Styrene	630	260	< 0.0073	< 0.0070
	127-18-4	Tetrachloroethene	800	310	< 0.0073	< 0.0070
	108-88-3	Toluene	580	290	< 0.0073	< 0.0070
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0073	< 0.0070
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0073	< 0.0070
	79-01-6	Trichloroethene	1,200	650	< 0.0073	< 0.0070
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0073	< 0.0070
	1330-20-7	Xylenes, Total	280	110	< 0.022	< 0.021
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.040	< 0.041
	98-95-3	Nitrobenzene	710	590	< 0.040	< 0.041
INORG	7439-97-6	Mercury	3.1	N/A	< 0.024	< 0.023

All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table A.

Project: Franklin (EB-1)
Laboratory: STAT ANALYSIS

Laboratory ID:

19041196-007

19041196-008

Client Sample ID :

107

108

Date Collected: 04/29/2019 10:30 04/29/2019 11:00

			1	ts for Chemicals With oint < 30°C		
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route		
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
VOC	67-64-1	Acetone	100,000	200,000	< 0.19	< 0.11
	71-43-2	Benzene	800	580	< 0.013	< 0.0075
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.013	< 0.0075
	75-25-2	Bromoform	2,000	1,200	< 0.013	< 0.0075
	74-83-9	Bromomethane	3,100	3,600	< 0.025	< 0.015
	78-93-3	2-Butanone	25,000	45,000	< 0.19	< 0.11
	75-15-0	Carbon disulfide	850	520	< 0.13	< 0.075
	56-23-5	Carbon tetrachloride	1,200	560	< 0.013	< 0.0075
	108-90-7	Chlorobenzene	620	290	< 0.013	< 0.0075
	67-66-3	Chloroform	3,400	2,500	< 0.013	< 0.0075
	124-48-1	Dibromochloromethane	1,400	890	< 0.013	< 0.0075
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.013	< 0.0075
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.013	< 0.0075
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.013	< 0.0075
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.013	< 0.0075
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.013	< 0.0075
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.013	< 0.0075
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0050	< 0.0030
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0050	< 0.0030
	100-41-4	Ethylbenzene	350	150	< 0.013	< 0.0075
	75-09-2	Methylene chloride	2,500	3,000	< 0.025	< 0.015
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.013	< 0.0075
	100-42-5	Styrene	630	260	< 0.013	< 0.0075
	127-18-4	Tetrachloroethene	800	310	< 0.013	< 0.0075
	108-88-3	Toluene	580	290	< 0.013	< 0.0075
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.013	< 0.0075
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.013	< 0.0075
	79-01-6	Trichloroethene	1,200	650	< 0.013	< 0.0075
	75-01-4	Vinyl chloride	2,600	2,900	< 0.013	< 0.0075
	1330-20-7	Xylenes, Total	280	110	< 0.038	< 0.023
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.040	< 0.041
	98-95-3	Nitrobenzene	710	590	< 0.040	< 0.041
INORG	7439-97-6	Mercury	3.1	N/A	< 0.019	< 0.024

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		101	13000	9,500	Within MSA Background
		102	11000	9,200	Outside MSA Background
		103	14000		
INORG	Aluminum	104	15000		
111010	Aluininiuiii	105	14000		
		106	13000		
		107	14000		
		108	15000		
		101	0.79	0.59	Within MSA Background
		102	0.76	0.56	Outside MSA Background
		103	0.86		
NORG	Beryllium	104	0.97		
nvoko		105	0.98		
	ļ i	106	0.87	l l	
		107	0.86		
		108	0.95	ļ	
		101	63000	9,300	Within MSA Background
		102	61000	5,525	Outside MSA Background
		103	57000		
INORG	Calcium	104	53000		
		105	59000		
		106	57000		
		107	61000		
		108	60000		
1		101	26	16.2	Within MSA Background
1		102	23	13.0	Outside MSA Background
		103	26		
INORG	Chromium	104	28	 	
	1	105	26]	
		106	26	1	
		107	27		
		108	28		Wishin MCA Designand
		101	12	8.9	Within MSA Background
		102	12	8.9	Outside MSA Background
		103	13 14	1 1	
INORG	Cobalt	104	14		
		105 106	15		
		107	16		
		107	15		
		108	17	19.6	Within MSA Background
		102	22	12.0	Outside MSA Background
		102	20	12.0	Outside MSA Dackground
		103	26		
INORG	Copper	105	29		
		105	23		
		107	20		
		107	20 22		
		100		<u> </u>	

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
-		101	21000	15,900	Within MSA Background
		102	22000	15,000	Outside MSA Background
		103	21000		
INORG	Iron	104	25000		
INORG	l iron	105	26000		
		106	22000		
		107	21000		
		108	22000		
		101	28000	4,820	Within MSA Background
		102	30000	2,700	Outside MSA Background
	ŀ	103	27000		
INORG	Ma asiu	104	27000	1	
INOKO	Magnesium	105	30000		
		106	28000		
		107	29000		
	1	108	30000		. <u></u>
		101	33	18.0	Within MSA Background
		102	34	13.0	Outside MSA Background
		103	35		_
DIODO	N7'-1 -1	104	37		
INORG	Nickel	105	39		
		106	40		
		107	42	1	
		108	39	1	
		101	3500	1,268	Within MSA Background
		102	3000	1,100	Outside MSA Background
		103	3900	·	
DIODO		104	4300		
INORG	Potassium	105	3800		
	1	106	3500		
		107	4000		
		108	4500		
		101	230	130	Within MSA Background
		102	140	130.0	Outside MSA Background
		103	200		
BIODO	0.45	104	170		
INORG	Sodium	105	170		
		106	160		
		107	180		
		108	180	1	
		103	27	25.2	Within MSA Background
		104	29	25.0	Outside MSA Background
INORG	Vanadium	105	28	1	-
		107	27		
		108	29		
		101	3.6 *	0.15	SCGIR Class I
		102	5.8 *		
		103	3.1 *		
TO: 5	[,,,]	104	3.0 *		
TCLP	Manganese	105	3.3 *		
		106	2.9 *		
		107	3.2 *		
		108	3.7 *		

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
TCLP	Manganese	101	3.6 *	0.15	SCGIR Class I
TCLP	Manganese	102	5.8 *	0.15	SCGIR Class I
TCLP	Manganese	103	3.1 *	0.15	SCGIR Class I
TCLP	Manganese	104	3.0 *	0.15	SCGIR Class I
TCLP	Manganese	105	3.3 *	0.15	SCGIR Class I
TCLP	Manganese	106	2.9 *	0.15	SCGIR Class I
TCLP	Manganese	107	3.2 *	0.15	SCGIR Class I
TCLP	Manganese	108	3.7 *	0.15	SCGIR Class I
INORG	Aluminum	101	13000	9,500	Within MSA Background
INORG	Beryllium	101	0.79	0.59	Within MSA Background
INORG	Calcium	101	63000	9,300	Within MSA Background
INORG	Chromium	101	26	16.2	Within MSA Background
INORG	Cobalt	101	12	8.9	Within MSA Background
INORG	Iron	101	21000	15,900	Within MSA Background
INORG	Magnesium	101	28000	4,820	Within MSA Background
INORG	Nickel	101	33	18.0	Within MSA Background
INORG	Potassium	101	3500	1,268	Within MSA Background
INORG	Sodium	101	230	130	Within MSA Background
INORG	Aluminum	102 102	11000 0.76	9,500 0.59	Within MSA Background
INORG	Beryllium				Within MSA Background Within MSA Background
INORG	Character	102	61000	9,300 16.2	Within MSA Background Within MSA Background
INORG	Chromium Cobalt	102	23	8.9	Within MSA Background Within MSA Background
INORG INORG	Copper	102 102	12 22	19.6	Within MSA Background Within MSA Background
INORG	Iron	102	22000	15,900	Within MSA Background
INORG	Magnesium	102	30000	4,820	Within MSA Background
INORG	Nickel	102	34	18.0	Within MSA Background Within MSA Background
INORG	Potassium	102	3000	1,268	Within MSA Background
INORG	Sodium	102	140	130	Within MSA Background
INORG	Aluminum	103	14000	9,500	Within MSA Background
INORG	Beryllium	103	0.86	0.59	Within MSA Background
INORG	Calcium	103	57000	9,300	Within MSA Background
INORG	Chromium	103	26	16.2	Within MSA Background
INORG	Cobalt	103	13	8.9	Within MSA Background
INORG	Copper	103	20	19.6	Within MSA Background
INORG	Iron	103	21000	15,900	Within MSA Background
INORG	Magnesium	103	27000	4,820	Within MSA Background
INORG	Nickel	103	35	18.0	Within MSA Background
INORG	Potassium	103	3900	1,268	Within MSA Background
INORG	Sodium	103	200	130	Within MSA Background
INORG	Vanadium	103	27	25.2	Within MSA Background
INORG	Aluminum	104	15000	9,500	Within MSA Background
INORG	Beryllium	104	0.97	0.59	Within MSA Background
INORG	Calcium	104	53000	9,300	Within MSA Background
INORG	Chromium	104	28	16.2	Within MSA Background
INORG	Cobalt	104	14	8.9	Within MSA Background
INORG	Copper	104	26	19.6	Within MSA Background
INORG	Iron	104	25000	15,900	Within MSA Background
INORG	Magnesium	104	27000	4,820	Within MSA Background
INORG	Nickel	104	37	18.0	Within MSA Background
INORG	Potassium	104	4300	1,268	Within MSA Background
INORG	Sodium	104	170	130	Within MSA Background
INORG	Vanadium	104	29	25.2	Within MSA Background
INORG	Aluminum	105	14000	9,500	Within MSA Background
INORG	Beryllium	105	0.98	0.59	Within MSA Background
INORG	Calcium	105	59000	9,300	Within MSA Background
INORG	Chromium	105	26	16.2	Within MSA Background
INORG	Cobalt	105	14	8.9	Within MSA Background

^{* -} result and RO units are mg/L

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Copper	105	29	19.6	Within MSA Background
INORG	Iron	105	26000	15,900	Within MSA Background
INORG		105	30000	4,820	Within MSA Background
INORG	Nickel	105	39	18.0	Within MSA Background
INORG	Potassium	105	3800	1,268	Within MSA Background
INORG	Sodium	105	170	130	Within MSA Background
INORG	Vanadium	105	28	25.2	Within MSA Background
INORG	Aluminum	106	13000	9,500	Within MSA Background
INORG	Beryllium	106	0.87	0.59	Within MSA Background
INORG	Calcium	106	57000	9,300	Within MSA Background
INORG	Chromium	106	26	16.2	Within MSA Background
INORG	Cobalt	106	15	8.9	Within MSA Background
INORG	Copper	106	23	19.6	Within MSA Background
INORG	Iron	106	22000	15,900	Within MSA Background
INORG	Magnesium	106	28000	4,820	Within MSA Background
INORG	Nickel	106	40	18.0	Within MSA Background
INORG	Potassium	106	3500	1,268	Within MSA Background
INORG	Sodium	106	160	130	Within MSA Background
INORG	Aluminum	107	14000	9,500	Within MSA Background
INORG	Beryllium	107	0.86	0.59	Within MSA Background
INORG	Calcium	107	61000	9,300	Within MSA Background
INORG	Chromium	107	27	16.2	Within MSA Background
INORG	Cobalt	107	16	8.9	Within MSA Background
INORG	Copper	107	20	19.6	Within MSA Background
INORG	lron	107	21000	15,900	Within MSA Background
INORG		107	29000	4,820	Within MSA Background
INORG	Nickel	107	42	18.0	Within MSA Background
INORG	Potassium	107	4000	1,268	Within MSA Background
INORG	Sodium	107	180	130	Within MSA Background
INORG	Vanadium	107	27	25.2	Within MSA Background
INORG	Aluminum	108	15000	9,500	Within MSA Background
INORG		108	0.95	0.59	Within MSA Background
INORG	Calcium	108	60000	9,300	Within MSA Background
INORG		108	28	16.2	Within MSA Background
INORG	Cobalt	108	15	8.9	Within MSA Background
INORG	Copper	108	22	19.6	Within MSA Background
INORG	Iron	108	22000	15,900	Within MSA Background
INORG	Magnesium	108	30000	4,820	Within MSA Background
INORG		108	39	18.0	Within MSA Background
INORG		108	4500	1,268	Within MSA Background Within MSA Background
INORG		108	180	130	
INORG		108	29	25.2	Within MSA Background
INORG		101	13000 0.79	9,200	Outside MSA Background
INORG	Beryllium	101	63000	0.56 5,525	Outside MSA Background
INORG	Chromium	101	26	13.0	Outside MSA Background Outside MSA Background
INORG	Chromium Cobalt	101		8.9	Outside MSA Background Outside MSA Background
INORG		101 101	12 17	12.0	Outside MSA Background Outside MSA Background
INORG INORG		101	21000	15,000	Outside MSA Background Outside MSA Background
INORG	Iron Magnesium	101	28000	2,700	Outside MSA Background Outside MSA Background
INORG		101	33	13.0	Outside MSA Background Outside MSA Background
INORG	Potassium	101	3500	1,100	Outside MSA Background
INORG		101	230	130.0	Outside MSA Background
INORG	Aluminum	102	11000	9,200	Outside MSA Background Outside MSA Background
INORG	Beryllium	102	0.76	0.56	Outside MSA Background
INORG	Calcium	102	61000	5,525	Outside MSA Background
INORG	Chromium	102	23	13.0	Outside MSA Background
INORG	Cobalt	102	12	8.9	Outside MSA Background
	Cobait	102	12	0.7	Outside MOA Dackground

^{* -} result and RO units are mg/L

_			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Copper	102	22	12.0	Outside MSA Background
INORG	Iron	102	22000	15,000	Outside MSA Background
INORG	Magnesium	102	30000	2,700	Outside MSA Background
INORG	Nickel	102	34	13.0	Outside MSA Background
INORG	Potassium	102	3000	1,100	Outside MSA Background
INORG	Sodium	102	140	130.0	Outside MSA Background
INORG	Aluminum	103	14000	9,200	Outside MSA Background
INORG	Beryllium	103	0.86	0.56	Outside MSA Background
INORG	Calcium	103	57000	5,525	Outside MSA Background
INORG	Chromium	103	26	13.0	Outside MSA Background
INORG	Cobalt	103	13	8.9	Outside MSA Background
INORG	Copper	103	20	12.0	Outside MSA Background
INORG	Iron	103	21000	15,000	Outside MSA Background
INORG	Magnesium	103	27000	2,700	Outside MSA Background
INORG	Nickel	103	35	13.0	Outside MSA Background
INORG	Potassium	103	3900	1,100	Outside MSA Background
INORG	Sodium	103	200	130.0	Outside MSA Background
INORG	Vanadium	103	27	25.0	Outside MSA Background
INORG	Aluminum	104	15000	9,200	Outside MSA Background
INORG	Beryllium	104	0.97	0.56	Outside MSA Background
INORG	Calcium	104	53000	5,525	Outside MSA Background
INORG	Chromium	104	28	13.0	Outside MSA Background
INORG	Cobalt	104	14	8.9	Outside MSA Background
INORG	Соррег	104	26	12.0	Outside MSA Background
INORG	Iron	104	25000	15,000	Outside MSA Background
	Magnesium	104	27000	2,700	Outside MSA Background
INORG	Nickel	104	37	13.0	Outside MSA Background
INORG	Potassium	104	4300	1,100	Outside MSA Background
INORG	Sodium	104	170	130.0	Outside MSA Background
INORG	Vanadium	104	29	25.0	Outside MSA Background
INORG	Aluminum	105	14000	9,200	Outside MSA Background
INORG	Beryllium	105	0.98	0.56	Outside MSA Background
INORG	Calcium	105	59000	5,525	Outside MSA Background
INORG	Chromium	105	26	13.0	Outside MSA Background
INORG	Cobalt	105	14	8.9	Outside MSA Background
INORG	Copper	105	29	12.0	Outside MSA Background
INORG	Iron	105	26000	15,000	Outside MSA Background
	Magnesium	105	30000	2,700	Outside MSA Background
	Nickel	105	39	13.0	Outside MSA Background
INORG	Potassium	105	3800	1,100	Outside MSA Background
INORG	Sodium	105	170	130.0	Outside MSA Background
INORG	Vanadium	105	28	25.0	Outside MSA Background
INORG		106	13000	9,200	Outside MSA Background
	Aluminum				
INORG	Beryllium	106	0.87	0.56	Outside MSA Background
INORG	Character	106	57000	5,525	Outside MSA Background
INORG	Chromium	106	26	13.0	Outside MSA Background
INORG	Cobalt	106	15	8.9	Outside MSA Background
INORG	Copper	106	23	12.0	Outside MSA Background
INORG	Iron	106	22000	15,000	Outside MSA Background
INORG	Magnesium	106	28000	2,700	Outside MSA Background
INORG	Nickel	106	40	13.0	Outside MSA Background
INORG	Potassium	106	3500	1,100	Outside MSA Background
INORG	Sodium	106	160	130.0	Outside MSA Background
INORG	Aluminum	107	14000	9,200	Outside MSA Background
INORG	Beryllium	107	0.86	0.56	Outside MSA Background
INORG	Calcium_	107	61000	5,525	Outside MSA Background
INORG	Chromium	107	27	13.0	Outside MSA Background
INORG	Cobalt	107	16	8.9	Outside MSA Background

^{* -} result and RO units are mg/L

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
INORG	Copper	107	20	12.0	Outside MSA Background
INORG	Iron	107	21000	15,000	Outside MSA Background
INORG	Magnesium	107	29000	2,700	Outside MSA Background
INORG	Nickel	107	42	13.0	Outside MSA Background
INORG	Potassium	107	4000	1,100	Outside MSA Background
INORG	Sodium	107	180	130.0	Outside MSA Background
INORG	Vanadium	107	27	25.0	Outside MSA Background
INORG	Aluminum	108	15000	9,200	Outside MSA Background
INORG	Beryllium	108	0.95	0.56	Outside MSA Background
INORG	Calcium	108	60000	5,525	Outside MSA Background
INORG	Chromium	108	28	13.0	Outside MSA Background
INORG	Cobalt	108	15	8.9	Outside MSA Background
INORG	Copper	108	22	12.0	Outside MSA Background
INORG	Iron	108	22000	15,000	Outside MSA Background
ĪNORG	Magnesium	108	30000	2,700	Outside MSA Background
INORG	Nickel	108	39	13.0	Outside MSA Background
INORG	Potassium	108	4500	1,100	Outside MSA Background
INORG	Sodium	108	180	130.0	Outside MSA Background
INORG	Vanadium	108	29	25.0	Outside MSA Background

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (VOC)

Project: Franklin (EB-2)

Laboratory: STAT ANALYSIS

04/30/2019 09:30 19041193-004 112 04/30/2019 09:00 19041193-003 04/30/2019 08:30 19041193-002 110 Laboratory ID: 19041193-001 Client Sample ID: 109 Date Collected: 04/30/2019 08:00

			Construction Worker	on Worker	Soil Component of	ponent of				
	Residential Route Specific Values for Soil	oute Specific for Soil	Route Specific Values for Soil	ic Values for	Groundwater Ingestion Exposure Route Values	Groundwater Ingestion Exposure Route Values				
Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
Acetone	70,000	100,000		100,000	25	25	< 0.12	< 0.13	< 0.092	< 0.10
Benzene	12	8.0	2,300	2.2	0.03	0.17	< 0.0082	6800'0>	< 0.0061	< 0.0066
Bromodichloromethane	01	3,000	2,000	3,000	9.0	9.0	< 0.0082	< 0.0089	1900'0>	> 0.0066
Bromoform	81	53	16,000	140	8.0	8.0	< 0.0082	< 0.0089	< 0.0061	> 0.0066
Bromomethane	110	01	1,000	3.9	0.2	1.2	< 0.016	< 0.018	< 0.012	< 0.013
2-Butanone							< 0.12	< 0.13	< 0.092	< 0.10
Carbon disulfide	7,800	720	20,000	9.0	32	160	< 0.082	< 0.089	< 0.061	> 0.066
Carbon tetrachloride	5	0.3	410	06.0	0.07	0.33	< 0.0082	6800'0>	< 0.0061	< 0.0066
Chlorobenzene	1,600	130	4,100	1.3	1	6.5	< 0.0082	< 0.0089	< 0.0061	< 0.0066
Chloroethane							< 0.016	< 0.018	< 0.012	< 0.013
Chloroform	<u>001</u>	0.3	2,000	92.0	9.0	2.9	< 0.0082	< 0.0089	< 0.0061	< 0.0066
Chloromethane							< 0.016	< 0.018	< 0.012	< 0.013
Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.0082	< 0.0089	< 0.0061	> 0.0066
,1-Dichloroethane	7,800	1,300	200,000	130	23	110	< 0.0082	< 0.0089	< 0.0061	> 0.0066
1,2-Dichloroethane	7	0.4	1,400	66'0	0.02	0.1	< 0.0082	6800'0>	1900'0 >	< 0.0066
1.1-Dichloroethene	3,900	290	10,000	3.0	90:0	0.3	< 0.0082	< 0.0089	< 0.0061	> 0.0066
cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.0082	< 0.0089	< 0.0061	< 0.0066
trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.0082	< 0.0089	< 0.0061	< 0.0066
1,2-Dichloropropane	6	15	1,800	0.50	0.03	0.15	< 0.0082	< 0.0089	< 0.0061	> 0.0066
cis-1,3-Dichloropropene	9	1.1	1,200	0.39	0.004	0.02	< 0.0033	< 0.0036	< 0.0024	< 0.0027
trans-1,3-Dichloropropene	9	1.1	1,200	0.39	0.004	0.02	< 0.0033	< 0.0036	< 0.0024	< 0.0027
Ethylbenzene	7,800	400	20,000	85	13	61	< 0.0082	< 0.0089	< 0.0061	< 0.0066
2-Hexanone							< 0.033	< 0.036	< 0.024	< 0.027
4-Methyl-2-pentanone							< 0.033	< 0.036	< 0.024	< 0.027
Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.016	810 [.] 0>	< 0.012	< 0.013
Methyl tert-butyl ether	780	8,800	2,000	140	0.32	0.32	< 0.0082	< 0.0089	< 0.0061	> 0.0066
Styrene	16,000	1,500	41,000	430	4	81	< 0.0082	< 0.0089	< 0.0061	< 0.0066
1,2,2-Tetrachloroethane							< 0.0082	< 0.0089	< 0.0061	> 0.0066
Tetrachloroethene	12	11	2,400	28	90:0	0.3	< 0.0082	< 0.0089	< 0.0061	> 0.0066
Toluene	16,000	650	410,000	42	12	29	< 0.0082	< 0.0089	< 0.0061	< 0.0066
I, I, I-Trichloroethane		1,200	•••	1,200	2	9.6	< 0.0082	< 0.0089	< 0.0061	< 0.0066
I, I, 2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.0082	< 0.0089	< 0.0061	> 0.0066
Trichloroethene	58	5	1,200	12	0.06	0.3	< 0.0082	< 0.0089	< 0.0061	> 0.0066
Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.0082	< 0.0089	< 0.0061	< 0.0066
Xylenes, Total	16,000	320	41,000	5.6	150	051	< 0.025	< 0.027	<0.018	< 0.020

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.
Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (VOC)

Project: Franklin (EB-2)

Laboratory: STAT ANALYSIS

04/30/2019 11:30 19041193-008 115 04/30/2019 11:00 19041193-007 114 04/30/2019 10:30 19041193-006 04/30/2019 10:00 19041193-005 Laboratory ID : Client Sample ID : Date Collected:

				Construction Worker	on Worker	Soil Component of	ponent of				
		Residential R	Residential Route Specific	Route Specifi	oute Specific Values for	Groundwater Ingestion	er Ingestion				
O NO NO	A Section A	Values for Soil	lor Soil	No.	Jakolotica Jakolotica	Exposure Route Values	oute Values				
67-64-1	Acetone	70.000	100.000	Ingesuon	100,000	25	25	< 0.22	< 0.095	< 0.21	< 0.11
71-43-2	Benzene	12	8.0	2,300	2.2	0.03	0.17	< 0.014	< 0.0064	< 0.014	< 0.0073
75-27-4	Bromodichloromethane	10	3,000	2,000	3,000	9.0	9.0	< 0.014	< 0.0064	< 0.014	< 0.0073
75-25-2	Bromoform	81	53	16,000	140	8.0	8.0	< 0.014	< 0.0064	< 0.014	< 0.0073
74-83-9	Bromomethane	110	10	1,000	3.9	0.2	. 1.2	< 0.029	< 0.013	< 0.028	< 0.015
78-93-3	2-Butanone							< 0.22	< 0.095	< 0.21	< 0.11
75-15-0	Carbon disulfide	7,800	720	20,000	0.6	32	091	< 0.14	< 0.064	< 0.14	< 0.073
56-23-5	Carbon tetrachloride	- 8	0.3	410	06'0	0.07	0.33	< 0.014	< 0.0064	< 0.014	< 0.0073
108-90-7	Chlorobenzene	1,600	130	4,100	1.3	-	6.5	< 0.014	< 0.0064	< 0.014	< 0.0073
75-00-3	Chloroethane							< 0.029	< 0.013	< 0.028	< 0.015
67-66-3	Chloroform	100	6.0	2,000	92.0	9.0	2.9	< 0.014	< 0.0064	< 0.014	< 0.0073
74-87-3	Chloromethane							< 0.029	< 0.013	< 0.028	< 0.015
124-48-1	Dibromochloromethane	1,600	1,300	41,000	1,300	0.4	0.4	< 0.014	< 0.0064	< 0.014	< 0.0073
75-34-3	1,1-Dichloroethane	7,800	1,300	200,000	130	23	011	< 0.014	< 0.0064	< 0.014	< 0.0073
107-06-2	1,2-Dichloroethane	7	0.4	1,400	66.0	0.02	0.1	< 0.014	< 0.0064	< 0.014	< 0.0073
75-35-4	[1,1-Dichloroethene	3,900	290	10,000	3.0	90:0	0.3	< 0.014	< 0.0064	< 0.014	< 0.0073
156-59-2	cis-1,2-Dichloroethene	780	1,200	20,000	1,200	0.4	1.1	< 0.014	< 0.0064	< 0.014	< 0.0073
156-60-5	trans-1,2-Dichloroethene	1,600	3,100	41,000	3,100	0.7	3.4	< 0.014	< 0.0064	< 0.014	< 0.0073
78-87-5	1,2-Dichloropropane	6	51	1,800	0.50	0.03	0.15	< 0.014	< 0.0064	< 0.014	< 0.0073
10061-01-5	Ť	9	1.1	1,200	0.39	0.004	0.02	< 0.0058	< 0.0025	< 0.0055	< 0.0029
10061-02-6	trans-1,3-Dichloropropene	9	1.1	1,200	0.39	0.004	0.02	< 0.0058	< 0.0025	< 0.0055	< 0.0029
100-41-4	Ethylbenzene	7,800	400	20,000	85	13	61	< 0.014	< 0.0064	< 0.014	< 0.0073
291-78-6	2-Hexanone							< 0.058	< 0.025	< 0.055	< 0.029
108-10-1	4-Methyl-2-pentanone							< 0.058	< 0.025	< 0.055	< 0.029
75-09-2	Methylene chloride	85	13	12,000	34	0.02	0.2	< 0.029	< 0.013	< 0.028	< 0.015
1634-04-4	Methyl tert-butyl ether	780	008'8	2,000	140	0.32	0.32	< 0.014	< 0.0064	< 0.014	< 0.0073
100-42-5	Styrene	16,000	1,500	41,000	430	4	81	< 0.014	< 0.0064	< 0.014	< 0.0073
79-34-5	1,1,2,2-Tetrachloroethane							< 0.014	< 0.0064	< 0.014	< 0.0073
127-18-4	Tetrachloroethene	12	Ш	2,400	28	90:0	0.3	< 0.014	< 0.0064	< 0.014	< 0.0073
108-88-3	Toluene	16,000	959	410,000	42	12	29	< 0.014	< 0.0064	< 0.014	< 0.0073
71-55-6	1,1,1-Trichloroethane	•	1,200		1,200	2	9.6	< 0.014	< 0.0064	< 0.014	< 0.0073
79-00-5	1,1,2-Trichloroethane	310	1,800	8,200	1,800	0.02	0.3	< 0.014	< 0.0064	< 0.014	< 0.0073
79-01-6	Trichloroethene	58	5	1,200	12	90.0	0.3	< 0.014	< 0.0064	< 0.014	< 0.0073
75-01-4	Vinyl chloride	0.46	0.28	170	1.1	0.01	0.07	< 0.014	< 0.0064	< 0.014	< 0.0073
1330-20-7	Xylenes, Total	16,000	320	41,000	5.6	150	150	< 0.043	< 0.019	< 0.041	< 0.022

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.
Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PNA)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANAL YSIS

 19041193-001
 19041193-002
 19041193-003

 109
 110
 111

 04/30/2019 08:00
 04/30/2019 08:30
 04/30/2019 09:00
 Laboratory ID: Client Sample ID: Date Collected: (

				Construction Worker	on Worker	Soil Com	Soil Component of			
		Residential Route	oute Specific	Route Specific Values for	ic Values for	Groundwat	Groundwater Ingestion			
		Values for S	for Soil	Soil	ii	Exposure R	Exposure Route Values			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II			
83-35-9	Acenaphthene	4,700		120,000		570	2,900	< 0.041	< 0.040	< 0.041
208-96-8	208-96-8 Acenaphthylene							< 0.041	< 0.040	< 0.041
120-12-7	20-12-7 Anthracene	23,000	-	610,000		12,000	29,000	< 0.041	< 0.040	< 0.041
56-55-3	56-55-3 Benz(a)anthracene	6.0	1	170	***	2	8	< 0.041	< 0.040	< 0.041
50-32-8	50-32-8 Benzo(a)pyrene	0.09		17	***	8	82	< 0.041	< 0.040	< 0.041
205-99-2	205-99-2 Benzo(b)fluoranthene	6.0	i	170	1	5	25	< 0.041	< 0.040	< 0.041
191-24-2	191-24-2 Benzo(g,h,i)perylene							< 0.041	< 0.040	< 0.041
207-08-9	207-08-9 Benzo(k)fluoranthene	6	•••	1,700		49	250	< 0.041	< 0.040	< 0.041
218-01-9	218-01-9 Chrysene	88		17,000		160	800	< 0.041	< 0.040	< 0.041
53-70-3	53-70-3 Dibenz(a,h)anthracene	60.0	•	11	1	2	9.2	< 0.041	< 0.040	< 0.041
206-44-0	206-44-0 Fluoranthene	3,100		82,000		4,300	21,000	< 0.041	< 0.040	< 0.041
86-73-7	86-73-7 Fluorene	3,100	•••	82,000	***	995	2,800	< 0.041	< 0.040	< 0.041
193-39-5	193-39-5 Indeno(1,2,3-cd)pyrene	6.0		170	***	14	69	< 0.041	< 0.040	< 0.041
91-20-3	Naphthalene	1,600	170	4,100	1.8	12	18	< 0.041	< 0.040	< 0.041
85-01-8	Phenanthrene							< 0.041	< 0.040	< 0.041
129-00-0 Pyrene	Pyrene	2,300		61,000		4,200	21,000	< 0.041	< 0.040	< 0.041

All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PNA)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-004 19041193-005 19041193-006 Client Sample ID: 112 113 114 Date Collected: 04/30/2019 09:30 04/30/2019 10:30

				Construction Worker	on Worker	Soil Com	Soil Component of			
		Residential R	Residential Route Specific	Route Specific Values for	ic Values for	Groundwater Ingestion	er Ingestion			
		Values for Sc	for Soil	Soil	li	Exposure R	Exposure Route Values			
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II			
83-32-9	83-32-9 Acenaphthene	4,700	•••	120,000	***	270	2,900	< 0.041	< 0.040	< 0.040
208-96-8	208-96-8 Acenaphthylene							< 0.041	< 0.040	< 0.040
120-12-7	120-12-7 Anthracene	23,000	•••	000'019	•••	12,000	29,000	< 0.041	< 0.040	< 0.040
56-55-3	56-55-3 Benz(a)anthracene	6.0	•••	170		2	8	< 0.041	< 0.040	< 0.040
50-32-8	Benzo(a)pyrene	60.0	•••	17	•	8	82	< 0.041	< 0.040	< 0.040
205-99-2	205-99-2 Benzo(b)fluoranthene	6.0	***	170		5	25	< 0.041	< 0.040	< 0.040
191-24-2	191-24-2 Benzo(g,h,i)perylene							< 0.041	< 0.040	< 0.040
207-08-9	207-08-9 Benzo(k)fluoranthene	6	i	1,700	•••	64	250	< 0.041	< 0.040	< 0.040
218-01-9	218-01-9 Chrysene	88	•••	17,000		091	008	< 0.041	< 0.040	< 0.040
53-70-3	53-70-3 Dibenz(a,h)anthracene	60.0	•••	11	•	2	9.7	< 0.041	< 0.040	< 0.040
206-44-0	206-44-0 Fluoranthene	3,100	•••	82,000	•	4,300	21,000	< 0.041	< 0.040	< 0.040
86-73-7	Fluorene	3,100	i	82,000		999	2,800	< 0.041	< 0.040	< 0.040
193-39-5	193-39-5 Indeno(1,2,3-cd)pyrene	6.0	-	170		14	69	< 0.041	< 0.040	< 0.040
91-20-3	91-20-3 Naphthalene	1,600	041	4,100	1.8	12	81	< 0.041	< 0.040	< 0.040
8-10-58	Phenanthrene							< 0.041	< 0.040	< 0.040
129-00-0 Pyrene	Pyrene	2,300	I	61,000	1	4,200	21,000	< 0.041	< 0.040	< 0.040

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PNA)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANAL YSIS

 Laboratory ID:
 19041193-007
 19041193-008

 Client Sample ID:
 115
 116

 Date Collected:
 04/30/2019 11:30
 04/30/2019 11:30

 19041193-008 116

			Constructi	Construction Worker	Soil Com	Soil Component of		
	Residential R	Residential Route Specific	Route Specific Values for	ic Values for	Groundwat	Groundwater Ingestion		
	Values for Soil	for Soil	Soil	il	Exposure R	Exposure Route Values		
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II		
83-32-9 Acenaphthene	4,700		120,000	•••	570	2,900	< 0.039	< 0.039
:08-96-8 Acenaphthylene							< 0.039	< 0.039
20-12-7 Anthracene	23,000	•••	610,000	•	12,000	29,000	< 0.039	< 0.039
56-55-3 Benz(a)anthracene	6.0		170	***	2	8	< 0.039	< 0.039
50-32-8 Benzo(a)pyrene	60.0	•••	17	***	8	82	< 0.039	< 0.039
205-99-2 Benzo(b)fluoranthene	6.0	•	170	***	5	25	< 0.039	< 0.039
91-24-2 Benzo(g,h,i)perylene							< 0.039	< 0.039
207-08-9 Benzo(k)fluoranthene	6	***	1,700		49	250	< 0.039	< 0.039
18-01-9 Chrysene	88	***	17,000	444	160	008	< 0.039	< 0.039
53-70-3 Dibenz(a,h)anthracene	60.0	•••	17	***	2	972	< 0.039	< 0.039
206-44-0 Fluoranthene	3,100	1	82,000	***	4,300	21,000	< 0.039	< 0.039
86-73-7 Fluorene	3,100	•••	82,000	•	260	2,800	< 0.039	< 0.039
193-39-5 Indeno(1,2,3-cd)pyrene	0.0		170		14	69	< 0.039	< 0.039
91-20-3 Naphthalene	1,600	170	4,100	1.8	12	81	< 0.039	< 0.039
85-01-8 Phenanthrene							< 0.039	< 0.039
129-00-0 Pyrene	2,300		61,000		4,200	21,000	< 0.039	< 0.039

All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-001 Client Sample ID: 109 Date Collected: 04/30/2019 08:00

				Constructi	an Wantan	Soil Com		
		Danislandial E	auta Smaaisia					
			loute Specific for Soil	Koute Specii Se	ic Values for	Groundwate Exposure R		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1.2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1.3-Dichlorobenzene	7,000	300	10,000	310	17	73	< 0.21
106-46-7	1,4-Dichlorobenzene	 	11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)		11,000		340		- ''	< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.21
105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21
51-28-5	2,4-Dinitrophenol	160	•••	410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.041
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.041
91-58-7	2-Chloronaphthalene					_		< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
91-57-6	2-Methylnaphthalene							< 0.21
95-48-7	2-Methylphenol	3,900		100,000	•••	15	15	< 0.21
88-74-4	2-Nitroaniline							< 0.21
88-75-5	2-Nitrophenol							< 0.21
91-94-1	3,3'-Dichlorobenzidine	1	•••	280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline							< 0.21
534-52-1	4,6-Dinitro-2-methylphenol							< 0.41
101-55-3	4-Bromophenyl phenyl ether							< 0.21
59-50-7	4-Chloro-3-methylphenol							< 0.41
106-47-8	4-Chloroaniline	310		820	•••	0.7	0.7	< 0.21
	4-Chlorophenyl phenyl ether							< 0.21
106-44-5	4-Methylphenol							< 0.21
100-01-6	4-Nitroaniline		<u> </u>					< 0.21
100-02-7	4-Nitrophenol Aniline	-						< 0.41 < 0.42
62-53-3 92-87-5	Benzidine							< 0.41
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol	310,000		820,000		400	400	< 0.21
111-91-1	Bis(2-chloroethoxy)methane							< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran	1	1	·				< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
131-11-3	Dimethyl phthalate							< 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene							< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78		2,000		0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.041
62-75-9	N-Nitrosodimethylamine	ļ	<u> </u>					< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041
87-86-5	Pentachlorophenol	3		520		0.03	0.14	< 0.084
108-95-2	Phenol	23,000		61,000		100	100	< 0.21
110-86-1	Pyridine	<u></u>	L					< 0.84

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-002 Client Sample ID: 110 Date Collected: 04/30/2019 08:30

CACNI		Residential R	loute Specific		on Worker fic Values for		ponent of er Ingestion	
CACAL			for Soil	-	oil		oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.20
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20
541-73-1	1,3-Dichlorobenzene							< 0.20
106-46-7	1,4-Dichlorobenzene		11,000	•••	340	2	11	< 0.20
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.20
95-95-4	2,4,5-Trichlorophenol	7,800	•••	200,000		270	1,400	< 0.20
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.20
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.20
105-67-9	2,4-Dimethylphenol	1,600	•••	41,000		9	9	< 0.20
51-28-5	2,4-Dinitrophenol	160	•••	410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9	•••	180		0.0008	0.0008	< 0.040
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.040
91-58-7	2-Chloronaphthalene							< 0.20
	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20
	2-Methylnaphthalene							< 0.20
	2-Methylphenol	3,900		100,000		15	15	< 0.20
	2-Nitroaniline							< 0.20
88-75-5	2-Nitrophenol							< 0.20
91-94-1	3,3'-Dichlorobenzidine	1		280	•••	0.007	0.033	< 0.20
99-09-2	3-Nitroaniline			-				< 0.20
534-52-1	4,6-Dinitro-2-methylphenol							< 0.40
	4-Bromophenyl phenyl ether							< 0.20
	4-Chloro-3-methylphenol						·	< 0.40
	4-Chloroaniline	310		820		0.7	0.7	< 0.20
	4-Chlorophenyl phenyl ether					·		< 0.20
	4-Methylphenol							< 0.20
	4-Nitroaniline							< 0.20
100-02-7	4-Nitrophenol							< 0.40
	Aniline	i						< 0.40
92-87-5	Benzidine							< 0.40
	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol					-		< 0.20
	Bis(2-chloroethoxy)methane	1						< 0.20
	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20
	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20
	Carbazole	32		6,200		0.6	2.8	< 0.20
	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.20
	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20
	Dibenzofuran		, , , , ,					< 0.20
	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20
	Dimethyl phthalate	1		, , , , , , , , , , , , , , , , , , , ,				< 0.20
	Hexachlorobenzene .	0.4	1	78	2.6	2	11	< 0.20
	Hexachlorobutadiene							< 0.20
	Hexachlorocyclopentadiene	· 550	10	14,000	1.1	400	2,200	< 0.20
	Hexachloroethane	78		2,000		0.5	2.6	< 0.20
	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20
	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.040
	N-Nitrosodimethylamine	V.07		••		0.0000	***************************************	< 0.20
	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.20
	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040
	Pentachlorophenol	39		520		0.03	0.14	< 0.080
	Phenol	23,000		61,000		100	100	< 0.20
	Pyridine	23,000		01,000			100	< 0.80

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-003 Client Sample ID: 111 Date Collected: 04/30/2019 09:00

				Constructi	on Worker	Soil Com	ponent of	Í
		Residential R	loute Specific	Route Specif		Groundwat		İ
		1	for Soil	•	oil	Exposure R	~	İ
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene	7,000	300	10,000	310			< 0.21
	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)		11,000		- 3.0		:-	< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
88-06-2	2.4.6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.21
	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.041
606-20-2	2.6-Dinitrotoluene	0.9		180	•••	0.0007	0.0007	< 0.041
91-58-7	2-Chloronaphthalene	- <u>*:-</u> -				******		< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
91-57-6	2-Methylnaphthalene	 				-		< 0.21
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.21
88-74-4	2-Nitroaniline							< 0.21
88-75-5	2-Nitrophenol							< 0.21
91-94-1	3,3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline							< 0.21
534-52-1	4,6-Dinitro-2-methylphenol							< 0.41
101-55-3	4-Bromophenyl phenyl ether							< 0.21
59-50-7	4-Chloro-3-methylphenol		· · · · · ·					< 0.41
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.21
	4-Chlorophenyl phenyl ether						-	< 0.21
106-44-5	4-Methylphenol	<u> </u>						< 0.21
100-01-6	4-Nitroaniline							< 0.21
100-02-7	4-Nitrophenol							< 0.41
62-53-3	Aniline	1						< 0.41
92-87-5	Benzidine							< 0.41
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol							< 0.21
111-91-1	Bis(2-chloroethoxy)methane			-				< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200	•••	0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran							< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
	Dimethyl phthalate	1						< 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	_11	< 0.21
87-68-3	Hexachlorobutadiene							< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78		2,000		0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09		18	•••	0.00005	0.00005	< 0.041
62-75-9	N-Nitrosodimethylamine							< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000	•••	1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041
87-86-5	Pentachlorophenol	3		520		0.03	0.14	< 0.082
108-95-2	Phenol	23,000		61,000		100	100	< 0.21
110-86-1	Pyridine	1						< 0.82

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-004 Client Sample ID: 112 Date Collected: 04/30/2019 09:30

				Constructi	on Worker	Soil Com	nonent of	
		Decidential E	loute Specific	Route Specif		Groundwat		
		li .	for Soil		oil	Exposure R		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.21
541-73-1	1,3-Dichlorobenzene	7,000	300	10,000	5.0	.,		< 0.21
106-46-7	1.4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane)		11,000		- 5.0			< 0.21
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.21
	2,4-Dimethylphenol	1,600		41,000	•••	9	9	< 0.21
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.041
606-20-2	2,6-Dinitrotoluene	0.9		180	•••	0.0007	0.0007	< 0.041
91-58-7	2-Chloronaphthalene							< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4.	4	< 0.21
91-57-6	2-Methylnaphthalene			,				< 0.21
95-48-7	2-Methylphenol	3,900		100,000	•••	15	15	< 0.21
88-74-4	2-Nitroaniline	1 .,,,,,						< 0.21
88-75-5	2-Nitrophenol	1						< 0.21
91-94-1	3,3'-Dichlorobenzidine	1	***	280	•••	0.007	0.033	< 0.21
99-09-2	3-Nitroaniline	1						< 0.21
534-52-1	4,6-Dinitro-2-methylphenol	1						< 0.41
101-55-3	4-Bromophenyl phenyl ether					_		< 0.21
59-50-7	4-Chloro-3-methylphenol			· · · · · ·				< 0.41
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.21
7005-72-3	4-Chlorophenyl phenyl ether	 		1				< 0.21
106-44-5	4-Methylphenol							< 0.21
100-01-6	4-Nitroaniline							< 0.21
100-02-7	4-Nitrophenol							< 0.41
62-53-3	Aniline							< 0.42
92-87-5	Benzidine							. < 0.41
65-85-0	Benzoic acid	310,000	•••	820,000		400	400	< 1.0
100-51-6	Benzyl alcohol							< 0.21
111-91-1	Bis(2-chloroethoxy)methane					, ,	_	< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200	•••	0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran							< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
131-11-3	Dimethyl phthalate							< 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene							< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78		2,000		0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09	•••	18	•••	0.00005	0.00005	< 0.041
62-75-9	N-Nitrosodimethylamine			ļ				< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.041
87-86-5	Pentachlorophenol	3		520		0.03	0.14	< 0.084
108-95-2	Phenol	23,000	•••	61,000		100	100	< 0.21
110-86-1	Pyridine	L	<u> </u>	l				< 0.84

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2) Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-005 Client Sample ID: 113

Date Collected: 04/30/2019 10:00

Construction Worker Soil Component of Found Specific Walues for Soil Soil Component of Exposure Review Flagstion Injury					Constructi	on Worker	Soil Com	popent of	
Values for Soil Soil Exposure Not Values Included Includ			 Decidential D	Loute Specific				•	
Total Tota				•	•				
	OAGNI-	Amalian							
95-59-1 12-Dichlorobenzene 7,000 560 18,000 310 17 43 < 0.21									< 0.21
106-66-7 1.4 Dichlorobenzene			7,000	300	18,000	310	17	43	
188-69-1 2,2-saybist C-hipropopane 7,800 200,000 270 1,400 < 0,21				11.000		240	2	11	
September Sept				11,000		340		- 11	
Section			7 900		200,000		270	1.400	
1									
1.696.75 2.4-Dimethylphenol 1.600									
1211-14-2 2,4-Dinitrotoluene						_	_		
									
91-58-7 2-Chloronaphthalene 930 53,000 10,000 53,000 4 4 < 0.21 95-57-8 2-Chlorophenol 390 53,000 10,000 53,000 4 4 < 0.21 95-67-8 2-Chlorophenol 3,900 100,000 15 15 < 0.21 95-68-7 2-Methylphenol 3,900 100,000 15 15 < 0.21 887-75-5 2-Nitrophenol 887-75-5 2-Nitrophenol 887-75-5 2-Nitrophenol 887-75-5 2-Nitrophenol									
Section Sect			0.9		100		0.0007	0.0007	
91-57-6 2-Methylphenol 3,900 100,000 15 15 < 0.21			300	53,000	10.000	53,000	4	4	
Section Sect			1 330	33,000	10,000	33,000	- -	. •	
88.74-4 2-Nitrophenol			3 900		100 000		15	15	
S8-75-5 2-Nitrophenol			3,500	 	100,000				
19-94-1 3,3 - Dichlorobenzidine 1				 					_
99-09-2 3-Nitroaniline			1		280		0.007	0.033	
334-52-1 4,6-Dinitro-2-methylphenol			' '				0.007	0.055	
101-55-3 4-Bromophenyl phenyl ether				-	-				
Section									
106-47-8 4-Chloroaniline 310 820 0.7 0.7 < 0.21									
1005-72-3 4-Chlorophenyl phenyl ether			310		820		0.7	0.7	
106-44-5			- 3.0		- 020		- 0	<u></u>	
100-01-6 4-Nitrophenol									
									
Color			 						
S2-30-5 Benzidine									
Section Sect					.				
100-51-6 Benzyl alcohol			310,000	 	820,000		400	400	
111-91-1 Bis(2-chloroethoxy)methane			310,000		020,000	_			
111-44-4 Bis(2-chloroethyl)ether 0.6 0.2 75 0.66 0.0004 0.0004 < 0.21 117-81-7 Bis(2-chloroethyl)ether 46 31,000 4,100 31,000 3,600 31,000 < 1.0 85-68-7 Butyl benzyl phthalate 16,000 930 410,000 930 930 930 < 0.21 86-74-8 Carbazole 32 6,200 0.6 2.8 < 0.21 84-74-2 Di-n-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 2,300 < 0.21 117-84-0 Di-n-octyl phthalate 1,600 10,000 4,100 10,000 10,000 10,000 < 0.21 132-64-9 Dibenzofuran									
117-81-7 Bis(2-ethylhexyl)phthalate 46 31,000 4,100 31,000 3,600 31,000 < 1.0			0.6	0.2	75	0.66	0.0004	0.0004	
85-68-7 Butyl benzyl phthalate 16,000 930 410,000 930 930 930 <0.21									
Section Sect									
R4-74-2 Di-n-butyl phthalate 7,800 2,300 200,000 2,300 2,300 2,300 < 0.21									
117-84-0 Di-n-octyl phthalate 1,600 10,000 4,100 10,000 10,000 10,000 < 0.21 132-64-9 Dibenzofuran									
132-64-9 Dibenzofuran									
Ra-66-2 Diethyl phthalate 63,000 2,000 1,000,000 2,000 470 470 < 0.21			1 .,,,,,,	1.5,000	.,,,,,,,	,,,,,,,,	,	,,,,,,,,	
131-11-3			63,000	2,000	1,000.000	2,000	470	470	
118-74-1			†			_,,,,,			
R7-68-3			0.4	1	78	2.6	2	11	
77-47-4 Hexachlorocyclopentadiene 550 10 14,000 1.1 400 2,200 <0.21			1	 	·				
67-72-1 Hexachloroethane 78 2,000 0.5 2.6 < 0.21 78-59-1 Isophorone 15,600 4,600 410,000 4,600 8 8 < 0.21			550	10	14,000	1.1	400	2,200	
78-59-1 Isophorone 15,600 4,600 410,000 4,600 8 8 < 0.21									
621-64-7 N-Nitrosodi-n-propylamine 0.09 18 0.00005 <0.040									
62-75-9 N-Nitrosodimethylamine < 0.21									
86-30-6 N-Nitrosodiphenylamine 130 25,000 1 5.6 < 0.21 98-95-3 Nitrobenzene 39 92 1,000 9.4 0.1 0.1 < 0.040			 	†					
98-95-3 Nitrobenzene 39 92 1,000 9.4 0.1 0.1 < 0.040 87-86-5 Pentachlorophenol 3 520 0.03 0.14 < 0.081			130		25,000	•••	1	5.6	
87-86-5 Pentachlorophenol 3 520 0.03 0.14 < 0.081 108-95-2 Phenol 23,000 61,000 100 100 < 0.21									
108-95-2 Phenol 23,000 61,000 100 100 < 0.21									< 0.081
100 70 D 100			4						
	110-86-1	Pyridine	,,,,,,	 	,,,,,,,				< 0.81

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-006 Client Sample ID: 114 Date Collected: 04/30/2019 10:30

				Constructi	on Worker	Soil Com	ponent of	
		Residential B	Route Specific	Route Specif		Groundwat		
			for Soil	Source Special			oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.21
	1.2-Dichlorobenzene	7,000	560	18.000	310	17	43	< 0.21
95-50-1 541-73-1	1.3-Dichlorobenzene	7,000	360	18,000	- 310	17	43	< 0.21
		<u> </u>	11,000		340	2	11	< 0.21
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.21
108-60-1	2, 2'-oxybis(1-Chloropropane) 2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.21
95-95-4 88-06-2	2.4.5-1 richlorophenol	58	200	11,000	540	0.2	0.77	< 0.21
	2,4-Dichlorophenol	230		610		1	1	< 0.21
120-83-2 105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.21
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 1.0
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.040
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.040
91-58-7	2-Chloronaphthalene	0.9		180		0.0007	0.0007	< 0.21
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.21
91-57-6	2-Methylnaphthalene	1 330	33,000	10,000	33,000	*		< 0.21
91-57-6	2-Methylphenol	3,900		100,000		15	15	< 0.21
95-48-7 88-74-4	2-Nitroaniline	3,500	 	100,000				< 0.21
88-75-5	2-Nitrophenol	ł	 				· · · ·	< 0.21
91-94-1	3.3'-Dichlorobenzidine	1		280		0.007	0.033	< 0.21
99-09-2	3-Nitroaniline	 				0.007	0.055	< 0.21
534-52-1	4,6-Dinitro-2-methylphenol	1	-					< 0.40
101-55-3	4-Bromophenyl phenyl ether	 						< 0.21
59-50-7	4-Chloro-3-methylphenol		 					< 0.40
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.21
	4-Chlorophenyl phenyl ether	310		020		<u> </u>		< 0.21
106-44-5	4-Methylphenol			1				< 0.21
100-01-6	4-Nitroaniline				-			< 0.21
100-01-0	4-Nitrophenol							< 0.40
62-53-3	Aniline				7			< 0.40
92-87-5	Benzidine							< 0.40
65-85-0	Benzoic acid	310,000		820,000		400	400	< 1.0
100-51-6	Benzyl alcohol	1,						< 0.21
111-91-1	Bis(2-chloroethoxy)methane			t			~	< 0.21
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.21
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 1.0
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.21
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.21
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.21
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.21
132-64-9	Dibenzofuran	1,,,,,,	1	<u> </u>	,,	,,,,,,	Î	< 0.21
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.21
	Dimethyl phthalate	,,,,,,	_,,,,,	1	T	···	<u> </u>	< 0.21
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.21
87-68-3	Hexachlorobutadiene	1						< 0.21
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.21
67-72-1	Hexachloroethane	78		2,000		0.5	2.6	< 0.21
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.21
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.040
62-75-9	N-Nitrosodimethylamine	† ****		 	 			< 0.21
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.21
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.040
87-86-5	Pentachlorophenol	3		520		0.03	0.14	< 0.081
108-95-2	Phenol	23,000		61,000		100	100	< 0.21
110-86-1	Pyridine	1,,,,,	 	1,	 			< 0.81
T 10-00-1	It Attento					<u> </u>		

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-007 Client Sample ID: 115 Date Collected: 04/30/2019 11:00

		Γ		Constructi	on Worker	Soil Com	popent of	
		Residential R	Route Specific		ic Values for	Groundwat		
			for Soil		oil	Exposure R		
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1,2,4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.20
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20
541-73-1	1,3-Dichlorobenzene	7,000	- 300	10,000	3.0		- '-	< 0.20
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.20
108-60-1	2, 2'-oxybis(1-Chloropropane)							< 0.20
95-95-4	2,4,5-Trichlorophenol	7,800		200,000		270	1,400	< 0.20
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.20
120-83-2	2,4-Dichlorophenol	230		610		1	1	< 0.20
105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.20
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 0.97
121-14-2	2,4-Dinitrotoluene	0.9		180	•••	0.0008	0.0008	< 0.039
606-20-2	2,6-Dinitrotoluene	0.9	•••	180		0.0007	0.0007	< 0.039
91-58-7	2-Chloronaphthalene							< 0.20
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	. 4	< 0.20
91-57-6	2-Methylnaphthalene					1.0		< 0.20
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.20
88-74-4	2-Nitroaniline	_						< 0.20
88-75-5	2-Nitrophenol							< 0.20
91-94-1	3,3'-Dichlorobenzidine	1	•••	280		0.007	0.033	< 0.20
99-09-2	3-Nitroaniline							< 0.20
534-52-1	4,6-Dinitro-2-methylphenol							< 0.39
101-55-3	4-Bromophenyl phenyl ether							< 0.20
59-50-7	4-Chloro-3-methylphenol							< 0.39
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.20
7005-72-3	4-Chlorophenyl phenyl ether							< 0.20
106-44-5	4-Methylphenol							< 0.20
100-01-6	4-Nitroaniline							< 0.20
100-02-7	4-Nitrophenol							< 0.39
62-53-3	Aniline							< 0.39
92-87-5	Benzidine							< 0.39
65-85-0	Benzoic acid	310,000		820,000		400	400	< 0.97
100-51-6	Benzyl alcohol	<u> </u>						< 0.20
111-91-1	Bis(2-chloroethoxy)methane							< 0.20
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 0.97
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20
86-74-8	Carbazole	32		6,200		0.6	2.8	< 0.20
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.20
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20
132-64-9	Dibenzofuran	<u> </u>					153	< 0.20
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20
	Dimethyl phthalate		<u> </u>		l		 _	< 0.20
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.20
87-68-3	Hexachlorobutadiene	L				400		< 0.20
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20
67-72-1	Hexachloroethane	78		2,000	4 (22	0.5	2.6	< 0.20
78-59-1	Isophorone	15,600	4,600	410,000	4,600	8	8	< 0.20
621-64-7	N-Nitrosodi-n-propylamine	0.09		18		0.00005	0.00005	< 0.039
62-75-9	N-Nitrosodimethylamine	ļ	ļ			<u> </u>		< 0.20
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.20
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.039
87-86-5	Pentachlorophenol	3		520	•••	0.03	0.14	< 0.078
108-95-2	Phenol	23,000		61,000		100	100	< 0.20
110-86-1	Pyridine	<u> </u>	1		l			< 0.78

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-008
Client Sample ID: 116
Date Collected: 04/30/2019 11:30

				Constructi	on Worker	Soil Com	nonent of	
		Residential R	loute Specific		ic Values for	Groundwat		
		1	for Soil	Se Se			oute Values	
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II	
120-82-1	1.2.4-Trichlorobenzene	780	3,200	2,000	920	5	53	< 0.20
95-50-1	1,2-Dichlorobenzene	7,000	560	18,000	310	17	43	< 0.20
541-73-1	1,3-Dichlorobenzene	7,000		10,000		<u>-</u>		< 0.20
106-46-7	1,4-Dichlorobenzene		11,000		340	2	11	< 0.20
108-60-1	2, 2'-oxybis(1-Chloropropane)		21,000			_		. < 0.20
95-95-4	2,4,5-Trichlorophenol	7,800		200,000	•••	270	1,400	< 0.20
88-06-2	2,4,6-Trichlorophenol	58	200	11,000	540	0.2	0.77	< 0.20
120-83-2	2,4-Dichlorophenol	230	***	610		1	1	< 0.20
105-67-9	2,4-Dimethylphenol	1,600		41,000		9	9	< 0.20
51-28-5	2,4-Dinitrophenol	160		410		0.2	0.2	< 0.97
121-14-2	2,4-Dinitrotoluene	0.9		180		0.0008	0.0008	< 0.039
606-20-2	2,6-Dinitrotoluene	0.9		180		0.0007	0.0007	< 0.039
91-58-7	2-Chloronaphthalene							< 0.20
95-57-8	2-Chlorophenol	390	53,000	10,000	53,000	4	4	< 0.20
91-57-6	2-Methylnaphthalene	1	i					< 0.20
95-48-7	2-Methylphenol	3,900		100,000		15	15	< 0.20
88-74-4	2-Nitroaniline				·			< 0.20
88-75-5	2-Nitrophenol						·	< 0.20
91-94-1	3,3'-Dichlorobenzidine	1	•••	280		0.007	0.033	< 0.20
99-09-2	3-Nitroaniline					·		< 0.20
534-52-1	4,6-Dinitro-2-methylphenol		Ì					< 0.39
101-55-3	4-Bromophenyl phenyl ether					_		< 0.20
59-50-7	4-Chloro-3-methylphenol							< 0.39
106-47-8	4-Chloroaniline	310		820		0.7	0.7	< 0.20
7005-72-3	4-Chlorophenyl phenyl ether							< 0.20
106-44-5	4-Methylphenol							< 0.20
100-01-6	4-Nitroaniline					•		< 0.20
100-02-7	4-Nitrophenol					-		< 0.39
62-53-3	Aniline							< 0.39
92-87-5	Benzidine							< 0.39
65-85-0	Benzoic acid	310,000		820,000		400	400	< 0.97
100-51-6	Benzyl alcohol							< 0.20
111-91-1	Bis(2-chloroethoxy)methane	_						< 0.20
111-44-4	Bis(2-chloroethyl)ether	0.6	0.2	75	0.66	0.0004	0.0004	< 0.20
117-81-7	Bis(2-ethylhexyl)phthalate	46	31,000	4,100	31,000	3,600	31,000	< 0.97
85-68-7	Butyl benzyl phthalate	16,000	930	410,000	930	930	930	< 0.20
86-74-8	Carbazole	32	•••	6,200		0.6	2.8	< 0.20
84-74-2	Di-n-butyl phthalate	7,800	2,300	200,000	2,300	2,300	2,300	< 0.20
117-84-0	Di-n-octyl phthalate	1,600	10,000	4,100	10,000	10,000	10,000	< 0.20
132-64-9	Dibenzofuran							< 0.20
84-66-2	Diethyl phthalate	63,000	2,000	1,000,000	2,000	470	470	< 0.20
	Dimethyl phthalate							< 0.20
118-74-1	Hexachlorobenzene	0.4	1	78	2.6	2	11	< 0.20
87-68-3	Hexachlorobutadiene	L						< 0.20
77-47-4	Hexachlorocyclopentadiene	550	10	14,000	1.1	400	2,200	< 0.20
67-72-1	Hexachloroethane	78	•••	2,000	•••	0.5	2.6	< 0.20
78-59-1	Isophorone	15,600	4,600	410,000	4,600	. 8	. 8	< 0.20
621-64-7	N-Nitrosodi-n-propylamine	0.09	•••	18	•••	0.00005	0.00005	< 0.039
62-75-9	N-Nitrosodimethylamine			<u> </u>				< 0.20
86-30-6	N-Nitrosodiphenylamine	130		25,000		1	5.6	< 0.20
98-95-3	Nitrobenzene	39	92	1,000	9.4	0.1	0.1	< 0.039
87-86-5	Pentachlorophenol	3	•••	520		0.03	0.14	< 0.079
108-95-2	Phenol	23,000		61,000		100	100	< 0.20
110-86-1	Pyridine			L				< 0.79

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PCB)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

19041193-003 111 19041193-002 110 Laboratory ID: 19041193-001 Client Sample ID: 109 Date Collected: 04/30/2019 08:00

19041193-004

04/30/2019 09:30 04/30/2019 09:00 04/30/2019 08:30

			Constructio	uction Worker	Soil Component of	oonent of				
	Residential R.	Residential Route Specific Route Specific Values for	Route Specifi	ic Values for	Groundwater Ingestion	er Ingestion				
	Values	Values for Soil	Soil	<u> </u>	Exposure R	Exposure Route Values				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2 Aroclor 1016	ı		1	-	-	-	< 0.10	< 0.096	< 0.099	< 0.10
11104-28-2 Aroclor 1221	1	!	1			•	< 0.10	> 0.096	660'0>	< 0.10
11141-16-5 Aroclor 1232	1	-	1	1	•••	***	< 0.10	> 0.096	660'0>	< 0.10
53469-21-9 Aroclor 1242	1		-		·	•••	< 0.10	< 0.096	< 0.099	< 0.10
12672-29-6 Aroclor 1248	1	••	1	i	:	•••	< 0.10	> 0.096	< 0.099	< 0.10
11097-69-1 Aroclor 1254	1	••	1	•		••	< 0.10	> 0.096	< 0.099	< 0.10
11096-82-5 Aroclor 1260	1		-	i	-	***	< 0.10	> 0.096	< 0.099	< 0.10

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.
Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (PCB)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

19041193-008

 Laboratory ID:
 19041193-005
 19041193-006
 19041193-007

 Client Sample ID:
 113
 114
 115

 Date Collected:
 04/30/2019 10:00
 04/30/2019 11:00
 04/30/2019 11:00

04/30/2019 11:30

			Construction	action Worker	Soil Component of	ponent of				
	Residential I	Residential Route Specific Route Spe	Route Specif	ecific Values for	Groundwater Ingestion	er Ingestion				
	Values	Values for Soil	Soil	, ii	Exposure Route Values	oute Values				
CAS No. Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
12674-11-2 Aroctor 1016	1	-	1			!	< 0.098	< 0.096	< 0.093	< 0.095
11104-28-2 Aroclor 1221	1		1	•••			< 0.098	< 0.096	< 0.093	< 0.095
11141-16-5 Aroclor 1232	1		1	***			< 0.098	< 0.096	< 0.093	< 0.095
53469-21-9 Aroclor 1242	1		1			ı	< 0.098	< 0.096	< 0.093	< 0.095
12672-29-6 Aroclor 1248	1		1	i	1	ı	< 0.098	< 0.096	< 0.093	< 0.095
11097-69-1 Aroclor 1254	1	1	ı			i	< 0.098	< 0.096	< 0.093	< 0.095
11096-82-5 Aroclor 1260		-	1		1	•	< 0.098	< 0.096	< 0.093	< 0.095

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A. Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

04/30/2019 09:00 04/30/2019 09:30 19041193-004 19041193-003 111 Laboratory ID: 19041193-001 19041193-002 Client Sample ID: 109 110 Date Collected: 04/30/2019 08:00 04/30/2019 08:30

		Residential Route Sp	Residential Route Specific	Construction Worker Route Specific Values for	cific Values for	Groundwater Ingestion	ponent of er Ingestion				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
72-54-8	4,4'-DDD	3	ı	520	!	16	80	< 0.0020	< 0.0019	< 0.0020	< 0.0020
72-55-9	4,4'-DDE	2		370	1	54	270	< 0.0020	< 0.0019	< 0.0020	< 0.0020
50-29-3	4,4'-DDT	2	•••	100	2,100	32	091	< 0.0020	< 0.0019	< 0.0020	< 0.0020
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020	< 0.0019	< 0.0020	< 0.0020
319-84-6	alpha-BHC	0.1	8.0	20	2.1	0.0005	0.003	< 0.0020	< 0.0019	< 0.0020	< 0.0020
5103-71-9	alpha-Chlordane							< 0.0020	< 0.0019	< 0.0020	< 0.0020
319-85-7	beta-BHC							< 0.0020	< 0.0019	< 0.0020	< 0.0020
57-74-9	Chlordane	1.8	72	100	22	10	84	< 0.020	< 0.019	< 0.020	< 0.020
319-86-8	delta-BHC							< 0.0020	< 0.0019	< 0.0020	< 0.0020
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020	< 0.0019	< 0.0020	< 0.0020
8-86-656	Endosulfan I	470	-	1,200		18	06	< 0.0020	6100'0>	< 0.0020	< 0.0020
33213-65-9	Endosulfan II	470		1,200	ı	18	06	< 0.0020	< 0.0019	< 0.0020	< 0.0020
1031-07-8	Endosulfan sulfate							< 0.0020	< 0.0019	< 0.0020	< 0.0020
72-20-8	Endrin	23	***	61	•	1	\$	< 0.0020	< 0.0019	< 0.0020	< 0.0020
7421-93-4	Endrin aldehyde							< 0.0020	< 0.0019	< 0.0020	< 0.0020
53494-70-5	53494-70-5 Endrin ketone							< 0.0020	< 0.0019	< 0.0020	< 0.0020
6-68-85	gamma-BHC	0.5	-	96	•	0.009	0.047	< 0.0020	< 0.0019	< 0.0020	< 0.0020
5566-34-7	gamma-Chlordane							< 0.0020	< 0.0019	< 0.0020	< 0.0020
76-44-8	Heptachlor	0.1	0.1	28	91	23	011	< 0.0020	< 0.0019	< 0.0020	< 0.0020
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020	< 0.0019	< 0.0020	< 0.0020
72-43-5	Methoxychlor	390		1,000		160	084	< 0.0020	< 0.0019	< 0.0020	< 0.0020
8001-35-2	Toxaphene	9.0	68	110	240	31	150	< 0.042	< 0.040	< 0.041	< 0.041

All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

04/30/2019 11:30 19041193-008 04/30/2019 11:00 19041193-007 04/30/2019 10:30 19041193-006 114 Client Sample ID: 19041193-005
Client Sample ID: 113
Date Collected: 04/30/2019 10:00

				Complete School World	and Salva	Soil Come	Sonone				
		Residential Route Specific	oute Specific	Route Specific Values for	oValues for	Groundwater/Ingestic	er Ingestion				
		Values for, Soil	for, Soil	Soil	ii)	Exposure Route Values	outeValues				
CAS No.	Analyte	Ingestion	Inhalation	Ingestion	Inhalation	Class I	Class II				
72-54-8	4,4'-DDD	3	i	520	1	16	80	< 0.0020	< 0.0019	< 0.0019	< 0.0019
72-55-9	4,4'-DDE	2	1	370	••	54	270	< 0.0020	< 0.0019	< 0.0019	< 0.0019
50-29-3	4,4'-DDT	7		100	2,100	32	160	< 0.0020	< 0.0019	< 0.0019	< 0.0019
309-00-2	Aldrin	0.04	3	6.1	9.3	0.5	2.5	< 0.0020	< 0.0019	< 0.0019	< 0.0019
319-84-6	alpha-BHC	0.1	8.0	20	2.1	0.0005	0.003	< 0.0020	< 0.0019	< 0.0019	< 0.0019
5103-71-9	alpha-Chlordane							< 0.0020	< 0.0019	< 0.0019	< 0.0019
319-85-7	beta-BHC							< 0.0020	< 0.0019	< 0.0019	< 0.0019
57-74-9	Chlordane	1.8	7.5	100	22	10	48	< 0.020	< 0.019	< 0.019	< 0.019
319-86-8	delta-BHC							< 0.0020	< 0.0019	< 0.0019	< 0.0019
60-57-1	Dieldrin	0.04	1	7.8	3.1	0.004	0.02	< 0.0020	< 0.0019	< 0.0019	< 0.0019
8-86-656	Endosulfan I	470	***	1,200	i	18	06	< 0.0020	< 0.0019	< 0.0019	< 0.0019
33213-65-9	Endosulfan II	470	•••	1,200		18	06	< 0.0020	< 0.0019	< 0.0019	< 0.0019
1031-07-8	Endosulfan sulfate							< 0.0020	< 0.0019	< 0.0019	< 0.0019
72-20-8	Endrin	23	-	19		1	8	< 0.0020	< 0.0019	< 0.0019	< 0.0019
7421-93-4	Endrin aldehyde							< 0.0020	< 0.0019	< 0.0019	< 0.0019
53494-70-5	Endrin ketone							< 0.0020	< 0.0019	< 0.0019	< 0.0019
58-89-9	gamma-BHC	0.5	***	96	!	600.0	0.047	< 0.0020	< 0.0019	< 0.0019	< 0.0019
5566-34-7	gamma-Chlordane							< 0.0020	< 0.0019	< 0.0019	< 0.0019
76-44-8	Heptachlor	0.1	0.1	28	91	23	110	< 0.0020	< 0.0019	< 0.0019	< 0.0019
1024-57-3	Heptachlor epoxide	0.07	5	2.7	13	0.7	3.3	< 0.0020	< 0.0019	< 0.0019	< 0.0019
72-43-5	Methoxychlor	390		1,000		160	082	< 0.0020	< 0.0019	< 0.0019	< 0.0019
8001-35-2	Toxaphene	9.0	68	110	240	31	051	< 0.040	< 0.040	< 0.038	< 0.039

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A. Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (INORG)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

19041193-003 111 19041193-002 110 19041193-001 109 04/30/2019 08:00 Laboratory ID : Client Sample ID : Date Collected :

04/30/2019 09:00 04/30/2019 08:30

				14000	< 2.3	0.6	94	0.99	< 0.57	83000	34 /	16	27	< 0.31	23000	16	31000	009	< 0.022	51	3600	<1.1	< 1.1	170	<1.1	33	64
				13000	< 2.1	7.1	110	0.95	< 0.52	64000	30	91	40	< 0.30	26000	18	27000	550	< 0.022	48	3200	< 1.0	< 1.0	160	< 1.0	29	61
				11000	< 2.1	7.7	89	0.73	< 0.53	00069	23	91	35	< 0.32	23000	17	33000	200	< 0.022	42	2400	< 1.1	<1.1	160	<1.1	26	55
Soil Component of	er Ingestion	oute Values	Class II																								
Soil Com	Groundwater Ingestion	Exposure Route Values	Class I																								
Construction Worker	Route Specific Values for	Soil	Inhalation			25,000	870,000	44,000	000'65		069		•••	***	•••			8,700	0.1	440,000		:			•		!
Constructi	Route Specif	Sc	Ingestion		82	19	14,000	410	200		4,100	12,000	8,200	4,100		002	730,000	4,100	19	4,100		1,000	1,000	-	160	1,400	61,000
	oute Specific	Values for Soil	Inhalation			150	000'069	1,300	008'1	•••	270	ı	I	***		***	••	000'69	01	13,000			***				
	Residential Route Spe-	Values	Ingestion		31	13.0/11.3	5,500	160	8.	•••	230	4,700	2,900	009'1		400	325,000	009'1	23	1,600		390	390	•••	6.3	055	23,000
			Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Cyanide	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			CAS No.	7429-90-5	7440-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-70-2 Calcium	7440-47-3	7440-48-4	7440-50-8 Copper	57-12-5	7439-89-6 Iron	7439-92-1	7439-95-4	7439-96-5	7439-97-6	7440-02-0 Nickel	7440-09-7	7782-49-2	7440-22-4	7440-23-5	7440-28-0	7440-62-2 Vanadium	7440-66-6

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (INORG)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

19041193-005 19041193-006 113 114 04/30/2019 10:00 04/30/2019 10:30 19041193-004 112 04/30/2019 09:30 Laboratory ID: Client Sample ID:

Date Collected:

			13000	< 2.0	11	68	0.94	< 0.50	00022	31	61	31	< 0.30	23000	91	31000	280	< 0.020	47	3500	< 1.0	< 1.0	170	< 1.0	31	19
			13000	< 2.1	8.7	06	0.93	< 0.51	80000	31	15	28	< 0.31	23000	15	30000	280	< 0.022	44	3100	< 1.0	< 1.0	170	< 1.0	31	09
			13000	< 2.2	5.3	73	0.78	< 0.55	00069	27	16	29	< 0.32	23000	14	32000	550	< 0.022	40	3100	< 1.1	<1.1	160	<1.1	27	55
onent of	er Ingestion	Class II																								
Soil Component of	Groundwater Ingestion	Class																								
Construction Worker	Route Specific Values for	Inhalation		•••	25,000	870,000	44,000	29,000		069	i	•••	-	-			8,700	0.1	440,000	-	•		-	-	-	ł
Constructi	Route Specif	Ingestion	0	82	19	14,000	410	200	1	4,100	12,000	8,200	4,100		007	730,000	4,100	61	4,100	·	1,000	1,000	!	160	1,400	61.000
	oute Specific	Inhalation		•	750	000'069	1,300	1,800	1	270	1	 :	:	i	:	1	000'69	10	13,000		•••	ï		***	ı	:
	Residential Route Sp	Ingestion Inha	0	31	13.0/11.3	5,500	160	8/	i	230	4,700	2,900	1,600		400	325,000	1,600	23	1,600		390	390		6.3	550	23,000
		Analyte	Aluminum	Antimony	Arsenic	3arium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Cyanide	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
		CAS No.	7429-90-5 Aluminum	7440-36-0	7440-38-2	7440-39-3 Barium	7440-41-7 E	7440-43-9 Cadmium	7440-70-2 Calcium	7440-47-3 (7440-48-4 Cobalt	7440-50-8 Copper	57-12-5	7439-89-6 Iron	7439-92-1	7439-95-4	7439-96-5 Manganese	7439-97-6 Mercury	7440-02-0 Nickel	7440-09-7 Potassium	7782-49-2 Selenium	7440-22-4	7440-23-5 Sodium	7440-28-0	7440-62-2	7440-66-6 Zinc

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective. Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Residential Report (INORG)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANAL YSIS

19041193-007 115 Laboratory ID : Client Sample ID :

19041193-008 116 04/30/2019 11:30 04/30/2019 11:00 Date Collected:

			11000	< 2.1	11	93	0.91	< 0.53	78000	29	17	38	< 0.30	29000	18	29000	009	< 0.021	44	3800	<1.1	< 1.1	230	<1.1	
			12000	< 2.1	7.7	110	0.93	< 0.53	87000	29	14	36	< 0.30	33000	17	35000	620	< 0.018	42	3700	<1.1	<1.1	220	< 1.1	
ponent of	er Ingestion outeValues	Class II																							
Soil Component of	Groundwater/Ingestion ExposureRoute/Values	Class I																							
n Worker	Netnestor 1	Inhalation		•••	25,000	870,000	44,000	59,000		069	ï	ı		-	i		8,700	0.1	440,000				•••		
Construction Worker	Route Specific Values for Soft	Ingestion		82	61	14,000	410	200	-	4,100	12,000	8,200	4,100		700	730,000	4,100	61	4,100	***	1,000	1,000	•	160	
	Idential Route Specific	Inhalation	`		750	000'069	1,300	1,800	-	270	:	ı		-	1		000'69	10	13,000		-			•••	
	Residential Route Si	Ingestion		31	13.0/11.3	5,500	160	28		230	4,700	2,900	1,600		400	325,000	1,600	23	1,600		390	390		6.3	~ * *
		Analyte	Aluminum	Antimony	nic	mn	/llium	mium	ium	Chromium	alt	per	nide		_	nesium	ganese	cury	cel	Potassium	nium	er	ium	llium	
		CAS No.	7429-90-5 Alun	7440-36-0 Antii	7440-38-2 Arsenic	7440-39-3 Barium	7440-41-7 Beryllium	7440-43-9 Cadmium	7440-70-2 Calcium	7440-47-3 Chro	7440-48-4 Cobalt	7440-50-8 Copper	57-12-5 Cyanide	7439-89-6 Iron	7439-92-1 Lead	7439-95-4 Magnesium	7439-96-5 Manganese	7439-97-6 Mercury	7440-02-0 Nickel	7440-09-7 Pota	7782-49-2 Selenium	7440-22-4 Silver	7440-23-5 Sodium	7440-28-0 Thallium	007 0000

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.
Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

19041193-004 19041193-003 19041193-002 Laboratory ID: 19041193-001 Client Sample ID: 109 Date Collected: 04/30/2019 08:00 19041193-001

04/30/2019 09:30 04/30/2019 09:00 04/30/2019 08:30

			Constructi	ction Worker	Soil Component of	ponent of					
	Residentiz	Residential Route Specific Route Specific Values for	Route Specif	ic Values for	Groundwater Ingestion	er Ingestion					
	Valt	Values for Soil	Soil	il	Exposure Route Values	oute Values					
CAS No. Analyte	rte Ingestion	n Inhalation	Ingestion	Inhalation	Class I	Class II					
7429-90-5 Aluminum							< 0.10	< 0.10	< 0.10	< 0.10	
7440-36-0 Antimony					900.0	0.024	< 0.015	< 0.015	< 0.015	< 0.015	
7440-38-2 Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010	
7440-39-3 Barium					2.0	2.0	0.54	0.44	0.34	0.59	
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
7440-43-9 Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
7440-47-3 Chromium					0.1	0.1	< 0.010	< 0.010	< 0.010	< 0.010	
7440-48-4 Cobalt					1.0	1.0	0.037	0.020	0.023	0.039	
7440-50-8 Copper					0.65	0.65	< 0.10	< 0.10	< 0.10	< 0.10	
7439-89-6 Iron					5.0	5.0	< 0.25	< 0.25	< 0.25	< 0.25	
7439-92-1 Lead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
7439-96-5 Manganese					0.15	10.0	19;6	(11/99/93:0)	337.	(11,11,11,11,11,11,11,11,11,11,11,11,11,	
7439-97-6 Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020	
7440-02-0 Nickel					0.1	2.0	220.0	0.053	0.055	0.082	
7782-49-2 Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010	
7440-22-4 Silver					0.05	i	< 0.010	< 0.010	< 0.010	< 0.010	
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010	
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	< 0.050	< 0.050	

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Construction Worker Objectives from 35 IAC Part 742, Appendix B Table B.

19041193-007 19041193-006 Laboratory ID: 19041193-005 Client Sample ID: 113 Date Collected: 04/30/2019 10:00 19041193-005 113

19041193-008

04/30/2019 11:30 04/30/2019 11:00 04/30/2019 10:30

	Residential	Residential Route Specific	Constructi Route Specif	Construction Worker oute Specific Values for	Soil Component of Groundwater, Ingestion	onent of r,Ingestion				
	Values	Values for Soil	S	Sofi	Exposure Route Values	oute.Values				
CAS No. Analyte	_	Ingestion I Inhalation	Ingestion	■ Inhalation	Class I	Class II				
7429-90-5 Aluminum							< 0.10	< 0.10	< 0.10	0.12
7440-36-0 Antimony					900.0	0.024	< 0.015	< 0.015	< 0.015	< 0.015
7440-38-2 Arsenic					0.05	0.2	< 0.010	< 0.010	< 0.010	< 0.010
7440-39-3 Barium					2.0	2.0	0.41	05.0	0.38	0.31
7440-41-7 Beryllium					0.004	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-43-9 Cadmium					0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-47-3 Chromium					0.1	1.0	< 0.010	< 0.010	< 0.010	< 0.010
7440-48-4 Cobalt					1.0	1.0	0.020	0.034	0.029	0.028
7440-50-8 Copper					0.65	. 59.0	< 0.10	< 0.10	< 0.10	< 0.10
7439-89-6 Iron					5.0	5.0	< 0.25	< 0.25	< 0.25	< 0.25
7439-92-1 Lead					0.0075	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7439-96-5 Manganese					0.15	10.0	3.6	3.8	3.5	3.6
7439-97-6 Mercury					0.002	0.01	< 0.00020	< 0.00020	< 0.00020	< 0.00020
7440-02-0 Nickel					0.1	2.0	0.063	0.075	0.079	090'0
7782-49-2 Selenium					0.05	0.05	< 0.010	< 0.010	< 0.010	< 0.010
7440-22-4 Silver					0.05	-	< 0.010	< 0.010	< 0.010	< 0.010
7440-28-0 Thallium					0.002	0.02	< 0.0050	< 0.0050	< 0.0050	< 0.0050
7440-62-2 Vanadium					0.049	0.1	< 0.010	< 0.010	< 0.010	< 0.010
7440-66-6 Zinc					5.0	10	< 0.050	< 0.050	< 0.050	< 0.050

All units are mg/L unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Bolded/Shaded values have detected results exceeding the lowest Tier I remediation objective.

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANAL YSIS

Laboratory ID: 19041125-vv..
Client Sample ID: 115
Date Collected: 04/30/2019 11:00
pH = 7.7

	Residential I	Residential Route Specific Values for Soil	pH Specific Soi Groundwater Inge	pH Specific Soil Component of Groundwater Ingestion Route Values	
	Ingestion	Inhalation	Class I	Class II	
NORG Analyte		pH Ran	pH Range 7.25 to 7.74		
Aluminum					12000
Antimony	31	i	\$	20	<2.1
Arsenic	13.0/11.3	750	30	120	1.1
Barium	5,500	000'069	1,800	1,800	110
Beryllium	160	1,300	1,000	130,000	0.93
Cadmium	78	1,800	6\$	065	< 0.53
Calcium	•••	•••			87000
Chromium	230	270	32	No Data	29
Cobalt	4,700		See TCLP/SPLP	See TCLP/SPLP	14
Copper	2,900		330,000	330,000	36
Cyanide	1,600	•••	40	120	< 0.30
Iron		•••	See TCLP/SPLP	See TCLP/SPLP	33000
Lead	400		101	1,420	11
Magnesium	325,000				35000
Manganese	1,600	69,000 / 8,700*	See TCLP/SPLP	See TCLP/SPLP	620
Mercury	23	10/01	6.4	32	< 0.018
Nickel	1,600	13,000	200	14,000	42
Potassium					3700
Selenium	390		3.3	3.3	< 1.1
Silver	390		39		<1.1
Sodium	•••				220
Thallium	6.3	•••	3.4	34	< 1.1
Vanadium	550	••	086	See TCLP/SPLP	31
Zinc	23,000	i	16,000	32,000	19

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective. Chromium Class I / II objectives based on hexavalent chromium.

• - Construction Worker Inhalation Objective from Appendix B, Table B.

TACO Tier I pH Specific Soil Remediation Objectives - Supplemental Residential Report

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANAL YSIS

04/30/2019 10:00 pH = 8 19041193-005 113 04/30/2019 09:30 19041193-004 04/30/2019 09:00 19041193-003 04/30/2019 08:30 19041193-002 04/30/2019 08:00 19041193-001 109 Date Collected: Laboratory ID : Client Sample ID :

8 = Hd pH = 7.93pH = 8.088 = Hd

Residential Route Specific PH Specific Soil Component of Groundwater Ingestion Route Values	Ingestion Inhalation Class I Class II	pH Range 7.75 to 8.24		31 5 20	13.0/11.3 750 31 120	5,500 690,000 2,100 2,100	000	78 1,800 430 4,300		230 270 28 No Data	4,700 See TCLP/SPLP See TCLP/SPLP	H	1,600 40 120	See TCLP/SPLP See TCLP/SPLP	┖	325,000 325,000	1,600 69,000 / 8,700* See TCLP/SPLP See TCLP/SPLP		1,600 13,000 3,800 76,000	***	390 2.4 2.4	390 110	•••	6.3 3.8 38	550 980 See TCLP/SPLP
			11000 13000	<2.1 <2.1	7.7	95 110	0.73 0.95	< 0.53 < 0.52	69000 64000	23	91 91		< 0.32 < 0.30	23000 26000	17 18	33000 27000	800 550	< 0.022 < 0.022		2400 3200	<1.1 <1.0	<1.1 <1.0	091 190	<1.1 < 1.0	26 29
			14000	.1 <2.3	0.6	0 94	66'0 5	52 < 0.57	00 83000		61	27	30 <0.31	00 23000	91	31000	009 0	< 0.022		3600	.0 <1.1	.0 <1.1	0 170	.0 <1.1	33
			13000	< 2.2	5.3	73	0.78	< 0.55	00069	27	16	29	< 0.32	23000	14	32000	550	< 0.022	40	3100	< 1.1	< 1.1	160	<1.1	27
			13000	< 2.1	8.7	06	0.93	< 0.51	00008	31	\$1	28	< 0.31	23000	\$1	30000	085	< 0.022	44	3100	< 1.0	< 1.0	170	< 1.0	31

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective. Chromium Class I / II objectives based on hexavalent chromium.

• - Construction Worker Inhalation Objective from Appendix B, Table B.

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANAL YSIS

19041193-008 19041193-006 114 Laboratory ID : Client Sample ID :

04/30/2019 11:30 Date Collected: 04/30/2019 10:30 pH = 8.03

pH = 7.86

																									Γ	Γ
			11000	< 2.1	11	66	0.91	< 0.53	78000	29	11	38	< 0.30	29000	18	29000	009	< 0.021	44	3800	< 1.1	<1.1	230	<1.1	56	77
			13000	< 2.0	11	68	0.94	< 0.50	77000	31	61	31	< 0.30	23000	16	31000	280	< 0.020	47	3500	< 1.0	< 1.0	170	< 1.0	31	7.1
Component of tion Route Values	Class II			20	120	2,100	1,000,000	4,300		No Data	See TCLP/SPLP	330,000	120	See TCLP/SPLP	1,420		See TCLP/SPLP	40	76,000		2.4			38	See TCLP/SPLP	110,000
pH Specific Soil Component of Groundwater Ingestion Route Values	Class I	pH Range 7.75 to 8.24		\$	31	2,100	8,000	430		28	See TCLP/SPLP	330,000	40	See TCLP/SPLP	107		See TCLP/SPLP	8.0	3,800		2.4	110		3.8	086	000 63
Residential Route Specific Values for Soil	Inhalation	pH Rang		i	750	000'069	1,300	1.800		270	:	:	•••		••	••	*0018 / 00069	10/01	13,000	***	•••	:	•••	:	;	
Residential F	Ingestion			31	13.0/11.3	5,500	160	78		230	4,700	2,900	1,600		400	325,000	1,600	23	1,600	••	390	390	:	6.3	550	22,000
		NORG Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Cyanide	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	7:20
		INORG																								

The actual laboratory determined pH values are listed and used for reference purposes.

NDA - No Data Available for this pH range.

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix B Table A.

Class I / II objectives based on 35 IAC Part 742, Appendix B Tables C & D.

Bolded/Shaded values exceed the lowest pH specific remediation objective. Chromium Class 1/ II objectives based on hexavalent chromium.

• - Construction Worker Inhalation Objective from Appendix B, Table B.

TACO Tier I Soil Remediation Objectives - Supplemental Report (Background)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

04/30/2019 10:30 19041193-006 04/30/2019 10:00 19041193-005 04/30/2019 09:30 19041193-004 04/30/2019 09:00 19041193-003 04/30/2019 08:30 19041193-002 04/30/2019 08:00 19041193-001 109 Laboratory ID: Client Sample ID: Date Collected:

Concentration of Chemicals in Background Soits

PNA

< 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 0.0400.0400.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.50 770001 31 < 0.30 16 1310001 < 0.020 3500 < 2.0 ■0.94 0.1 > 1170 0.15 31 580 47 8 9 < 0.31 < 0.040 00008 0.0400.0400.0400.040 0.0400.0400.0400.040 ₽30000 3100 < 0.040 < 0.040 < 0.040 < 0.040 < 0.022 31 **1**0.931 31 15 28 <u>~ 1.0</u> 0. V 170 < 2.1 < 0.51 8.7 280 ೫ 69000 27 16 < 0.32 113000 73 **E**0:78 32000 < 0.022 3100 < 0.041 < 0.041 < 0.041 <0.04 <0.04 1 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 2.2 < 0.55 29 1601 27 550 5.3 55 < 0.31 < 0.57 830001 34 119 31000 < 0.041 < 0.041 0.99 < 0.022 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 181 3600 170 33 < 2.3 දි <u>-</u> 9.0 8 64 <0.022 48 3200 <1.0 < 0.52 64000 30 16 0.95 < 0.30 26000 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 27000 < 0.040 < 0.040 < 0.040 < 0.040 1091 729 < 2.1 550 61 2400 < 0.32 33000 0.0410.0410.0410.041 < 0.041 < 0.041 < 0.041 < 0.041 **6**000691 < 0.041 < 0.041 < 0.041 < 0.041 < 0.041 <0.041 <0.041 0.73 35 < 0.022 42 160 < 2.1 23 16 26 Š <u>.</u> S Outside MSA 0.50 20.9 0.37 0.50 5,525 13.0 0.98 0.70 0.84 0.04 0.51 0.99 9,200 122 0.56 0.50 12.0 25.0 60.2 0.04 0.15 8.9 0.03 0.63 Within MSA 15,900 9,500 9,300 16.2 8.9 36.0 4,820 0.48 0.59 0.55 0.49 64 0.42 0 4 0 E 9.61 25.2 0.07 0.18 9. 0.20 9.0 636 0.06 0.51 2.5 4 Cityof Chicago 0.86 0.03 6.0 0.20 0.10 89.0 Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(k)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benz(a)anthracene Analyte Acenaphthylene Benzo(a)pyrene Acenaphthene Phenanthrene Fluoranthene Naphthalene Magnesium Manganese Aluminum Chromium Beryllium Vanadium Antimony Potassium Selenium Fluorene Cadmium Mercury **Fhallium** Chrysene Arsenic Calcium Cyanide Sodium Barium Copper Pyrene Cobalt Nickel Silver 먑

INORG

MSA - Metropolian Statistical Area All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table G and Table H. Bolded/Shaded values exceed the within MSA background level.

TACO Tier I Soil Remediation Objectives - Supplemental Report (Background)

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-007 19041193-008 Client Sample ID: 115 116 Date Collected: 04/30/2019 11:00 04/30/2019 11:30 19041193-008 116

City of
Chicago
0.09
0.03
Ξ
1.3
1.5
0.68
0.99
1.2
0.20
2.7
0.10
98.0
0.04
1.3
1.9

MSA - Metropolitan Statistical Area All units are mg/Kg unless otherwise noted. Based on 35 IAC Part 742, Appendix A Table G and Table H. Bolded/Shaded values exceed the within MSA background level.

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID:

19041193-001

19041193-002

Client Sample ID : Date Collected :

109 04/30/2019 08:00 110 04/30/2019 08:30

Soil Saturation Limits for Chemicals With Melting Point < 30°C Soil Component of **Outdoor Inhalation Groundwater Ingestion Exposure Route Value Exposure Route** CAS No. C_{sat} (mg/Kg) Analyte C_{sat} (mg/Kg) VOC 67-64-1 100,000 200,000 < 0.12 < 0.13 Acetone 71-43-2 Benzene 800 580 < 0.0082 < 0.0089 2,000 < 0.0082 < 0.0089 75-27-4 Bromodichloromethane 2,800 2,000 1.200 < 0.0082 < 0.0089 75-25-2 Bromoform 74-83-9 Bromomethane 3,100 3,600 < 0.016 < 0.018 45,000 < 0.12 < 0.13 25,000 78-93-3 2-Butanone Carbon disulfide 850 520 < 0.082 < 0.089 75-15-0 1,200 560 < 0.0082 < 0.0089 56-23-5 Carbon tetrachloride < 0.0089 290 < 0.0082 108-90-7 Chlorobenzene 620 < 0.0089 67-66-3 3,400 2,500 < 0.0082 Chloroform 124-48-1 Dibromochloromethane 1,400 890 < 0.0082 < 0.0089 < 0.0089 75-34-3 1,1-Dichloroethane 1,700 1,400 < 0.0082 < 0.0089 107-06-2 1,900 2,100 < 0.0082 1,2-Dichloroethane 75-35-4 1,1-Dichloroethene 1,400 910 < 0.0082 < 0.0089 < 0.0082 < 0.0089 1,300 1,000 156-59-2 cis-1,2-Dichloroethene trans-1,2-Dichloroethene 3,000 2,100 < 0.0082 < 0.0089 156-60-5 78-87-5 1,2-Dichloropropane 1,200 870 < 0.0082 < 0.0089 850 < 0.0033 < 0.0036 1,000 10061-01-5 cis-1,3-Dichloropropene < 0.0036 trans-1,3-Dichloropropene 1,000 850 < 0.0033 10061-02-6 100-41-4 Ethylbenzene 350 150 < 0.0082 < 0.0089 < 0.016 < 0.018 75-09-2 2,500 3,000 Methylene chloride < 0.0089 1634-04-4 Methyl tert-butyl ether 8,400 11,000 < 0.0082 100-42-5 630 260 < 0.0082 < 0.0089 Styrene < 0.0089 127-18-4 Tetrachloroethene 800 310 < 0.0082 < 0.0089 108-88-3 580 290 < 0.0082 Toluene 71-55-6 1,1,1-Trichloroethane 1,300 670 < 0.0082 < 0.0089 < 0.0089 1,300 < 0.0082 79-00-5 1,800 1,1,2-Trichloroethane 79-01-6 Trichloroethene 1,200 650 < 0.0082 < 0.0089 < 0.0089 75-01-4 Vinyl chloride 2,600 2,900 < 0.0082 Xylenes, Total 280 110 < 0.025 < 0.027 1330-20-7 < 0.20 SVOC 120-82-1 1,2,4-Trichlorobenzene 340 120 < 0.21 < 0.20 1,2-Dichlorobenzene 560 210 < 0.21 95-50-1 < 0.20 105-67-9 10,000 4,700 < 0.21 2,4-Dimethylphenol < 0.20 95-57-8 2-Chlorophenol 10,000 7,100 < 0.21 111-44-4 Bis(2-chloroethyl)ether 3,000 3.900 < 0.21 < 0.20 68 < 1.0 < 1.0 117-81-7 Bis(2-ethylhexyl)phthalate 200 < 0.20 Butyl benzyl phthalate 1,000 340 < 0.21 85-68-7 < 0.20 84-74-2 Di-n-butyl phthalate 2,600 880 < 0.21 < 0.20 5.2 < 0.21 Di-n-octyl phthalate 117-84-0 16 84-66-2 Diethyl phthalate 2,200 920 < 0.21 < 0.20 < 0.20 77-47-4 Hexachlorocyclopentadiene 130 44 < 0.21 78-59-1 3,000 3,000 < 0.21 < 0.20 Isophorone N-Nitrosodi-n-propylamine < 0.041 < 0.040 621-64-7 1,900 2,300

710

3.1

590

N/A

All units are mg/Kg unless otherwise noted.

Based on 35 IAC Part 742, Appendix A Table A.

Nitrobenzene

Метсигу

98-95-3

INORG 7439-97-6

< 0.040

< 0.022

< 0.041

< 0.022

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-003 19041193-004 Client Sample ID: 111 112 Date Collected: 04/30/2019 09:00 04/30/2019 09:30

				ts for Chemicals With oint < 30°C		
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route		
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
VOC	67-64-1	Acetone	100,000	200,000	< 0.092	< 0.10
	71-43-2	Benzene	800	580	< 0.0061	< 0.0066
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.0061	< 0.0066
	75-25-2	Bromoform	2,000	1,200	< 0.0061	< 0.0066
	74-83-9	Bromomethane	3,100	3,600	< 0.012	< 0.013
	78-93-3	2-Butanone	25,000	45,000	< 0.092	< 0.10
	75-15-0	Carbon disulfide	850	520	< 0.061	< 0.066
	56-23-5	Carbon tetrachloride	1,200	560	< 0.0061	< 0.0066
	108-90-7	Chlorobenzene	620	290	< 0.0061	< 0.0066
	67-66-3	Chloroform	3,400	2,500	< 0.0061	< 0.0066
	124-48-1	Dibromochloromethane	1,400	890	< 0.0061	< 0.0066
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.0061	< 0.0066
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.0061	< 0.0066
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.0061	< 0.0066
	156-59-2	cis-1,2-Dichloroethene	1,300	1,000	< 0.0061	< 0.0066
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.0061	< 0.0066
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.0061	< 0.0066
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0024	< 0.0027
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0024	< 0.0027
	100-41-4	Ethylbenzene	350	150	< 0.0061	< 0.0066
	75-09-2	Methylene chloride	2,500	3,000	< 0.012	< 0.013
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.0061	< 0.0066
	100-42-5	Styrene	630	260	< 0.0061	< 0.0066
	127-18-4	Tetrachloroethene	800	310	< 0.0061	< 0.0066
	108-88-3	Toluene	580	290	< 0.0061	< 0.0066
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.0061	< 0.0066
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.0061	< 0.0066
	79-01-6	Trichloroethene	1,200	650	< 0.0061	< 0.0066
	75-01-4	Vinyl chloride	2,600	2,900	< 0.0061	< 0.0066
	1330-20-7	Xylenes, Total	280	110	< 0.018	< 0.020
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.041	< 0.041
	98-95-3	Nitrobenzene	710	590	< 0.041	< 0.041
INORG	7439-97-6	Mercury	3.1	N/A	< 0.022	< 0.022

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-005 19041193-006 Client Sample ID: 113 114 Date Collected: 04/30/2019 10:00 04/30/2019 10:30

٠				ts for Chemicals With bint < 30°C		
			Outdoor Inhalation Exposure Route Value	Soil Component of Groundwater Ingestion Exposure Route		
	CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
VOC	67-64-1	Acetone	100,000	200,000	< 0.22	< 0.095
	71-43-2	Benzene	800	580	< 0.014	< 0.0064
	75-27-4	Bromodichloromethane	2,800	2,000	< 0.014	< 0.0064
	75-25-2	Bromoform	2,000	1,200	< 0.014	< 0.0064
	74-83-9	Bromomethane	3,100	3,600	< 0.029	< 0.013
	78-93-3	2-Butanone	25,000	45,000	< 0.22	< 0.095
	75-15-0	Carbon disulfide	850	520	< 0.14	< 0.064
	56-23-5	Carbon tetrachloride	1,200	560	< 0.014	< 0.0064
	108-90-7	Chlorobenzene	620	290	< 0.014	< 0.0064
	67-66-3	Chloroform	3,400	2,500	< 0.014	< 0.0064
	124-48-1	Dibromochloromethane	1,400	890	< 0.014	< 0.0064
	75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.014	< 0.0064
	107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.014	< 0.0064
	75-35-4	1,1-Dichloroethene	1,400	910	< 0.014	< 0.0064
	156-59-2	cis-1.2-Dichloroethene	1,300	1,000	< 0.014	< 0.0064
	156-60-5	trans-1,2-Dichloroethene	3,000	2,100	< 0.014	< 0.0064
	78-87-5	1,2-Dichloropropane	1,200	870	< 0.014	< 0.0064
	10061-01-5	cis-1,3-Dichloropropene	1,000	850	< 0.0058	< 0.0025
	10061-02-6	trans-1,3-Dichloropropene	1,000	850	< 0.0058	< 0.0025
	100-41-4	Ethylbenzene	350	150	< 0.014	< 0.0064
	75-09-2	Methylene chloride	2,500	3,000	< 0.029	< 0.013
	1634-04-4	Methyl tert-butyl ether	8,400	11,000	< 0.014	< 0.0064
	100-42-5	Styrene	630	260	< 0.014	< 0.0064
	127-18-4	Tetrachloroethene	800	310	< 0.014	< 0.0064
	108-88-3	Toluene	580	290	< 0.014	< 0.0064
	71-55-6	1,1,1-Trichloroethane	1,300	670	< 0.014	< 0.0064
	79-00-5	1,1,2-Trichloroethane	1,800	1,300	< 0.014	< 0.0064
	79-01-6	Trichloroethene	1,200	650	< 0.014	< 0.0064
	75-01-4	Vinyl chloride	2,600	2,900	< 0.014	< 0.0064
	1330-20-7	Xylenes, Total	280	110	< 0.043	< 0.019
SVOC	120-82-1	1,2,4-Trichlorobenzene	340	120	< 0.21	< 0.21
	95-50-1	1,2-Dichlorobenzene	560	210	< 0.21	< 0.21
	105-67-9	2,4-Dimethylphenol	10,000	4,700	< 0.21	< 0.21
	95-57-8	2-Chlorophenol	10,000	7,100	< 0.21	< 0.21
	111-44-4	Bis(2-chloroethyl)ether	3,000	3,900	< 0.21	< 0.21
	117-81-7	Bis(2-ethylhexyl)phthalate	200	68	< 1.0	< 1.0
	85-68-7	Butyl benzyl phthalate	1,000	340	< 0.21	< 0.21
	84-74-2	Di-n-butyl phthalate	2,600	880	< 0.21	< 0.21
	117-84-0	Di-n-octyl phthalate	16	5.2	< 0.21	< 0.21
	84-66-2	Diethyl phthalate	2,200	920	< 0.21	< 0.21
	77-47-4	Hexachlorocyclopentadiene	130	44	< 0.21	< 0.21
	78-59-1	Isophorone	3,000	3,000	< 0.21	< 0.21
	621-64-7	N-Nitrosodi-n-propylamine	1,900	2,300	< 0.040	< 0.040
	98-95-3	Nitrobenzene	710	590	< 0.040	< 0.040
INORG	7439-97-6	Mercury	3.1	N/A	< 0.022	< 0.020

Project: Franklin (EB-2)
Laboratory: STAT ANALYSIS

Laboratory ID: 19041193-007 19041193-008 Client Sample ID: 115 116

Date Collected: 04/30/2019 11:00 04/30/2019 11:30

75-27-4 Bromodichloromethane 2,800 2,000 < 0.014				1	ts for Chemicals With pint < 30°C		
VOC G7.64-1 Acetone 100.000 200.000 < 0.21					Groundwater Ingestion		
71.43-2 Benzene		CAS No.	Analyte	C _{sat} (mg/Kg)	C _{sat} (mg/Kg)		
75-27-4 Bromodichloromethane 2,800 2,000 < 0.014	voc	67-64-1	Acetone	100,000	200,000	< 0.21	< 0.11
75-25-2 Bromoferm		71-43-2	Benzene	800	580	< 0.014	< 0.0073
74-83-9 Bromomethane 3,100 3,600 <0.028 78-93-3 2-Butanone 25,000 45,000 <0.21		75-27-4	Bromodichloromethane	2,800	2,000	< 0.014	< 0.0073
78-93-3 2-Butanone 25,000 45,000 < 0.21 75-15-0 Carbon disulfide 850 520 < 0.14 56-23-5 Carbon tetrachloride 1,200 560 < 0.014 108-90-7 Chlorobenzene 620 290 < 0.014 67-66-3 Chloroform 3,400 2,500 < 0.014 124-48-1 Dibromochloromethane 1,400 890 < 0.014 175-34-3 1,1-Dichlorothane 1,700 1,400 < 0.014 107-06-2 1,2-Dichlorothane 1,900 2,100 < 0.014 156-59-2 cis-1,2-Dichlorothene 1,300 910 < 0.014 156-59-2 cis-1,2-Dichlorothene 1,300 1,000 < 0.014 156-60-5 trans-1,2-Dichlorothene 1,200 870 < 0.014 166-10-2 1,2-Dichlorothene 1,200 870 < 0.014 10061-01-5 cis-1,3-Dichloropropene 1,000 850 < 0.0055 10061-02-6 trans-1,3-Dichloropropene 1,000 850 < 0.0055 10041-4 Ethylbenzene 350 150 < 0.014 75-09-2 Methylene chloride 2,500 3,000 < 0.014 100-42-5 Styrene 630 260 < 0.014 101-25-6 1,1,1-Trichlorothane 1,300 1,000 < 0.014 102-18-3 Trichlorothane 1,300 1,000 < 0.014 103-20-7 Xylenes 580 290 < 0.014 101-3-6 1,1,1-Trichlorothane 1,300 1,000 < 0.014 102-18-3 1,1,2-Trichlorothane 1,300 670 < 0.014 103-20-7 Xylenes 504 280 110 < 0.004 11-4 Vinyl chloride 2,600 2,900 < 0.014 1330-20-7 Xylenes Total 280 110 < 0.020 11-44-4 Bis(2-chlorobenzene 560 210 < 0.20 95-57-8 2-Chlorophenol 10,000 7,100 < 0.20 11-44-4 Bis(2-chlorothyl)phthalate 2,600 880 < 0.020 11-84-6-2 Diethyl phthalate 2,600 880 < 0.020 11-84-6-2 Diethyl phthalate 1,600 880 < 0.020 11-84-6-2 Diethyl phthalate 2,600 880 < 0.20		75-25-2	Bromoform	2,000	1,200	< 0.014	< 0.0073
75-15-0 Carbon disulfide		74-83-9	Bromomethane	3,100	3,600	< 0.028	< 0.015
Section Sect		78-93-3	2-Butanone	25,000	45,000	< 0.21	< 0.11
108-90-7 Chlorobenzene		75-15-0	Carbon disulfide	850	520	< 0.14	< 0.073
67-66-3 Chloroform 3,400 2,500 < 0.014 124-48-1 Dibromochloromethane 1,400 890 < 0.014 75-34-3 1,1-Dichloroethane 1,700 1,400 < 0.014 107-06-2 1,2-Dichloroethane 1,900 2,100 < 0.014 75-35-4 1,1-Dichloroethane 1,400 910 < 0.014 75-35-4 1,1-Dichloroethene 1,400 910 < 0.014 156-59-2 cis-1,2-Dichloroethene 1,300 1,000 < 0.014 156-60-5 rans-1,2-Dichloroethene 3,000 2,100 < 0.014 156-60-5 rans-1,2-Dichloroethene 1,200 870 < 0.014 10061-01-5 cis-1,3-Dichloropropene 1,000 850 < 0.0055 10061-02-6 rans-1,3-Dichloropropene 1,000 850 < 0.0055 10041-4 Ethylbenzene 350 150 < 0.014 75-09-2 Methylene chloride 2,500 3,000 < 0.028 1634-04-4 Methyl tert-butyl ether 8,400 11,000 < 0.014 100-42-5 Styrene 630 260 < 0.014 127-18-4 Tetrachloroethene 800 310 < 0.014 127-18-4 Tetrachloroethene 1,300 670 < 0.014 79-00-5 1,1,1-Trichloroethane 1,300 670 < 0.014 79-01-6 Trichloroethane 1,200 650 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 79-01-6 1,2-Trichloroethane 1,300 110 < 0.041 120-82-1 1,2-Trichloroethene 1,200 650 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 79-01-6 1,2-Trichloroethane 1,000 7,100 < 0.20 105-67-9 2,4-Dimethylphenol 10,000 7,100 < 0.20 105-67-9 2,4-Dimethylphenol 10,000 7,100 < 0.20 117-81-7 Bis(2-ethylheptylphthalate 1,000 340 < 0.20 117-84-0 Din-butyl phthalate 1,000 340 < 0.20 117-84-0 Din-butyl phthalate 1,000 340 < 0.20 117-84-0 Din-butyl phthalate 1,000 880 < 0.20 117-84-0 Din-butyl phthalate 2,200 920 < 0.20		56-23-5	Carbon tetrachloride	1,200	560	< 0.014	< 0.0073
124-48-1 Dibromochloromethane 1,400 890 < 0.014 75-34-3		108-90-7	Chlorobenzene	620	290	< 0.014	< 0.0073
75-34-3 1,1-Dichloroethane 1,700 1,400 < 0.014 107-06-2 1,2-Dichloroethane 1,900 2,100 < 0.014 75-35-4 1,1-Dichloroethene 1,400 910 < 0.014 156-59-2 cis-1,2-Dichloroethene 1,300 1,000 < 0.014 156-60-5 trans-1,2-Dichloroethene 3,000 2,100 < 0.014 156-60-5 trans-1,2-Dichloroptopane 1,200 870 < 0.014 10061-01-5 cis-1,3-Dichloroptopane 1,000 850 < 0.0055 10061-02-6 trans-1,3-Dichloroptopene 1,000 850 < 0.0055 10041-4 Ethylbenzene 350 150 < 0.014 75-09-2 Methylene chloride 2,500 3,000 < 0.028 1634-04-4 Methyl tert-butyl ether 8,400 11,000 < 0.014 100-42-5 Styrene 630 260 < 0.014 127-18-4 Tetrachloroethene 800 310 < 0.014 108-88-3 Toluene 580 290 < 0.014 71-55-6 1,1,1-Trichloroethane 1,300 670 < 0.014 79-00-5 1,1,2-Trichloroethane 1,800 1,300 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 130-20-7 Xylenes, Total 280 110 < 0.041 108-87-7 1,2-Hrinchloroethene 340 120 < 0.20 105-67-9 2,4-Dimethylphenol 10,000 4,700 < 0.20 11-44-4 Bis(2-chloroethyl)ether 3,000 3,900 < 0.20 11-81-7 Bis(2-chloroethyl)ether 3,000 3,900 < 0.20 117-81-7 Bis(2-chloroethyl)ether 3,000 3,900 <		67-66-3	Chloroform	3,400	2,500	< 0.014	< 0.0073
107-06-2		124-48-1	Dibromochloromethane	1,400	890	< 0.014	< 0.0073
75-35-4		75-34-3	1,1-Dichloroethane	1,700	1,400	< 0.014	< 0.0073
75-35-4		107-06-2	1,2-Dichloroethane	1,900	2,100	< 0.014	< 0.0073
156-60-5 trans-1,2-Dichloroethene 3,000 2,100 < 0.014 78-87-5 1,2-Dichloropropane 1,200 870 < 0.014 10061-01-5 cis-1,3-Dichloropropene 1,000 850 < 0.0055 10061-02-6 trans-1,3-Dichloropropene 1,000 850 < 0.0055 10061-02-6 trans-1,3-Dichloropropene 1,000 850 < 0.0055 100-41-4 Ethylbenzene 350 150 < 0.014			1,1-Dichloroethene		910	< 0.014	< 0.0073
156-60-5 trans-1,2-Dichloroethene 3,000 2,100 < 0.014 78-87-5 1,2-Dichloropropane 1,200 870 < 0.014 10061-01-5 cis-1,3-Dichloropropene 1,000 850 < 0.0055 10061-02-6 trans-1,3-Dichloropropene 1,000 850 < 0.0055 10061-02-6 trans-1,3-Dichloropropene 1,000 850 < 0.0055 100-41-4 Ethylbenzene 350 150 < 0.014		156-59-2	cis-1.2-Dichloroethene	1,300	1,000	< 0.014	< 0.0073
10061-01-5 cis-1,3-Dichloropropene 1,000 850 <0.0055 10061-02-6 trans-1,3-Dichloropropene 1,000 850 <0.0055 100-41-4 Ethylbenzene 350 150 <0.014 75-09-2 Methylene chloride 2,500 3,000 <0.028 1634-04-4 Methyl tert-butyl ether 8,400 11,000 <0.014 100-42-5 Styrene 630 260 <0.014 127-18-4 Tetrachloroethene 800 310 <0.014 108-88-3 Toluene 580 290 <0.014 71-55-6 1,1,1-Trichloroethane 1,300 670 <0.014 79-00-5 1,1,2-Trichloroethane 1,800 1,300 <0.014 79-01-6 Trichloroethene 1,200 650 <0.014 75-01-4 Vinyl chloride 2,600 2,900 <0.014 130-20-7 Xylenes, Total 280 110 <0.041 130-82-1 1,2,4-Trichlorobenzene 340 120 <0.20 95-50-1 1,2-Dichlorobenzene 560 210 <0.20 95-57-8 2-Chlorophenol 10,000 4,700 <0.20 111-44-4 Bis(2-chloroethyl)ether 3,000 3,900 <0.20 117-81-7 Bis(2-ethylhexyl)phthalate 200 68 <0.20 84-74-2 Di-n-butyl phthalate 1,000 340 <0.20 84-76-2 Diethyl phthalate 2,200 920 <0.20					2,100		< 0.0073
10061-01-5 cis-1,3-Dichloropropene 1,000 850 <0.0055 10061-02-6 trans-1,3-Dichloropropene 1,000 850 <0.0055 100-41-4 Ethylbenzene 350 150 <0.014 75-09-2 Methylene chloride 2,500 3,000 <0.028 1634-04-4 Methyl tert-butyl ether 8,400 11,000 <0.014 100-42-5 Styrene 630 260 <0.014 127-18-4 Tetrachloroethene 800 310 <0.014 108-88-3 Toluene 580 290 <0.014 71-55-6 1,1,1-Trichloroethane 1,300 670 <0.014 79-00-5 1,1,2-Trichloroethane 1,800 1,300 <0.014 79-01-6 Trichloroethene 1,200 650 <0.014 79-01-6 Trichloroethene 1,200 650 <0.014 1330-20-7 Xylenes, Total 280 110 <0.041 130-82-1 1,2,4-Trichlorobenzene 340 120 <0.20 95-50-1 1,2-Dichlorobenzene 560 210 <0.20 95-57-8 2-Chlorophenol 10,000 7,100 <0.20 111-44-4 Bis(2-chloroethyl)ether 3,000 3,900 <0.20 117-81-7 Bis(2-ethylhexyl)phthalate 200 68 <0.97 85-68-7 Butyl benzyl phthalate 1,000 340 <0.20 117-84-0 Di-n-octyl phthalate 2,600 880 <0.20 117-84-6-2 Diethyl phthalate 2,200 920 <0.20		78-87-5	1.2-Dichloropropane	1,200	870	< 0.014	< 0.0073
10061-02-6 trans-1,3-Dichloropropene 1,000 850 < 0.0055 100-41-4 Ethylbenzene 350 150 < 0.014 75-09-2 Methylene chloride 2,500 3,000 < 0.028 1634-04-4 Methyl tert-butyl ether 8,400 11,000 < 0.014 100-42-5 Styrene 630 260 < 0.014 127-18-4 Tetrachloroethene 800 310 < 0.014 108-88-3 Toluene 580 290 < 0.014 71-55-6 1,1,1-Trichloroethane 1,300 670 < 0.014 79-00-5 1,1,2-Trichloroethane 1,800 1,300 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 75-01-4 Vinyl chloride 2,600 2,900 < 0.014 1330-20-7 Xylenes, Total 280 110 < 0.041 SVOC 120-82-1 1,2,4-Trichlorobenzene 340 120 < 0.20 95-50-1 1,2-Dichlorobenzene 560 210 < 0.20 95-57-8 2,4-Dimethylphenol 10,000 4,700 < 0.20 117-81-7 Bis(2-ethylhexyl)phthalate 200 68 < 0.97 85-68-7 Butyl benzyl phthalate 1,000 340 < 0.20 117-84-0 Di-n-ottyl phthalate 2,600 880 < 0.20 84-66-2 Diethyl phthalate 2,200 920 < 0.20				1,000	850	< 0.0055	< 0.0029
100-41-4 Ethylbenzene 350 150 < 0.014				1,000	850	< 0.0055	< 0.0029
75-09-2 Methylene chloride 2,500 3,000 < 0.028 1634-04-4 Methyl tert-butyl ether 8,400 11,000 < 0.014 100-42-5 Styrene 630 260 < 0.014 127-18-4 Tetrachloroethene 800 310 < 0.014 108-88-3 Toluene 580 290 < 0.014 71-55-6 1,1,1-Trichloroethane 1,300 670 < 0.014 79-00-5 1,1,2-Trichloroethane 1,800 1,300 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 75-01-4 Vinyl chloride 2,600 2,900 < 0.014 1330-20-7 Xylenes, Total 280 110 < 0.041 SVOC 120-82-1 1,2,4-Trichlorobenzene 340 120 < 0.20 95-50-1 1,2-Dichlorobenzene 560 210 < 0.20 105-67-9 2,4-Dimethylphenol 10,000 4,700 < 0.20 111-44-4 Bis(2-chloroethyl)ether 3,000 3,900 < 0.20 117-81-7 Bis(2-ethylhexyl)phthalate 200 68 < 0.97 85-68-7 Butyl benzyl phthalate 1,000 340 < 0.20 117-84-0 Di-n-octyl phthalate 2,600 880 < 0.20 117-84-0 Di-n-octyl phthalate 1,600 920 < 0.20				350	150	< 0.014	< 0.0073
1634-04-4 Methyl tert-butyl ether				2,500	3,000	< 0.028	< 0.015
127-18-4 Tetrachloroethene 800 310 < 0.014 108-88-3 Toluene 580 290 < 0.014 71-55-6 1,1,1-Trichloroethane 1,300 670 < 0.014 79-00-5 1,1,2-Trichloroethane 1,800 1,300 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 75-01-4 Vinyl chloride 2,600 2,900 < 0.014 1330-20-7 Xylenes, Total 280 110 < 0.041 1330-20-7 Xylenes, Total 280 120 < 0.20 120-82-1 1,2,4-Trichlorobenzene 340 120 < 0.20 95-50-1 1,2-Dichlorobenzene 560 210 < 0.20 105-67-9 2,4-Dimethylphenol 10,000 4,700 < 0.20 95-57-8 2-Chlorophenol 10,000 7,100 < 0.20 111-44-4 Bis(2-chloroethyl)ether 3,000 3,900 < 0.20 117-81-7 Bis(2-ethylhexyl)phthalate 2,000 68 < 0.97 85-68-7 Butyl benzyl phthalate 1,000 340 < 0.20 117-84-0 Di-n-octyl phthalate 1,600 880 < 0.20 117-84-0 Di-n-octyl phthalate 1,600 880 < 0.20 84-66-2 Diethyl phthalate 2,200 920 < 0.20		1634-04-4		8,400	11,000	< 0.014	< 0.0073
127-18-4 Tetrachloroethene 800 310 < 0.014 108-88-3 Toluene 580 290 < 0.014 71-55-6 1,1,1-Trichloroethane 1,300 670 < 0.014 79-00-5 1,1,2-Trichloroethane 1,800 1,300 < 0.014 79-01-6 Trichloroethene 1,200 650 < 0.014 75-01-4 Vinyl chloride 2,600 2,900 < 0.014 1330-20-7 Xylenes, Total 280 110 < 0.041 130-82-1 1,2,4-Trichloroethene 340 120 < 0.20 120-82-1 1,2-Trichloroethene 560 210 < 0.20 105-67-9 2,4-Dimethylphenol 10,000 4,700 < 0.20 105-67-9 2,4-Dimethylphenol 10,000 7,100 < 0.20 111-44-4 Bis(2-chloroethyl)ether 3,000 3,900 < 0.20 117-81-7 Bis(2-ethylhexyl)phthalate 200 68 < 0.97 85-68-7 Butyl benzyl phthalate 1,000 340 < 0.20 117-84-0 Di-n-octyl phthalate 1,600 880 < 0.20 117-84-0 Di-n-octyl phthalate 1,600 880 < 0.20 84-66-2 Diethyl phthalate 2,200 920 < 0.20		100-42-5	Styrene	630	260	< 0.014	< 0.0073
T1-55-6		127-18-4		800	310	< 0.014	< 0.0073
79-00-5		108-88-3	Toluene	580	290	< 0.014	< 0.0073
79-00-5 1,1,2-Trichloroethane 1,800 1,300 < 0.014		71-55-6	1.1.1-Trichloroethane	1,300	670	< 0.014	< 0.0073
79-01-6 Trichloroethene 1,200 650 < 0.014 75-01-4 Vinyl chloride 2,600 2,900 < 0.014				1,800	1,300	< 0.014	< 0.0073
1330-20-7 Xylenes, Total 280 110 <0.041				1,200	650	< 0.014	< 0.0073
1330-20-7 Xylenes, Total 280 110 <0.041		75-01-4	Vinyl chloride		2,900	< 0.014	< 0.0073
95-50-1 1,2-Dichlorobenzene 560 210 < 0.20			Xylenes, Total	280	110	< 0.041	< 0.022
95-50-1 1,2-Dichlorobenzene 560 210 < 0.20	svoc			340	120	< 0.20	< 0.20
105-67-9 2,4-Dimethylphenol 10,000 4,700 < 0.20				560	210	< 0.20	< 0.20
95-57-8 2-Chlorophenol 10,000 7,100 < 0.20				10,000	4,700	< 0.20	< 0.20
111-44-4 Bis(2-chloroethyl)ether 3,000 3,900 < 0.20	•	95-57-8		10,000	7,100	< 0.20	< 0.20
117-81-7 Bis(2-ethylhexyl)phthalate 200 68 < 0.97						< 0.20	< 0.20
85-68-7 Butyl benzyl phthalate 1,000 340 < 0.20						< 0.97	< 0.97
84-74-2 Di-n-butyl phthalate 2,600 880 < 0.20				1.000	340	< 0.20	< 0.20
117-84-0 Di-n-octyl phthalate 16 5.2 < 0.20 84-66-2 Diethyl phthalate 2,200 920 < 0.20						< 0.20	< 0.20
84-66-2 Diethyl phthalate 2,200 920 < 0.20							< 0.20
V V U D D D D D D D D D D D D D D D D D		*** * * *				< 0.20	< 0.20
1//-4/-4 THexachlorocyclopentagiene I 130 I 44 I < 0.20 I		77-47-4	Hexachlorocyclopentadiene	130	44	< 0.20	< 0.20
78-59-1 Isophorone 3,000 3,000 < 0.20							< 0.20
621-64-7 N-Nitrosodi-n-propylamine 1,900 2,300 < 0.039							< 0.039
98-95-3 Nitrobenzene 710 590 < 0.039				-7			< 0.039
INORG 7439-97-6 Mercury 3.1 N/A < 0.018	INORG						< 0.021

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		109	11000	9,500	Within MSA Background
		110	13000	9,200	Outside MSA Background
		111	14000		_
niono	41	112	13000		
INORG	Aluminum	113	13000		
		114	13000		
		115	12000		
		116	11000		
		109	0.73	0.59	Within MSA Background
		110	0.95	0.56	Outside MSA Background
	1	111	0.99		
INORG	Beryllium	112	0.78		
плоко	Berymuni	113	0.93		
		114	0.94		
		115	0.93		
		116	0.91		
		109	69000	9,300	Within MSA Background
	1	110	64000	5,525	Outside MSA Background
	Calcium	111	83000		
INORG		112	69000		
		113	80000		
		114	77000		
		115	87000]	
		116	78000		
		109	23	28	pH Specific SCGIR Class I
		110	30	16.2	Within MSA Background
		111	34	13.0	Outside MSA Background
INORG	Chromium	112	27		
		113	31		
		114	31		
		115	29		
		116	29		West's MCA Destaurant
		109	16	8.9	Within MSA Background
		110	16	8.9	Outside MSA Background
		111	19		
INORG	Cobalt	112	16		
		113	15 19		
		114	19		
		115			
		116 109	17 35	19.6	Within MSA Background
		110	40	12.0	Outside MSA Background
		110	27	12.0	Outside MISA Dackground
		111	29		
INORG	Copper	112	28		
		113	31		
		114	36		
		116	38		
		110	30		

Client: Environmental Group Services, Ltd. Project: Franklin (EB-2) Laboratory: STAT ANALYSIS

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
		109	23000	15,900	Within MSA Background
		110	26000	15,000	Outside MSA Background
		111	23000		•
		112	23000		
INORG	Iron	113	23000		
		114	23000		
		115	33000		
		116	29000		
		109	33000	4,820	Within MSA Background
	i i	110	27000	2,700	Outside MSA Background
		111	31000	2,700	Odiside Wio/i Background
•		112	32000		
INORG	Magnesium		30000		•
		113	31000		
		114			
		115	35000		
		116	29000	10.0	7153 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		109	42	18.0	Within MSA Background
		110	48	13.0	Outside MSA Background
		111	51	1	
INORG	Nickel	112	40		
	1	113	44		
		114	47	l i	
		115	42		
		116	- 44		·
		109	2400	1,268	Within MSA Background
		110	3200	1,100	Outside MSA Background
		111	3600		
INORG	Potassium	112	3100		
INOKO	Potassium	113	3100		
		114	3500		
		115	3700	1	
		116	3800		
		109	160	130	Within MSA Background
		110	160	130.0	Outside MSA Background
		111	170	1	
DIODG	, , ,	112	160		
INORG	Sodium	113	170	1	
		114	170		
		115	220		
		116	230		
	 	109	26	25.2	Within MSA Background
		110	29	25.0	Outside MSA Background
		111	33		
		112	27		
INORG	Vanadium	113	31		
		114	31		
	[115	31		
]	116	29		
	 		61	60.2	Outside MSA Background
		110	64	30.2	Outside May Dackglould
NIOPO	_{7:}	111			
INORG	Zinc	114	61	1	
		115	61	1	
	 	116	66	1 015	SCCIP Class I
	1	109	3.6 *	0.15	SCGIR Class I
		110	3.0 *	1	
		111	3.7 *	1	
	1	112	4.1 *	1	
TCLP	Manganese	113	3.6 *	1	

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

Project: Franklin (EB-2)

Laboratory: STAT ANALYSIS

Test	Chemical	Sample Number	Concentration Detected (ppm)	TACO Tier 1 RO (mg/Kg)	Exposure Pathway
	_	114	3.8 *		
		115	3.5 *		
		116	3.6 *		

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
TCLP		109	3.6 *	0.15	SCGIR Class I
	Manganese		3.0 *	0.15	SCGIR Class I
TCLP	Manganese	110 111	3.7 *	0.15	SCGIR Class I
TCLP	Manganese	111	4.1 *	0.15	SCGIR Class I
TCLP	Manganese				
TCLP	Manganese	113	3.6 *	0.15	SCGIR Class I
TCLP	Manganese	114	3.8 *	0.15	SCGIR Class I
TCLP	Manganese	115	3.5 *	0.15	SCGIR Class I
TCLP	Manganese	116	3.6 *	0.15	SCGIR Class I
INORG	Chromium	110	30	28	pH Specific SCGIR Class I
INORG	Chromium	111	34	28	pH Specific SCGIR Class I
INORG	Chromium	113	31	28	pH Specific SCGIR Class I
INORG	Chromium	114	31	28	pH Specific SCGIR Class I
INORG	Chromium	116	29	28	pH Specific SCGIR Class I
INORG	Aluminum	109	11000	9,500	Within MSA Background
INORG	Beryllium	109	0.73	0.59	Within MSA Background
INORG	Calcium	109	69000	9,300	Within MSA Background
INORG	Chromium	109	23	16.2	Within MSA Background
INORG	Cobalt	109	16	8.9	Within MSA Background
INORG	Copper	109	35	19.6	Within MSA Background
INORG	Iron	109	23000	15,900	Within MSA Background
	Magnesium	109	33000	4,820	Within MSA Background
INORG	Nickel	109	42	18.0	Within MSA Background
INORG	Potassium	109	2400	1,268_	Within MSA Background
INORG	Sodium	109	160	130	Within MSA Background
INORG	Vanadium	109	26	25.2	Within MSA Background
INORG	Aluminum	110	13000	9,500	Within MSA Background
INORG	Beryllium	110	0.95	0.59	Within MSA Background
INORG	Calcium	110	64000	9,300	Within MSA Background
INORG	Chromium	110	30	16.2	Within MSA Background
INORG	Cobalt	110	16	8.9	Within MSA Background
INORG	Copper	110	40	19.6	Within MSA Background
INORG	Iron	110	26000	15,900	Within MSA Background
INORG	Magnesium	110	27000	4,820	Within MSA Background
INORG	Nickel	110	48	18.0	Within MSA Background
INORG	Potassium	110	3200	1,268	Within MSA Background
INORG	Sodium	110	160	130	Within MSA Background
INORG	Vanadium	110	29	25.2	Within MSA Background
INORG	Aluminum	111	14000	9,500	Within MSA Background
INORG	Beryllium	111	0.99	0.59	Within MSA Background
INORG	Calcium	111	83000	9,300	Within MSA Background
INORG	Chromium	111	34	16.2	Within MSA Background
INORG	Cobalt	111	19	8.9	Within MSA Background
INORG	Copper	111	27	19.6	Within MSA Background
INORG	lron	111	23000	15,900	Within MSA Background
	Magnesium	111	31000	4,820	Within MSA Background
INORG	Nickel	111	51	18.0	Within MSA Background
INORG	Potassium	111	3600	1,268	Within MSA Background
INORG	Sodium	111	170	130	Within MSA Background
INORG	Vanadium	111	33	25.2	Within MSA Background
INORG	Aluminum	112	13000	9,500	Within MSA Background
INORG	Beryllium	112	0.78	0.59	Within MSA Background
INORG	Calcium	112	69000	9,300	Within MSA Background
INORG	Chromium	112	27	16.2	Within MSA Background
INORG	Cobalt	112	16	8.9	Within MSA Background
INORG	Copper	112	29	19.6	Within MSA Background
INORG	Iron	112	23000	15,900	Within MSA Background
	Magnesium	112	32000	4,820	Within MSA Background
INORG	Nickel	112	40	18.0	Within MSA Background
1110110	1410001	114			······································

^{* -} result and RO units are mg/L

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Potassium	112	3100	1,268	Within MSA Background
INORG	Sodium	112	160	130	Within MSA Background
INORG	Vanadium	112	27	25.2	Within MSA Background
INORG	Aluminum	113	13000	9,500	Within MSA Background
INORG	Beryllium	113	0.93	0.59	Within MSA Background
INORG	Calcium	113	80000	9,300	Within MSA Background
INORG	Chromium	113	31	16.2	Within MSA Background
INORG	Cobalt	113	15	8.9	Within MSA Background
INORG	Copper	113	28	19.6	Within MSA Background
INORG	Iron	113	23000	15,900	Within MSA Background
INORG	Magnesium	113	30000	4,820	Within MSA Background
INORG	Nickel	113	44	18.0	Within MSA Background
INORG	Potassium	113	3100	1,268	Within MSA Background
INORG	Sodium	113	170	130	Within MSA Background
INORG	Vanadium	113	31	25.2	Within MSA Background
INORG	Aluminum	114	13000	9,500	Within MSA Background
INORG	Beryllium	114	0.94	0.59	Within MSA Background
INORG	Calcium	114	77000	9,300	Within MSA Background
INORG	Chromium	114	31	16.2	Within MSA Background
INORG	Cobalt	114	19	8.9	Within MSA Background
INORG	Copper	114	31	19.6	Within MSA Background
INORG	Iron	114	23000	15,900	Within MSA Background
	Magnesium	114	31000	4,820	Within MSA Background
INORG	Nickel	114	47	18.0	Within MSA Background
INORG	Potassium	114	3500	1,268	Within MSA Background
INORG	Sodium	114	170 31	130 25.2	Within MSA Background
INORG	Vanadium	114 115	12000	9,500	Within MSA Background Within MSA Background
INORG INORG	Aluminum	115	0.93	0.59	Within MSA Background
INORG	Beryllium Calcium	115	87000	9,300	Within MSA Background Within MSA Background
INORG	Chromium	115	29	16.2	Within MSA Background
INORG	Cobalt	115	14	8.9	Within MSA Background
INORG	Copper	115	36	19.6	Within MSA Background
INORG	Iron	115	33000	15,900	Within MSA Background
INORG	Magnesium	115	35000	4,820	Within MSA Background
INORG	Nickel	115	42	18.0	Within MSA Background
INORG	Potassium	115	3700	1,268	Within MSA Background
INORG	Sodium	115	220	130	Within MSA Background
INORG	Vanadium	115	31	25.2	Within MSA Background
INORG	Aluminum	116	11000	9,500	Within MSA Background
INORG	Beryllium	116	0.91	0.59	Within MSA Background
INORG	Calcium	116	78000	9,300	Within MSA Background
INORG	Chromium	116	29	16.2	Within MSA Background
INORG	Cobalt	116	17	8.9	Within MSA Background
INORG	Copper	116	38	19.6	Within MSA Background
INORG	Iron	116	29000	15,900	Within MSA Background
	Magnesium	116	29000	4,820	Within MSA Background
INORG	Nickel	116	44	18.0	Within MSA Background
INORG	Potassium	116	3800	1,268	Within MSA Background
INORG	Sodium	116	230	130	Within MSA Background
INORG	Vanadium	116	29	25.2	Within MSA Background
INORG	Aluminum	109	11000	9,200	Outside MSA Background
INORG	Beryllium	109	0.73	0.56	Outside MSA Background
INORG	Calcium	109	69000	5,525	Outside MSA Background
INORG	Chromium	109	23	13.0	Outside MSA Background
INORG	Cobalt	109	16	8.9	Outside MSA Background
INORG	Copper	109	35	12.0	Outside MSA Background
INORG	Iron	109	23000	15,000	Outside MSA Background

^{* -} result and RO units are mg/L

			Concentration	TACO Tier 1	
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Magnesium	109	33000	2,700	Outside MSA Background
INORG	Nickel	109	42	13.0	Outside MSA Background
INORG	Potassium	109	2400	1,100	Outside MSA Background
INORG	Sodium	109	160	130.0	Outside MSA Background
INORG	Vanadium	109	26	25.0	Outside MSA Background
INORG	Aluminum	110	13000	9,200	Outside MSA Background
INORG	Beryllium	110	0.95	0.56	Outside MSA Background
INORG	Calcium	110	64000	5,525	Outside MSA Background
INORG	Chromium	110	30	13.0	Outside MSA Background
INORG	Cobalt	110	16	8.9	Outside MSA Background
INORG	Copper	110	40	12.0	Outside MSA Background
INORG	Iron	110	26000	15,000	Outside MSA Background
INORG	Magnesium	110	27000	2,700	Outside MSA Background
INORG	Nickel	110	48	13.0	Outside MSA Background
INORG	Potassium	110	3200	1,100	Outside MSA Background
INORG	Sodium	110	160	130.0	Outside MSA Background
INORG	Vanadium	110	29	25.0	Outside MSA Background
INORG	Zinc	110	61	60.2	Outside MSA Background
INORG	Aluminum	111	14000	9,200	Outside MSA Background
INORG	Beryllium	111	0.99	0.56	Outside MSA Background
INORG	Calcium	111	83000	5,525	Outside MSA Background
INORG	Chromium	111	34	13.0	Outside MSA Background
INORG	Cobalt	111	19	8.9	Outside MSA Background
INORG	Copper	111	27	12.0	Outside MSA Background
INORG	Iron	111	23000	15,000	Outside MSA Background
INORG	Magnesium	111	31000	2,700	Outside MSA Background
INORG	Nickel	111	51	13.0	Outside MSA Background
INORG	Potassium	111	3600	1,100	Outside MSA Background
INORG	Sodium	111	170	130.0	Outside MSA Background
INORG	Vanadium	111	33	25.0	Outside MSA Background
INORG	Zinc	111	64	60.2	Outside MSA Background
INORG	Aluminum	112	13000	9,200	Outside MSA Background
INORG	Beryllium	112	0.78	0.56	Outside MSA Background
INORG	Calcium	112	69000	5,525	Outside MSA Background
INORG	Chromium	112	27	13.0	Outside MSA Background
INORG	Cobalt	112	16	8.9	Outside MSA Background
INORG	Copper	112	29	12.0	Outside MSA Background
INORG	Iron	112	23000	15,000	Outside MSA Background
	Magnesium	112	32000	2,700	Outside MSA Background
INORG		112	40	13.0	Outside MSA Background
INORG	Potassium	112	3100	1,100	Outside MSA Background
INORG	Sodium	112	160	130.0	Outside MSA Background
INORG	Vanadium	112	27	25.0	Outside MSA Background
INORG	Aluminum	113	13000	9,200	Outside MSA Background
INORG	Beryllium	113	0.93	0.56	Outside MSA Background
INORG	Calcium	113	80000	5,525	Outside MSA Background
INORG	Chromium	113	31	13.0	Outside MSA Background
INORG	Cobalt	113	15	8.9	Outside MSA Background
INORG	Copper	113	28	12.0	Outside MSA Background
INORG	Iron	113	23000	15,000	Outside MSA Background
INORG	Magnesium	113	30000	2,700	Outside MSA Background
INORG	Nickel	113	44	13.0	Outside MSA Background
INORG	Potassium	113	3100	1,100	Outside MSA Background
INORG	Sodium	113	170	130.0	Outside MSA Background
		113	31	25.0	Outside MSA Background
INORG	Vanadium		13000	9,200	Outside MSA Background
INORG	Aluminum	114	0.94	0.56	Outside MSA Background
INORG	Beryllium	114			
INORG	Calcium	114	77000	5,525	Outside MSA Background

^{* -} result and RO units are mg/L

TACO Tier I Soil Remediation Objectives - Residential Exceedance Report

Client: Environmental Group Services, Ltd.

			Concentration TACO Tier 1		
Test	Chemical	Sample Number	Detected (ppm)	RO (mg/Kg)	Exposure Pathway
INORG	Chromium	114	31	13.0	Outside MSA Background
INORG	Cobalt	114	19	8.9	Outside MSA Background
INORG	Copper	114	31	12.0	Outside MSA Background
INORG	Iron	114	23000	15,000	Outside MSA Background
INORG	Magnesium	114	31000	2,700	Outside MSA Background
INORG	Nickel	114	47	13.0	Outside MSA Background
INORG	Potassium	114	3500	1,100	Outside MSA Background
INORG	Sodium	114	170	130.0	Outside MSA Background
INORG	Vanadium	114	31	25.0	Outside MSA Background
INORG	Zinc	114	61	60.2	Outside MSA Background
INORG	Aluminum	115	12000	9,200	Outside MSA Background
INORG	Beryllium	115	0.93	0.56	Outside MSA Background
INORG	Calcium	115	87000	5,525	Outside MSA Background
INORG	Chromium	115	29	13.0	Outside MSA Background
INORG	Cobalt	115	14	8.9	Outside MSA Background
INORG	Copper	115	36	12.0	Outside MSA Background
INORG	Iron	115	33000	15,000	Outside MSA Background
INORG	Magnesium	115	35000	2,700	Outside MSA Background
INORG	Nickel	115	42	13.0	Outside MSA Background
INORG	Potassium	115	3700	1,100	Outside MSA Background
INORG	Sodium	115	220	130.0	Outside MSA Background
INORG	Vanadium	115	31	25.0	Outside MSA Background
INORG	Zinc	115	61	60.2	Outside MSA Background
INORG	Aluminum	116	11000	9,200	Outside MSA Background
INORG	Beryllium	116	0.91	0.56	Outside MSA Background
INORG	Calcium	116	78000	5,525	Outside MSA Background
INORG	Chromium	116	29	13.0	Outside MSA Background
INORG	Cobalt	116	17	8.9	Outside MSA Background
INORG	Copper	116	38	12.0	Outside MSA Background
INORG	Iron	116	29000	15,000	Outside MSA Background
INORG		116	29000	2,700	Outside MSA Background
INORG	Nickel	116	44	13.0	Outside MSA Background
INORG	Potassium	116	3800	1,100	Outside MSA Background
INORG	Sodium	116	230	130.0	Outside MSA Background
INORG	Vanadium	116	29	25.0	Outside MSA Background
INORG	Zinc	116	66	60.2	Outside MSA Background

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 09, 2019

Environmental Group Services, Ltd.

557 W. Polk

Chicago, IL 60610

Telephone: (312) 447-1200 Fax: (312) 447-0922

1 ax. (312) 447-0922

Analytical Report for STAT Work Order: 19041196 Revision 0

RE: Franklin (EB-1)

Dear Environmental Group Services, Ltd.:

STAT Analysis received 8 samples for the referenced project on 4/30/2019 4:32:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAP standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Justice Kwateng Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples as received and tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: May 09, 2019

Client:

Environmental Group Services, Ltd.

Project:

Franklin (EB-1)

Work Order: 19041196 Revision 0

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
19041196-001A	101		4/29/2019 8:00:00 AM	4/30/2019
19041196-001B	101		4/29/2019 8:00:00 AM	4/30/2019
19041196-002A	102		4/29/2019 8:15:00 AM	4/30/2019
19041196-002B	102		4/29/2019 8:15:00 AM	4/30/2019
19041196-003A	103		4/29/2019 8:30:00 AM	4/30/2019
19041196-003B	103		4/29/2019 8:30:00 AM	4/30/2019
19041196-004A	104		4/29/2019 9:00:00 AM	4/30/2019
19041196-004B	104		4/29/2019 9:00:00 AM	4/30/2019
19041196-005A	105		4/29/2019 9:30:00 AM	4/30/2019
19041196-005B	105		4/29/2019 9:30:00 AM	4/30/2019
19041196-006A	106		4/29/2019 10:00:00 AM	4/30/2019
19041196-006B	106		4/29/2019 10:00:00 AM	4/30/2019
19041196-007A	107		4/29/2019 10:30:00 AM	4/30/2019
19041196-007B	107		4/29/2019 10:30:00 AM	4/30/2019
19041196-008A	108		4/29/2019 11:00:00 AM	4/30/2019
19041196-008B	108		4/29/2019 11:00:00 AM	4/30/2019

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-001

Client Sample ID: 101

Collection Date: 4/29/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Un	its DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	1	Prep Date: 4/	30/2019 Analyst: AET
Acetone	ND	0.091	mg/Kg	-dry 1	5/8/2019
Benzene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Bromodichloromethane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Bromoform	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Bromomethane	ND	0.012	mg/Kg	-dry 1	5/8/2019
2-Butanone	ND	0.091	mg/Kg	-dry 1	5/8/2019
Carbon disulfide	ND	0.061	mg/Kg	-dry 1	5/8/2019
Carbon tetrachloride	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Chlorobenzene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Chloroethane	ND	0.012	mg/Kg	-dry 1	5/8/2019
Chloroform	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Chloromethane	ND	0.012	mg/Kg	-dry 1	5/8/2019
Dibromochloromethane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
1,1-Dichloroethane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
1,2-Dichloroethane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
1,1-Dichloroethene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
cis-1,2-Dichloroethene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
trans-1,2-Dichloroethene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
1,2-Dichloropropane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0024	mg/Kg	-dry 1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0024	mg/Kg	-dry 1	5/8/2019
Ethylbenzene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
2-Hexanone	ND	0.024	mg/Kg	-dry 1	5/8/2019
4-Methyl-2-pentanone	ND	0.024	mg/Kg	-dry 1	5/8/2019
Methylene chloride	ND	0.012	mg/Kg	-dry 1	5/8/2019
Methyl tert-butyl ether	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Styrene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
1,1,2,2-Tetrachloroethane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Tetrachloroethene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Toluene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
1,1,1-Trichloroethane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
1,1,2-Trichloroethane	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Trichloroethene	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Vinyl chloride	ND	0.0061	mg/Kg	-dry 1	5/8/2019
Xylenes, Total	ND	0.018	mg/Kg	-dry 1	5/8/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35	•	Prep Date: 5/	
Acenaphthene	ND	0.041	mg/Kg	~	5/2/2019
Acenaphthylene	ND	0.041	mg/Kg	-dry 1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP 1L300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Franklin (EB-1)

Lab ID: 19041196-001

Client Sample ID: 101

Collection Date: 4/29/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Un	nits DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW:	3550B)	Prep Date: 5/1/20	19 Analyst: DM
Aniline	ND	0.41	mg/K	• •	5/2/2019
Anthracene	ND	0.041	mg/K	· ·	5/2/2019
Benz(a)anthracene	ND	0.041	mg/K	g-dry 1	5/2/2019
Benzidine	ND	0.41	mg/K	g-dry 1	5/2/2019
Benzo(a)pyrene	ND	0.041	mg/K	g-dry 1	5/2/2019
Benzo(b)fluoranthene	ND	0.041	mg/K	g-dry 1	5/2/2019
Benzo(g,h,i)perylene	ND	0.041	mg/K	g-dry 1	5/2/2019
Benzo(k)fluoranthene	ND	0.041	mg/K	g-dry 1	5/2/2019
Benzoic acid	ND	1.0	mg/K	g-dry 1	5/2/2019
Benzyl alcohol	ND	0.21	mg/K	• •	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/K	g-dry 1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/K	g-dry 1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/K	g-dry 1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/K	g-dry 1	5/2/2019
Butyl benzyl phthalate .	ND	0.21	mg/K	• •	5/2/2019
Carbazole	ND	0.21	mg/K	g-dry 1	5/2/2019
4-Chloroaniline	ND	0.21	mg/K	g-dry 1	5/2/2019
4-Chloro-3-methylphenol	ND	0.41	mg/K	g-dry 1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/K	g-dry 1	5/2/2019
2-Chlorophenol	ND	0.21	mg/K	g-dry 1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/K	g-dry 1	5/2/2019
Chrysene	ND	0.041	mg/K	g-dry 1	5/2/2019
Dibenz(a,h)anthracene	ND	0.041	mg/K	g-dry 1	5/2/2019
Dibenzofuran	ND	0.21	mg/K	g-dry 1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/K	g-dry 1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/K	g-dry 1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/K	g-dry 1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/K	g-dry 1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/K	g-dry 1	5/2/2019
Diethyl phthalate	ND	0.21	mg/K	g-dry 1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/K	g-dry 1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/K	g-dry 1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/K	g-dry 1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/K	g-dry 1	5/2/2019
2,4-Dinitrotoluene	ND	0.041	mg/K	g-dry 1	5/2/2019
2,6-Dinitrotoluene	ND	0.041	mg/K	g-dry 1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/K	g-dry 1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/K	g-dry 1	5/2/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-001

Client Sample ID: 101

Collection Date: 4/29/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	.70C (SW3550B) Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.041	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/201 9
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.083	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.041	mg/Kg-dry	1 5,7	5/2/2019
Pyridine	ND	0.83	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs -		82A (SW3550B) Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND .	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1 ·	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-001

Client Sample ID: 101

Collection Date: 4/29/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Qua	alifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550	B) Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050	B) Prep	Date: 5/4/2019	Analyst: MDT
Aluminum	13000	22	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.2	mg/Kg-dry	10	5/8/2019
Arsenic	3.1	1.1	mg/Kg-dry	10	5/8/2019
Barium	75	1.1	mg/Kg-dry	10	5/8/2019
Beryllium	0.79	0.56	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.56	mg/Kg-dry	10	5/8/2019
Calcium	63000	67	mg/Kg-dry	10	5/8/2019
Chromium	26	1.1	mg/Kg-dry	10	5/8/2019
Cobalt	12	1.1	mg/Kg-dry	10	5/8/2019
Copper	17	2.8	mg/Kg-dry	10	5/8/2019
Iron	21000	33	mg/Kg-dry	10	5/8/2019
Lead	8.9	0.56	mg/Kg-dry	10	5/8/2019
Magnesium	28000	33	mg/Kg-dry	10	5/8/2019
Manganese	430	1.1	mg/Kg-dry	10	5/8/2019
Nickel	33	1.1	mg/Kg-dry	10	5/8/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

May 09, 2019 **Date Printed:**

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-001

Client Sample ID: 101

Collection Date: 4/29/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW60)20A (SW	3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Potassium	3500	33		ig/Kg-dry	10	5/8/2019
Selenium	ND	1.1	m	ig/Kg-dry	10	5/8/2019
Silver	ND	1.1	m	ig/Kg-dry	10	5/8/2019
Sodium	230	67	'n	ig/Kg-dry	10	5/8/2019
Thallium	ND	1.1	m	ig/Kg-dry	10	5/8/2019
Vanadium	24	1.1	m	g/Kg-dry	10	5/8/2019
Zinc	45	5.6	n	ng/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW13	311/6020A	(SW3005A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10		mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.49	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.013	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.6	0.010		mg/L	5	5/5/2019
Nickel	0.042	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019 .
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW13	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW74				Date: 5/7/2019	Analyst: LB
Mercury	ND	0.019	m	ng/Kg-dry	1	5/6/2019
Cyanide, Total	SW90			•	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.31	m	ng/Kg-dry	1	5/5/2019
pH (25 °C)	SW90)45C			Date: 5/2/2019	Analyst: JT
pH	7.91		•	pH Units	1	5/2/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-001

Client Sample ID: 101

Collection Date: 4/29/2019 8:00:00 AM

Matrix: Soil

Analyses Result RL Qualifier Units DF Date Analyzed

Percent Moisture Percent Moisture 20.0 0.2 * wt% 1 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: N

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-002

Client Sample ID: 102

Collection Date: 4/29/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Uni	ts DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	F	Prep Date: 4/30 /	2019 Analyst: AET
Acetone	ND	0.11	mg/Kg-	dry 1	5/8/2019
Benzene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Bromodichloromethane	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Bromoform	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Bromomethane	ND	0.015	mg/Kg-	dry 1	5/8/2019
2-Butanone	ND	0.11	mg/Kg-	dry 1	5/8/2019
Carbon disulfide	ND	0.074	mg/Kg-	dry 1	5/8/2019
Carbon tetrachloride	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Chlorobenzene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Chloroethane	ND	0.015	mg/Kg-	dry 1	5/8/2019
Chloroform	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Chloromethane	ND	0.015	mg/Kg-	dry 1	5/8/2019
Dibromochloromethane	ND	0.0074	mg/Kg-	dry 1	5/8/2019
1,1-Dichloroethane	ND	0.0074	mg/Kg-	dry 1	5/8/2019
1,2-Dichloroethane	ND	0.0074	mg/Kg-	dry 1	5/8/2019
1,1-Dichloroethene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
cis-1,2-Dichloroethene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
trans-1,2-Dichloroethene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
1,2-Dichloropropane	ND	0.0074	mg/Kg-	dry 1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0030	mg/Kg-	dry 1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0030	mg/Kg-	dry 1	5/8/2019
Ethylbenzene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
2-Hexanone	ND	0.030	mg/Kg-	dry 1	5/8/2019
4-Methyl-2-pentanone	ND	0.030	mg/Kg-	dry 1	5/8/2019
Methylene chloride	ND	0.015	mg/Kg-	dry 1	5/8/2019
Methyl tert-butyl ether	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Styrene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
1,1,2,2-Tetrachloroethane	· ND	0.0074	mg/Kg-	dry 1	5/8/2019
Tetrachloroethene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Toluene	ND	0.0074	· mg/Kg-	dry 1	5/8/2019
1,1,1-Trichloroethane	ND	0.0074	mg/Kg-	dry 1	5/8/2019
1,1,2-Trichloroethane	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Trichloroethene	ND	0.0074	mg/Kg-	dry 1	5/8/2019
Vinyl chloride	ND ·	0.0074	mg/Kg-	dry 1	5/8/2019
Xylenes, Total	ND	0.022	mg/Kg-	•	5/8/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) F	Prep Date: 5/1/2	019 Analyst: DM
Acenaphthene	ND	0.041	mg/Kg-	dry 1	5/2/2019
Acenaphthylene	ND	0.041	mg/Kg-	dry 1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits
E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-002

Client Sample ID: 102

Collection Date: 4/29/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Ur	nits	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3	550B)	Prep I	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.42	mg/K	g-dry	1	5/2/2019
Anthracene	ND	0.041	mg/K	•	1	5/2/2019
Benz(a)anthracene	ND	0.041	mg/K	g-dry	1	5/2/2019
Benzidine	ND	0.41	mg/K		1	5/2/2019
Benzo(a)pyrene	ND	0.041	mg/K	g-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.041	mg/K	g-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.041	mg/K	g-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.041	mg/K	g-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/K	g-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg/K	g-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/K	g-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/K	g-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/K	g-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/K	g-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/K	g-dry	1	5/2/2019
Carbazole	ND	0.21	mg/K	g-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/K	g-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.41	mg/K	g-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/K	g-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/K	g-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/K	g-dry	1	5/2/2019
Chrysene	ND	0.041	mg/K	g-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.041	mg/K	g-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg/K	g-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/K	g-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/K	g-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/K	g-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/K	g-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/K	g-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/K	g-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/K	g-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/K	g-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/K	g-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/K	g-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.041	mg/K		1	5/2/2019
2,6-Dinitrotoluene	ND	0.041	mg/K		1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/K		1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/K	g-dry	1	5/2/2019

ND - NO

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-002

Client Sample ID: 102

Collection Date: 4/29/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.041	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ŃD	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/201 9
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1 '	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	5/2/2019
Nitrobenzene	, ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.084	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.84	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs		982A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.098	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Franklin (EB-1)

Lab ID: 19041196-002

Collection Date: 4/29/2019 8:15:00 AM

Matrix: Soil

Client Sample ID: 102

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4´-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/4/2019	Analyst: MD1
Aluminum	11000	21	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.1	mg/Kg-dry	10	5/8/2019
Arsenic	7.1	1.1	mg/Kg-dry	10	5/8/2019
Barium	49	1.1	mg/Kg-dry	10	5/8/2019
Beryllium	0.76	0.54	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.54	mg/Kg-dry	10	5/8/2019
Calcium	61000	64	mg/Kg-dry	10	5/8/2019
Chromium	23	1.1	mg/Kg-dry	10	5/8/2019
Cobalt	12	1.1	mg/Kg-dry	10	5/8/2019
Copper	22	2.7	mg/Kg-dry	10	5/8/2019
Iron	22000	32	mg/Kg-dry	10	5/8/2019
Lead	13	0.54	mg/Kg-dry	10	5/8/2019
Magnesium	30000	32	mg/Kg-dry	10	5/8/2019
Manganese	410	1.1	mg/Kg-dry	10	5/8/2019
Nickel	34	1.1	mg/Kg-dry	10	5/8/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Lab ID: Franklin (EB-1)

19041196-002

Client Sample ID: 102

Collection Date: 4/29/2019 8:15:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW60	20A (SW	3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Potassium	3000	32	•	mg/Kg-dry	10	5/8/2019
Selenium	ND	1.1		mg/Kg-dry	10	5/8/2019
Silver	ND	1.1		mg/Kg-dry	10	5/8/2019
Sodium	140	64		mg/Kg-dry	10	5/8/2019
Thallium	ND	1.1		mg/Kg-dry	10	5/8/2019
Vanadium	23	1.1		mg/Kg-dry	10	5/8/2019
Zinc	45	5.4	I	mg/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW13	11/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	0.15	0.10	•	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.44	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.038	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	0.78	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	5.8	0.010		mg/L	5	5/5/2019
Nickel	0.065	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW13	11/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW74	71B		Prep	Date: 5/7/2019	Analyst: LB
Mercury	ND	0.021		mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW90	12A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.31	;	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW90	45C		Prep	Date: 5/2/2019	Analyst: JT
рН	7.93			pH Units	1	5/2/2019
Percent Moisture	D2974	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-002

Client Sample ID: 102

Collection Date: 4/29/2019 8:15:00 AM

Matrix: Soil

Eab ID: 17041170 002						
Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Percent Moisture	D2974			Prep	Date: 5/1/2019	Analyst: FN
Percent Moisture	20.1	0.2	•	wt%	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Franklin (EB-1)

Project: Lab ID:

19041196-003

Client Sample ID: 103

Collection Date: 4/29/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/2019	Analyst: AE1
Acetone	ND	0.083	m	g/Kg-dry	1	5/8/2019
Benzene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Bromodichloromethane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Bromoform	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Bromomethane	ND	0.011	m	g/Kg-dry	1	5/8/2019
2-Butanone	ND	0.083	m	g/Kg-dry	1	5/8/2019
Carbon disulfide	ND	0.055	m	g/Kg-dry	1	5/8/2019
Carbon tetrachloride	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Chlorobenzene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Chloroethane	ND	0.011	m	g/Kg-dry	1	5/8/2019
Chloroform	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Chloromethane	ND	0.011	m	g/Kg-dry	1	5/8/2019
Dibromochloromethane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
1,1-Dichloroethane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
1,2-Dichloroethane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
1,1-Dichloroethene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
cis-1,2-Dichloroethene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
trans-1,2-Dichloroethene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
1,2-Dichloropropane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0022	m	g/Kg-dry	1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0022	m	g/Kg-dry	1	5/8/2019
Ethylbenzene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
2-Hexanone	ND	0.022	m	g/Kg-dry	1	5/8/2019
4-Methyl-2-pentanone	ND	0.022	m	g/Kg-dry	1	5/8/2019
Methylene chloride	ND	0.011	m	g/Kg-dry	1	5/8/2019
Methyl tert-butyl ether	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Styrene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
1,1,2,2-Tetrachloroethane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Tetrachloroethene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Toluene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
1,1,1-Trichloroethane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
1,1,2-Trichloroethane	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Trichioroethene	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Vinyl chloride	ND	0.0055	m	g/Kg-dry	1	5/8/2019
Xylenes, Total	ND	0.017	m	g/Kg-dry	1	5/8/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3	550B)	Prep	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.040	m	g/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.040	m	g/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Oualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-003

Client Sample ID: 103

Collection Date: 4/29/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier U	nits	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3	3550B)	Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.41	mg/l	Kg-dry	1	5/2/2019
Anthracene	ND	0.040	mg/l	Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.040	mg/l	Kg-dry	1	5/2/2019
Benzidine	ND	0.40	mg/l	Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.040	_	Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.040	mg/l	Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.040	mg/l	Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.040	mg/l	Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/l	Kg-dry	1	5/2/2019
Benzyl alcohol	• ND	0.21	mg/l	Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/l	Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/l	Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/l	Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/l	Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/l	Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg/l	Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/l	Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.40	mg/l	Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/l	Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/l	Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/l	Kg-dry	1	5/2/2019
Chrysene	ND	0.040	mg/l	Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.040	mg/l	Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21		Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/l	Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/l	Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/l	Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/l	Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/l	Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/l	Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	•	Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	_	Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.40		Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	•	Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.040	•	Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.040	-	Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	•	Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	•	Kg-dry	1 .	5/2/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:**

ANALYTICAL RESULTS

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project: Lab ID:

Franklin (EB-1)

19041196-003

Client Sample ID: 103

Collection Date: 4/29/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	ier Units	DF	Date Analyze
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.040	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	. 0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	· ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	- 0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.82	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
CBs	SW80	082A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.095	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019 **ANALYTICAL RESULTS**

Date Frinted. May 09, 20

Client: Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Franklin (EB-1)

Lab ID: 19041196-003

Collection Date: 4/29/2019 8:30:00 AM

Matrix: Soil

Client Sample ID: 103

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.019	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.039	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Aluminum	14000	`20	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.0	mg/Kg-dry	10	5/8/2019
Arsenic	11	1.0	mg/Kg-dry	10	5/8/2019
Barium	61	1.0	mg/Kg-dry	10	5/8/2019
Beryllium	0.86	0.51	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.51	mg/Kg-dry	10	5/8/2019
Calcium	57000	61	mg/Kg-dry	10	5/8/2019
Chromium	26	1.0	mg/Kg-dry	10	5/8/2019
Cobalt	13	1.0	mg/Kg-dry	10	5/8/2019
Copper	20	2.5	mg/Kg-dry	10	5/8/2019
Iron	21000	31	mg/Kg-dry	10	5/8/2019
Lead	9.8	0.51	mg/Kg-dry	10	5/8/2019
Magnesium	27000	31	mg/Kg-dry	10	5/8/2019
Manganese	400	1.0	mg/Kg-dry	10	5/8/2019
Nickel	35	1.0	mg/Kg-dry	10	5/8/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019 **ANALYTICAL RESULTS**

Client: Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Franklin (EB-1)

Lab ID: 19041196-003

Client Sample ID: 103

Collection Date: 4/29/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6020A (SW3050B		3050B)	Prep	Analyst: MDT	
Potassium	3900	31	-	mg/Kg-dry	10	5/8/2019
Selenium	ND	1.0	1	mg/Kg-dry	10	5/8/2019
Silver	ND	1.0		mg/Kg-dry	10	5/8/2019
Sodium	200	61		mg/Kg-dry	10	5/8/2019
Thallium	ND	1.0		mg/Kg-dry	10	5/8/2019
Vanadium	27	1.0	1	mg/Kg-dry	10	5/8/2019
Zinc	48	5.1	ı	mg/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW1:	311/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	·	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.52	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.020	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.1	0.010		mg/L	5	5/5/2019
Nickel	0.060	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Analyst: LB	
Mercury	ND	0.00020	•	mg/L	1	5/3/2019
Mercury	SW7471B			Prep Date: 5/7/2019		Analyst: LB
Mercury	ND	0.022		mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.31	1	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C	Prep Date: 5/2/2019		Analyst: JT	
pH	7.92			pH Units	1	5/2/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-003

Client Sample ID: 103

Collection Date: 4/29/2019 8:30:00 AM

Matrix: Soil

RL Qualifier Units Result DF Date Analyzed **Analyses** Prep Date: 5/1/2019 Analyst: FN D2974 **Percent Moisture** 0.2 5/2/2019 **Percent Moisture** 18.2

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:**

May 09, 2019

ANALYTICAL RESULTS

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-004

Client Sample ID: 104

Collection Date: 4/29/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 4/30/2019	Analyst: AE
Acetone	ND	0.13	mg/Kg-dry	1	5/8/2019
Benzene	ND	0.0087	mg/Kg-dry	1	5/8/2019
Bromodichloromethane	ND	0.0087	mg/Kg-dry	1	5/8/2019
Bromoform	ND	0.0087	mg/Kg-dry	1	5/8/2019
Bromomethane	ND	0.017	mg/Kg-dry	1	5/8/2019
2-Butanone	ND	0.13	mg/Kg-dry	1	5/8/2019
Carbon disulfide	ND	0.087	mg/Kg-dry	1	5/8/2019
Carbon tetrachloride	ND	0.0087	mg/Kg-dry	1	5/8/2019
Chlorobenzene	ND	0.0087	mg/Kg-dry	1	5/8/2019
Chloroethane	ND	0.017	mg/Kg-dry	1	5/8/2019
Chloroform	ND	0.0087	mg/Kg-dry	1	5/8/2019
Chloromethane	ND	0.017	mg/Kg-dry	1	5/8/2019
Dibromochloromethane	ND	0.0087	mg/Kg-dry	1	5/8/2019
1,1-Dichloroethane	ND	0.0087	mg/Kg-dry	1	5/8/2019
1,2-Dichloroethane	ND	0.0087	mg/Kg-dry	1	5/8/2019
1,1-Dichloroethene	ND	0.0087	mg/Kg-dry	1	5/8/2019
cis-1,2-Dichloroethene	ND	0.0087	mg/Kg-dry	1	5/8/2019
trans-1,2-Dichloroethene	ND	0.0087	mg/Kg-dry	1	5/8/2019
1,2-Dichloropropane	ND	0.0087	mg/Kg-dry	1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0035	mg/Kg-dry	1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0035	mg/Kg-dry	1	5/8/2019
Ethylbenzene	ND	0.0087	mg/Kg-dry	1	5/8/2019
2-Hexanone	ND	0.035	mg/Kg-dry	1	5/8/2019
4-Methyl-2-pentanone	ND	0.035	mg/Kg-dry	1	5/8/2019
Methylene chloride	ND	0.017	mg/Kg-dry	1	5/8/2019
Methyl tert-butyl ether	ND	0.0087	mg/Kg-dry	1	5/8/2019
Styrene	ND	0.0087	mg/Kg-dry	1	5/8/2019
1,1,2,2-Tetrachloroethane	ND	0.0087	mg/Kg-dry	1	5/8/2019
Tetrachloroethene	ND	0.0087	mg/Kg-dry	1	5/8/2019
Toluene	ND	0.0087	mg/Kg-dry	1	5/8/2019
1,1,1-Trichloroethane	ND	0.0087	mg/Kg-dry	1	5/8/2019
1,1,2-Trichloroethane	ND	0.0087	mg/Kg-dry	1	5/8/2019
Trichloroethene	ND	0.0087	mg/Kg-dry	1	5/8/2019
Vinyl chloride	ND	0.0087	mg/Kg-dry	1	5/8/2019
Xylenes, Total	ND	0.026	mg/Kg-dry	1	5/8/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35		Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.042	mg/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.042	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:**

ANALYTICAL RESULTS

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project: Lab ID:

Franklin (EB-1)

19041196-004

Client Sample ID: 104

Collection Date: 4/29/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B) Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.42	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.042	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.042	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.42	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.042	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.042	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.042	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.042	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.1	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.22	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.22	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.22	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.1	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.22	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.22	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.22	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.22	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.42	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.22	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.22	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.22	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.042	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.042	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.22	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.22	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.22	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.22	mg/Kg-dry	1	5/2/2019
3.3´-Dichlorobenzidine	ND	0.22	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.22	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.22	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.22	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.22	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.42	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.1	mg/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.042	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.042	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.22	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.22	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-004

Client Sample ID: 104

Collection Date: 4/29/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyze	
Semivolatile Organic Compounds by GC/MS	SW82	.70C (SW3550E) Prep	Prep Date: 5/1/2019		
Fluoranthene	ND	0.042	mg/Kg-dry	1	5/2/2019	
Fluorene	ND	0.042	mg/Kg-dry	1	5/2/2019	
Hexachlorobenzene	ND	0.22	mg/Kg-dry	1	5/2/2019	
Hexachlorobutadiene	ND	0.22	mg/Kg-dry	1	5/2/2019	
Hexachlorocyclopentadiene	ND	0.22	mg/Kg-dry	1	5/2/2019	
Hexachloroethane	ND	0.22	mg/Kg-dry	1	5/2/2019	
Indeno(1,2,3-cd)pyrene	ND	0.042	mg/Kg-dry	1 '	5/2/2019	
Isophorone	ND	0.22	mg/Kg-dry	1	5/2/2019	
2-Methylnaphthalene	ND	0.22	mg/Kg-dry	1	5/2/2019	
2-Methylphenol	ND	0.22	mg/Kg-dry	1	5/2/2019	
4-Methylphenol	ND	0.22	mg/Kg-dry	1	5/2/2019	
Naphthalene	ND	0.042	mg/Kg-dry	1	5/2/2019	
2-Nitroaniline	ND	0.22	mg/Kg-dry	1	5/2/2019	
3-Nitroaniline	ND	0.22	mg/Kg-dry	1	5/2/2019	
4-Nitroaniline	ND	0.22	mg/Kg-dry	1	5/2/2019	
2-Nitrophenol	ND	0.22	mg/Kg-dry	1	5/2/2019	
4-Nitrophenol	ND	0.42	mg/Kg-dry	1	5/2/2019	
Nitrobenzene	ND	0.042	mg/Kg-dry	1	5/2/2019	
N-Nitrosodi-n-propylamine	ND	0.042	mg/Kg-dry	1	5/2/2019	
N-Nitrosodimethylamine	ND	0.22	mg/Kg-dry	1	5/2/2019	
N-Nitrosodiphenylamine	ND	0.22	mg/Kg-dry	1	5/2/2019	
2, 2'-oxybis(1-Chloropropane)	ND	0.22	mg/Kg-dry	1	5/2/2019	
Pentachlorophenol	ND	0.085	mg/Kg-dry	1	5/2/2019	
Phenanthrene	ND	0.042	mg/Kg-dry	1	5/2/2019	
Phenol	ND	0.22	mg/Kg-dry	1	5/2/2019	
Pyrene	ND	0.042	mg/Kg-dry	1	5/2/2019	
Pyridine	· ND	0.85	mg/Kg-dry	1	5/2/2019	
1,2,4-Trichlorobenzene	ND	0.22	mg/Kg-dry	1	5/2/2019	
2,4,5-Trichlorophenol	ND	0.22	mg/Kg-dry	1	5/2/2019	
2,4,6-Trichtorophenol	ND	0.22	mg/Kg-dry	1	5/2/2019	
PCBs	SW80	82A (SW3550E	B) Prep	Date: 5/1/2019	Analyst: EN	
Aroclor 1016	ND	0.10	mg/Kg-dry	1	5/1/2019	
Aroclor 1221	ND	0.10	mg/Kg-dry	1	5/1/2019	
Aroclor 1232	ND	0.10	mg/Kg-dry	1	5/1/2019	
Arocior 1242	ND	0.10	mg/Kg-dry	1	5/1/2019	
Aroclor 1248	ND	0.10	mg/Kg-dry	1	5/1/2019	
Aroclor 1254	ND	0.10	mg/Kg-dry	1	5/1/2019	
Aroclor 1260	ND	0.10	mg/Kg-dry	1	5/1/2019	

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

--- 22 -662

Page 23 of 52

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-004

Client Sample ID: 104

Collection Date: 4/29/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Pesticides	SW8	SW8081B (SW3550B)		Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND .	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1 .	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychior	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.042	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Aluminum	15000	23	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.3	mg/Kg-dry	10	5/8/2019
Arsenic	4.8	1.2	mg/Kg-dry	10	5/8/2019
Barium	87	1.2	mg/Kg-dry	10	5/8/2019
Beryllium	0.97	0.58	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.58	mg/Kg-dry	10	5/8/2019
Calcium	53000	69	mg/Kg-dry	10	5/8/2019
Chromium	28	1.2	mg/Kg-dry	10	5/8/2019
Cobalt	14	1.2	mg/Kg-dry	10	5/8/2019
Copper	26	2.9	mg/Kg-dry	10	5/8/2019
Iron	25000	35	mg/Kg-dry	10	5/8/2019
Lead	12	0.58	mg/Kg-dry	10	5/8/2019
Magnesium	27000	35	mg/Kg-dry	10	5/8/2019
Manganese	430	1.2	mg/Kg-dry	10	5/8/2019
Nickel	37	1.2	mg/Kg-dry	10	5/8/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID: 19041196-004

Client Sample ID: 104

Collection Date: 4/29/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6020A (SW3050B			Prep	Date: 5/4/2019	Analyst: MDT
Potassium	4300	35		ng/Kg-dry	10	5/8/2019
Selenium	ND	1.2	n	ng/Kg-dry	10	5/8/2019
Silver	ND	1.2	n	ng/Kg-dry	10	5/8/2019
Sodium	170	69	n	ng/Kg-dry	10	5/8/2019
Thallium	ND	1.2	n	ng/Kg-dry	10	5/8/2019
Vanadium	29	1.2	n	ng/Kg-dry	10	5/8/2019
Zinc	50	5.8	n	ng/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	-	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.47	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.029	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.0	0.010		mg/L	5	5/5/2019
Nickel	0.071	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Analyst: LB	
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/7/2019	Analyst: LB
Mercury	ND	0.023	п	ng/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		•	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.32	n	ng/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep Date: 5/2/2019		Analyst: JT
рН	7.94		(pH Units	1	5/2/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported:

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-004

Client Sample ID: 104

Collection Date: 4/29/2019 9:00:00 AM

Matrix: Soil

Analyses Result RL Qualifier Units DF Date Analyzed

Percent Moisture Percent Moisture 21.4 0.2 * wt% 1 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-005

Client Sample ID: 105

Collection Date: 4/29/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pre	ep Date: 4/30/201 !	9 Analyst: AE
Acetone	ND	0.11	mg/Kg-dr	y 1	5/8/2019
Benzene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Bromodichloromethane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Bromoform	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Bromomethane	ND	0.015	mg/Kg-dr	y 1	5/8/2019
2-Butanone	ND	0.11	mg/Kg-dr	y 1	5/8/2019
Carbon disulfide	ND	0.073	mg/Kg-dr	y 1	5/8/2019
Carbon tetrachloride	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Chlorobenzene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Chloroethane	ND	0.015	mg/Kg-dr	y 1	5/8/2019
Chloroform	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Chloromethane	ND	0.015	mg/Kg-dr	y 1	5/8/2019
Dibromochloromethane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
1,1-Dichloroethane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
1,2-Dichloroethane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
1,1-Dichloroethene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
cis-1,2-Dichloroethene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
trans-1,2-Dichloroethene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
1,2-Dichloropropane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0029	mg/Kg-dr	y 1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0029	mg/Kg-dr	y 1	5/8/2019
Ethylbenzene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
2-Hexanone	ND	0.029	mg/Kg-dr	y 1	5/8/2019
4-Methyl-2-pentanone	ND	0.029	mg/Kg-dr	y 1	5/8/2019
Methylene chloride	ND	0.015	mg/Kg-dr	y 1	5/8/2019
Methyl tert-butyl ether	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Styrene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
1,1,2,2-Tetrachloroethane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Tetrachloroethene	ND	0.0073	mg/Kg-dr	ý 1	5/8/2019
Toluene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
1,1,1-Trichloroethane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
1,1,2-Trichloroethane	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Trichloroethene	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Vinyl chloride	ND	0.0073	mg/Kg-dr	y 1	5/8/2019
Xylenes, Total	ND	0.022	mg/Kg-dr	y 1	5/8/2019
Semivolatile Organic Compounds by GC/MS	SW8:	270C (SW35	5 0B) Pre	ep Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.040	mg/Kg-dr	y 1	5/2/2019
Acenaphthylene	ND	0.040	mg/Kg-dr	y 1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **ANALYTICAL RESULTS**

May 09, 2019 **Date Printed:**

Client: Work Order: Environmental Group Services, Ltd.

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-005

Client Sample ID: 105

Collection Date: 4/29/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	r Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)	•	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.41	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.40	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.40	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.040	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-005

Client Sample ID: 105

Collection Date: 4/29/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Qua	lifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550)	B) Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.040	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenoi	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.040	mg/Kg-dry	1 ,	5/2/2019
Pyridine	ND	0.82	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs	SW80	082A (SW3550)	B) Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.095	mg/Kg-dry	1 .	5/1/2019
Aroclor 1260	ND	0.095	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019 **ANALYTICAL RESULTS**

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-005

Client Sample ID: 105

Collection Date: 4/29/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550E	3) Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.019	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.039	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050E	3) Prep	Date: 5/4/2019	Analyst: MDT
Aluminum	14000	20	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.0	mg/Kg-dry	10	5/8/2019
Arsenic	6.4	1.0	mg/Kg-dry	10	5/8/2019
Barium	94	1.0	mg/Kg-dry	10	5/8/2019
Beryllium	0.98	0.51	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.51	mg/Kg-dry	10	5/8/2019
Calcium	59000	61	mg/Kg-dry	10	5/8/2019
Chromium	26	1.0	mg/Kg-dry	10	5/8/2019
Cobalt	14	1.0	mg/Kg-dry	10	5/8/2019
Copper	29	2.6	mg/Kg-dry	10	5/8/2019
Iron	26000	31	mg/Kg-dry	10	5/8/2019
Lead	13	0.51	mg/Kg-dry	10	5/8/2019
Magnesium	30000	31	mg/Kg-dry	10	5/8/2019
Manganese	470	1.0	mg/Kg-dry	10	5/8/2019
Nickel	39	1.0	mg/Kg-dry	10	5/8/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported:

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-005

Client Sample ID: 105

Collection Date: 4/29/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Potassium	3800	31	· 1	mg/Kg-dry	10	5/8/2019
Selenium	ND	1.0	ı	mg/Kg-dry	10	5/8/2019
Silver	ND	1.0	(mg/Kg-dry	10	5/8/2019
Sodium	170	61	(mg/Kg-dry	10	5/8/2019
Thallium	ND	1.0	(mg/Kg-dry	10	5/8/2019
Vanadium	28	1.0	(mg/Kg-dry	10	5/8/2019
Zinc	51	5.1	ı	mg/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	•	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.54	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.020	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.3	0.010		mg/L	5	5/5/2019
Nickel	0.060	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/7/2019	Analyst: LB
Mercury	ND	0.024	(mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.31	ı	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/2/2019	Analyst: JT
pH	7.92			pH Units	1	5/2/2019
Percent Moisture	D297	'4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 09, 2019 Date Reported: **Date Printed:** May 09, 2019 **ANALYTICAL RESULTS**

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project: Lab ID:

Franklin (EB-1)

19041196-005

Client Sample ID: 105

Collection Date: 4/29/2019 9:30:00 AM

Matrix: Soil

RL Qualifier **Analyses** Result Units DF Date Analyzed D2974 Prep Date: 5/1/2019 Analyst: FN **Percent Moisture Percent Moisture** 18.4 0.2 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:**

ANALYTICAL RESULTS

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project: Lab ID: Franklin (EB-1)

19041196-006

Client Sample ID: 106

Collection Date: 4/29/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/2019	Analyst: AE
Acetone	ND	0.10	mg	/Kg-dry	1	5/8/2019
Benzene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Bromodichloromethane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Bromoform	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Bromomethane	ND	0.014	mg	/Kg-dry	1	5/8/2019
2-Butanone	ND	0.10	mg	/Kg-dry	1	5/8/2019
Carbon disulfide	ND	0.070	mg	J/Kg-dry	1	5/8/2019
Carbon tetrachloride	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Chlorobenzene	ND	0.0070	mg	J/Kg-dry	1	5/8/2019
Chloroethane	ND	0.014	mg	/Kg-dry	1	5/8/2019
Chloroform	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Chloromethane	ND	0.014	mg	/Kg-dry	1	5/8/2019
Dibromochloromethane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
1,1-Dichloroethane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
1,2-Dichloroethane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
1,1-Dichloroethene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
cis-1,2-Dichloroethene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
trans-1,2-Dichloroethene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
1,2-Dichloropropane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0028	mg	/Kg-dry	1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0028	mg	/Kg-dry	1	5/8/2019
Ethylbenzene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
2-Hexanone	ND	0.028	mg	/Kg-dry	1	5/8/2019
4-Methyl-2-pentanone	ND	0.028	mg	/Kg-dry	1	5/8/2019
Methylene chloride	ND	0.014	mg	/Kg-dry	1	5/8/2019
Methyl tert-butyl ether	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Styrene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
1,1,2,2-Tetrachloroethane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Tetrachloroethene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Toluene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
1,1,1-Trichloroethane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
1,1,2-Trichloroethane	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Trichloroethene	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Vinyl chloride	ND	0.0070	mg	/Kg-dry	1	5/8/2019
Xylenes, Total	ND	0.021	mg	/Kg-dry	1	5/8/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35		•	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.041	-	/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.041	mg	/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-006

Client Sample ID: 106

Collection Date: 4/29/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35			Date: 5/1/2019	Analyst: DM
Aniline	ND	0.42	m	g/Kg-dry	1	5/2/2019
Anthracene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Benzidine	ND	0.41	m	g/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	m	g/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	m	g/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	m	g/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	m	g/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	m	g/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	m	g/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	m	g/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	m	g/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	m	g/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.41	m	g/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	m	g/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	m	g/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	m	g/Kg-dry	1	5/2/2019
Chrysene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.041	m	g/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	m	g/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	m	g/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	m	g/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	m	g/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	m	g/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	m	g/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	m	g/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	m	g/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21		g/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.41		g/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0		g/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.041	m	g/Kg-dry	1	5/2/2019
2.6-Dinitrotoluene	ND	0.041		g/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21		g/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21		g/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-006

Client Sample ID: 106

Collection Date: 4/29/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.041	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1 ,	5/2/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.084	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND .	0.041	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.84	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs	SW80	82A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.10	mg/Kg-dry	1	5/1/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

lifiers: J - An

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Franklin (EB-1)

Lab ID: 19041196-006

Client Sample ID: 106

Collection Date: 4/29/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin .	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND -	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Aluminum	13000	22	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.2	mg/Kg-dry	10	5/8/2019
Arsenic	6.4	1.1	mg/Kg-dry	10	5/8/2019
Barium	83	1.1	mg/Kg-dry	10	5/8/2019
Beryllium	0.87	0.55	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.55	mg/Kg-dry	10	5/8/2019
Calcium	57000	66	mg/Kg-dry	10	5/8/2019
Chromium	26	1.1	mg/Kg-dry	10	5/8/2019
Cobalt	15	1.1	mg/Kg-dry	10	5/8/2019
Copper	23	2.8	mg/Kg-dry	10	5/8/2019
Iron	22000	33	mg/Kg-dry	10	5/8/2019
Lead	13	0.55	mg/Kg-dry	10	5/8/2019
Magnesium	28000	33	mg/Kg-dry	10	5/8/2019
Manganese	430	1.1	mg/Kg-dry	10	5/8/2019
Nickel	40	1.1	mg/Kg-dry	10	5/8/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-006

Client Sample ID: 106

Collection Date: 4/29/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW66	20A (SW	3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Potassium	3500	33	·	mg/Kg-dry	10	5/8/2019
Selenium	ND	1.1	ſ	mg/Kg-dry	10	5/8/2019
Silver	ND	1.1	ı	mg/Kg-dry	10	5/8/2019
Sodium	160	66	ſ	mg/Kg-dry	10	5/8/2019
Thallium	ND	1.1	r	mg/Kg-dry	10	5/8/2019
Vanadium	25	1.1	r	ng/Kg-dry	10	5/8/2019
Zinc	50	5.5	r	mg/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW1:	311/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	•	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.51	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.022	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	2.9	0.010		mg/L	5	5/5/2019
Nickel	0.060	0.020		mg/L	5	5/5/2019
Setenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	, ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1:	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW74	171B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.023	r	ng/Kg-dry	1	5/6/2019
Cyanide, Total	SW90)12A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.32	r	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW90)45C		Prep	Date: 5/2/2019	Analyst: JT
рН	7.93			pH Units	1	5/2/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-006

Client Sample ID: 106

Collection Date: 4/29/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Percent Moisture	D2974			Prep	Date: 5/1/2019	Analyst: FN
Percent Moisture	21.2	0.2	•	wt%	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-007

Client Sample ID: 107

Collection Date: 4/29/2019 10:30:00 AM

Matrix: Soil

Analyses .	Result	RL Q	ualifier	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/2019	Analyst: AE1
Acetone	ND	0.19	mg	g/Kg-dry	1	5/8/2019
Benzene	ND	0.013	mg	/Kg-dry	1	5/8/2019
Bromodichloromethane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Bromoform	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Bromomethane	ND	0.025	mg	g/Kg-dry	1	5/8/2019
2-Butanone	ND	0.19	mg	g/Kg-dry	1	5/8/2019
Carbon disulfide	ND	0.13	mg	g/Kg-dry	1	5/8/2019
Carbon tetrachloride	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Chlorobenzene	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Chloroethane	ND	0.025	mg	g/Kg-dry	1	5/8/2019
Chloroform	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Chloromethane	ND	0.025	mg	g/Kg-dry	1	5/8/2019
Dibromochloromethane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
1,1-Dichloroethane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
1,2-Dichloroethane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
1,1-Dichloroethene	ND	0.013	mg	g/Kg-dry	1	5/8/2019
cis-1,2-Dichloroethene	ND	0.013	mg	g/Kg-dry	1	5/8/2019
trans-1,2-Dichloroethene	ND	0.013	mg	g/Kg-dry	1	5/8/2019
1,2-Dichloropropane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0050	mg	g/Kg-dry	1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0050	mg	g/Kg-dry	1	5/8/2019
Ethylbenzene	ND	0.013	mg	g/Kg-dry	1	5/8/2019
2-Hexanone	ND	0.050	mg	g/Kg-dry	1	5/8/2019
4-Methyl-2-pentanone	ND	0.050	mg	g/Kg-dry	1	5/8/2019
Methylene chloride	ND	0.025	mg	g/Kg-dry	1	5/8/2019
Methyl tert-butyl ether	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Styrene	ND	0.013	mg	g/Kg-dry	1	5/8/2019
1,1,2,2-Tetrachloroethane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Tetrachloroethene	ND	0.013	mg	j/Kg-dry	1	5/8/2019
Toluene	ND	0.013	mg	g/Kg-dry	1	5/8/2019
1,1,1-Trichloroethane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
1,1,2-Trichloroethane	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Trichloroethene	ND	0.013	mg	J/Kg-dry	1	5/8/2019
Vinyl chloride	ND	0.013	mg	g/Kg-dry	1	5/8/2019
Xylenes, Total	ND	0.038	mg	g/Kg-dry	1	5/8/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35			Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.040	mg	g/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Franklin (EB-1)

Lab ID: 19041196-007

Client Sample ID: 107

Collection Date: 4/29/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3	3550B)	Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.41	mg	g/Kg-dry	1	5/2/2019
Anthracene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Benzidine	ND	0.40	-	g/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg	g/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg	g/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg	g/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg	g/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.40	mg	g/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg	g/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg	g/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Chrysene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg	g/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mç	g/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mç	g/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mç	g/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg	g/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg	g/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg	g/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.40	mg	g/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg	g/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.040	mg	g/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg	g/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mç	g/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-007

Client Sample ID: 107

Collection Date: 4/29/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.040	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	, 1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	, ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	+ 1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.82	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs	SW80	82A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-007

Client Sample ID: 107

Collection Date: 4/29/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	r Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND ·	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Aluminum	14000	22	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.2	mg/Kg-dry	10	5/8/2019
Arsenic	9.7	1.1	mg/Kg-dry	10	5/8/2019
Barium	61	1.1	mg/Kg-dry	10	5/8/2019
Beryllium	0.86	0.56	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.56	mg/Kg-dry	10	5/8/2019
Calcium	61000	67	mg/Kg-dry	10	5/8/2019
Chromium	27	1.1	mg/Kg-dry	10	5/8/2019
Cobalt	16	1.1	mg/Kg-dry	10	5/8/2019
Copper	20	2.8	mg/Kg-dry	10	5/8/2019
Iron	21000	34	mg/Kg-dry	10	5/8/2019
Lead	12	0.56	mg/Kg-dry	10	5/8/2019
Magnesium	29000	34	mg/Kg-dry	10	5/8/2019
Manganese	430	1.1	mg/Kg-dry	10	5/8/2019
Nickel	42	1.1	mg/Kg-dry	10	5/8/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project: Franklin (EB-1)

Lab ID: 19041196-007

Client Sample ID: 107

Collection Date: 4/29/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW60	20A (SW	3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Potassium	4000	34		mg/Kg-dry	10	5/8/2019
Selenium	ND	1.1	1	mg/Kg-dry	10	5/8/2019
Silver	ND	1.1	1	mg/Kg-dry	10	5/8/2019
Sodium	180	67	1	mg/Kg-dry	10	5/8/2019
Thallium	ND	1.1	1	mg/Kg-dry	10	5/8/2019
Vanadium	27	1.1	1	mg/Kg-dry	10	5/8/2019
Zinc	50	5.6	ı	mg/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW13	11/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	•	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.47	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.013	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.2	0.010		mg/L	5	5/5/2019
Nickel	0.044	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW13	11/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW74	71B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.019	1	mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW90	12A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.31		mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW90	45C		Prep	Date: 5/2/2019	Analyst: JT
pH	8.07			pH Units	1	5/2/2019
Percent Moisture	D2974	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019

ANALYTICAL RESULTS

Environmental Group Services, Ltd.

Client Sample ID: 107

Work Order:

19041196 Revision 0

Collection Date: 4/29/2019 10:30:00 AM

Project: Lab ID:

Client:

Franklin (EB-1) 19041196-007

Matrix: Soil

AnalysesResultRLQualifierUnitsDFDate AnalyzedPercent MoistureD2974Prep Date: 5/1/2019Analyst: FNPercent Moisture19.00.2*wt%15/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-008

Client Sample ID: 108

Collection Date: 4/29/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 4/30/2019	Analyst: AET
Acetone	ND	0.11	mg/Kg-dry	1	5/8/2019
Benzene	ND	0.0075	mg/Kg-dry	1	5/8/2019
Bromodichloromethane	ND	0.0075	mg/Kg-dry	1	5/8/2019
Bromoform	ND	0.0075	mg/Kg-dry	1	5/8/2019
Bromomethane	ND	0.015	mg/Kg-dry	1	5/8/2019
2-Butanone	ND	0.11	mg/Kg-dry	1	5/8/2019
Carbon disulfide	ND	0.075	mg/Kg-dry	1	5/8/2019
Carbon tetrachloride	ND .	0.0075	mg/Kg-dry	1	5/8/2019
Chlorobenzene	ND	0.0075	mg/Kg-dry	1	5/8/2019
Chloroethane	ND	0.015	mg/Kg-dry	1	5/8/2019
Chloroform	ND	0.0075	mg/Kg-dry	1	5/8/2019
Chloromethane	ND	0.015	mg/Kg-dry	1	5/8/2019
Dibromochloromethane	ND	0.0075	mg/Kg-dry	1	5/8/2019
1,1-Dichloroethane	ND	0.0075	mg/Kg-dry	1	5/8/2019
1,2-Dichloroethane	ND	0.0075	mg/Kg-dry	1	5/8/2019
1,1-Dichloroethene	ND	0.0075	mg/Kg-dry	1	5/8/2019
cis-1,2-Dichloroethene	ND	0.0075	mg/Kg-dry	1	5/8/2019
trans-1,2-Dichloroethene	ND	0.0075	mg/Kg-dry	1	5/8/2019
1,2-Dichloropropane	ND	0.0075	mg/Kg-dry	1	5/8/2019
cis-1,3-Dichloropropene	ND	0.0030	mg/Kg-dry	1	5/8/2019
trans-1,3-Dichloropropene	ND	0.0030	mg/Kg-dry	1	5/8/2019
Ethylbenzene	ND	0.0075	mg/Kg-dry	1	5/8/2019
2-Hexanone	ND	0.030	mg/Kg-dry	1	5/8/2019
4-Methyl-2-pentanone	ND	0.030	mg/Kg-dry	1	5/8/2019
Methylene chloride	ND	0.015	mg/Kg-dry	1	5/8/2019
Methyl tert-butyl ether	ND	0.0075	mg/Kg-dry	1	5/8/2019
Styrene	ND	0.0075	mg/Kg-dry	1	5/8/2019
1,1,2,2-Tetrachloroethane	ND	0.0075	mg/Kg-dry	1	5/8/2019
Tetrachloroethene	ND	0.0075	mg/Kg-dry	1	5/8/2019
Toluene	ND	0.0075	mg/Kg-dry	1	5/8/2019
1,1,1-Trichloroethane	ND	0.0075	mg/Kg-dry	1	5/8/2019
1,1,2-Trichloroethane	ND	0.0075	mg/Kg-dry	1	5/8/2019
Trichloroethene	ND	0.0075	mg/Kg-dry	1	5/8/2019
Vinyl chloride	ND	0.0075	mg/Kg-dry	1	5/8/2019
Xylenes, Total	ND	0.023	mg/Kg-dry	1	5/8/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35		Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.041	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **ANALYTICAL RESULTS**

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-008

Client Sample ID: 108

Collection Date: 4/29/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.41	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.41	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	5/2/2019
2.4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 09, 2019 Date Reported:

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-008

Client Sample ID: 108

Collection Date: 4/29/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyze
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3550)B) Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.041	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	. 5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND .	0.41	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	`1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.82	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs	SW8	082A (SW3550)B) Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.098	mg/Kg-dry	1	5/2/2019
Aroclor 1221	ND	0.098	mg/Kg-dry	1	5/2/2019
Aroclor 1232	ND	0.098	mg/Kg-dry	1	5/2/2019
Aroclor 1242	ND	0.098	mg/Kg-dry	1	5/2/2019
Aroclor 1248	ND	0.098	mg/Kg-dry	1	5/2/2019
Aroclor 1254	ND	0.098	mg/Kg-dry	1	5/2/2019
Aroclor 1260	ND	0.098	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project: Lab ID: Franklin (EB-1)

19041196-008

Client Sample ID: 108

Collection Date: 4/29/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	5/2/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/2/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	5/2/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/2/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/2/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/2/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/2/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/2/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/2/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/2/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/2/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/2/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/2/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/2/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/2/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/2/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/2/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/2/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/2/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/2/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/2/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	5/2/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Atuminum	15000	21	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.1	mg/Kg-dry	10	5/8/2019
Arsenic	8.0	1.1	mg/Kg-dry	- 10	5/8/2019
Barium	83	1.1	mg/Kg-dry	10	5/8/2019
Beryllium	0.95	0.53	mg/Kg-dry	10	5/8/2019
Cadmium	ND	0.53	mg/Kg-dry	10	5/8/2019
Calcium	60000	63	mg/Kg-dry	10	5/8/2019
Chromium	28	1.1	mg/Kg-dry	10	5/8/2019
Cobalt	. 15	1.1	mg/Kg-dry	10	5/8/2019
Copper	22	2.6	mg/Kg-dry	10	5/8/2019
Iron	22000	32	mg/Kg-dry	10	5/8/2019
Lead	12	0.53	mg/Kg-dry	10	5/8/2019
Magnesium	30000	32	mg/Kg-dry	10	5/8/2019
Manganese	440	1.1	mg/Kg-dry	10	5/8/2019
Nickel	39	1.1	mg/Kg-dry	10	5/8/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project:

Franklin (EB-1)

Lab ID:

19041196-008

Client Sample ID: 108

Collection Date: 4/29/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	(3050B)	Prep	Date: 5/4/2019	Analyst: MDT
Potassium	4500	32		mg/Kg-dry	10	5/8/2019
Selenium	ND	1.1	1	mg/Kg-dry	10	5/8/2019
Silver	ND	1.1	ı	mg/Kg-dry	10	5/8/2019
Sodium	180	63	ı	mg/Kg-dry	10	5/8/2019
Thallium	ND	1.1	ı	mg/Kg-dry	10	5/8/2019
Vanadium	29	1.1	ı	mg/Kg-dry	10	5/8/2019
Zinc	51	5.3	(mg/Kg-dry	10	5/8/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10		mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.55	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.016	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.7	0.010		mg/L	5	5/5/2019
Nickel	0.048	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.024	1	mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.31	1	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/2/2019	Analyst: JT
рН	8.07			pH Units	1	5/2/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported:

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041196 Revision 0

Project: Lab ID: Franklin (EB-1)

19041196-008

Client Sample ID: 108

Collection Date: 4/29/2019 11:00:00 AM

Matrix: Soil

Analyses Result RL Qualifier Units DF Date Analyzed

Percent Moisture Percent Moisture 18.9 0.2 * wt% 1 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Analysis Corporation STAT

CHAIN OF CUSTODY RECORD 2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com

100 ?-2-10 10 4 Tum Around Time (Days) Additional Information: Results Needed: Quote No.: P.O. No.: Nº: 921194 Preservation Code: A = None B = HNO₃ C = NaOH G = Other $D = H_2SO_4$ E = HCl F = 5035/EnCore Comments: HO+0721 81+721 4 1900 Containers Date/Time: 4/30 /19 /6:3 No. of 39/6/88 7 Date/Time: 4/39/19 Client Tracking No.: Preserv Qmb Date/Time: Date/Time: Сошр. Date/Time: Date/Time: Matrix 930 ago Ollo 3 200 100 Phone: Time Taken ofto e-mail: BUS Fax: Date Taken 40/5 [EB-1 Ş Client Sample Number/Description: FRINKLIN GEEN. EBSL elinquished by: (Signature) (Signature) clinquished by: (Signatu Received by: (Signature) cceived by: (Signature) Received by: (Signature Project Location: Project Number: Project Name: Report To: Sampler(s): QC Level: Company: 20 60 10 99 jo 167 108 3

Sample Receipt Checklist

Client Name EGSL		Date and Tim	e Received:	4/30/2019 4:32:00 PM
Work Order Number 19041196		Received by:	EAA	
Checklist completed by: 4	430/19	Reviewed by:	Bry Initiats	4/30/14 Date
Matrix: Carrier name	ne <u>STAT Analysis</u>			
Shipping container/cooler in good condition?	Yes 🗹	No 🗆	Not Present	
Custody seals intact on shippping container/cooler?	Yes 🗆	No 🗆	Not Present	
Custody seals intact on sample bottles?	Yes 🗌	No 🗆 .	Not Present 🗹	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗆		٠
Chain of custody agrees with sample labels/containers?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗹	No 🗆		
Sample containers intact?	Yes 🗹	No 🗆		•
Sufficient sample volume for indicated test?	Yes 🗹	No 🗆		
All samples received within holding time?	Yes 🗹	No 🗆		
Container or Temp Blank temperature in compliance?	Yes 🗹	No 🗆	Temperature	4.1 °C
Water - VOA vials have zero headspace? No VOA vials s		Yes 🖽	No 🗟	
Water - Samples pH checked?	Yes 🖽	No 🖾	Checked by:	
Water - Samples properly preserved?	Yes 🖽	No 🖾	pH Adjusted?	
Any No response must be detailed in the comments section below	. 			
Comments:				
	•	·		
Client / Person Contacted: Date contacted:		Conta	acted by:	
Response:				

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 09, 2019

Environmental Group Services, Ltd. 557 W. Polk

Chicago, IL 60610

Telephone: (312) 447-1200 Fax: (312) 447-0922

Analytical Report for STAT Work Order: 19041193 Revision 0

RE: Franklin (EB-2)

Dear Environmental Group Services, Ltd.:

STAT Analysis received 8 samples for the referenced project on 4/30/2019 4:32:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAP standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.


All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

Justice Kwateng
Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entitles named above. The results of this report relate only to the samples as received and tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Date: May 09, 2019

Client: Environmental Group Services, Ltd.

Project: Franklin (EB-2) **Work Order:** 19041193 Revision 0

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
19041193-001A	109		4/30/2019 8:00:00 AM	4/30/2019
19041193-001B	109		4/30/2019 8:00:00 AM	4/30/2019
19041193-002A	110		4/30/2019 8:30:00 AM	4/30/2019
19041193-002B	110		4/30/2019 8:30:00 AM	4/30/2019
19041193-003A	111		4/30/2019 9:00:00 AM	4/30/2019
19041193-003B	111		4/30/2019 9:00:00 AM	4/30/2019
19041193-004A	112		4/30/2019 9:30:00 AM	4/30/2019
19041193-004B	112		4/30/2019 9:30:00 AM	4/30/2019
19041193-005A	113		4/30/2019 10:00:00 AM	4/30/2019
19041193-005B	113		4/30/2019 10:00:00 AM	4/30/2019
19041193-006A	114		4/30/2019 10:30:00 AM	4/30/2019
19041193-006B	114		4/30/2019 10:30:00 AM	4/30/2019
19041193-007A	115		4/30/2019 11:00:00 AM	4/30/2019
19041193-007B	115		4/30/2019 11:00:00 AM	4/30/2019
19041193-008A	116		4/30/2019 11:30:00 AM	4/30/2019
19041193-008B	116		4/30/2019 11:30:00 AM	4/30/2019

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID: Franklin (EB-2)

19041193-001

Client Sample ID: 109

Collection Date: 4/30/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 4/30/201 9	Analyst: AET
Acetone	ND	0.12	mg/Kg-dry	1	5/7/2019
Benzene	ND	0.0082	mg/Kg-dry	1	5/7/2019
Bromodichloromethane	ND	0.0082	mg/Kg-dry	1	5/7/2019
Bromoform	ND	0.0082	mg/Kg-dry	1	5/7/2019
Bromomethane	ND	0.016	mg/Kg-dry	1	5/7/2019
2-Butanone	ND	0.12	mg/Kg-dry	1	5/7/2019
Carbon disulfide	ND	0.082	mg/Kg-dry	1	5/7/2019
Carbon tetrachloride	ND	0.0082	mg/Kg-dry	1	5/7/2019
Chlorobenzene	ND	0.0082	mg/Kg-dry	1	5/7/2019
Chloroethane	ND	0.016	mg/Kg-dry	1 、	5/7/2019
Chloroform	ND	0.0082	mg/Kg-dry	1	5/7/2019
Chloromethane	ND	0.016	mg/Kg-dry	1	5/7/2019
Dibromochloromethane	ND	0.0082	mg/Kg-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.0082	mg/Kg-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.0082	mg/Kg-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.0082	mg/Kg-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.0082	mg/Kg-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.0082	mg/Kg-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.0082	mg/Kg-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0033	mg/Kg-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0033	mg/Kg-dry	1	5/7/2019
Ethylbenzene	ND	0.0082	mg/Kg-dry	1	5/7/2019
2-Hexanone	ND	0.033	mg/Kg-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.033	mg/Kg-dry	1	5/7/2019
Methylene chloride	ND	0.016	mg/Kg-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.0082	mg/Kg-dry	1	5/7/2019
Styrene	ND	0.0082	mg/Kg-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.0082	mg/Kg-dry	1	5/7/2019
Tetrachloroethene	ND	0.0082	mg/Kg-dry	1	5/7/2019
Toluene	ND	0.0082	mg/Kg-dry	1	5/7/2019
1,1,1-Trichloroethane	ND	0.0082	mg/Kg-dry	1	5/7/2019
1,1,2-Trichloroethane	ND	0.0082	mg/Kg-dry	1	5/7/2019
Trichloroethene	ND	0.0082	mg/Kg-dry	1	5/7/2019
Vinyl chloride	ND	0.0082	mg/Kg-dry	1	5/7/2019
Xylenes, Total	ND	0.025	mg/Kg-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35		Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.041	mg/Kg-dry	1	5/2/2019

...

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 1904

19041193 Revision 0

Project: Lab ID: Franklin (EB-2)

19041193-001

Client Sample ID: 109

Collection Date: 4/30/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Qual	ifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550E		Date: 5/1/2019	Analyst: DM
Aniline	ND	0.42	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.41	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	МD	0.21	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

· B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, 1L 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019 **ANALYTICAL RESULTS**

Client:

Environmental Group Services, Ltd.

Client Sample ID: 109

Work Order:

19041193 Revision 0

Collection Date: 4/30/2019 8:00:00 AM

Project:

Franklin (EB-2)

Matrix: Soil

_		
Lab	ID:	19041193-001

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW35		•	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.041		mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.041		mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21		mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21		mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21		mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21		mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.041		mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21		mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21		mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21		mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21		mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.041		mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21		mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21		mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21		mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21		mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.41		mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.041		mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.041		mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21		mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21		mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21		mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.084		mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.041		mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21		mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.041		mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.84		mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21		mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21		mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21		mg/Kg-dry	1	5/2/2019
PCBs	SW80	082A (SW35	50B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.10		mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.10		mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.10		mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.10		mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.10		mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.10		mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.10		mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project: Franklin (EB-2)

Lab ID: 19041193-001

Client Sample ID: 109

Collection Date: 4/30/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4´-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4´-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4´-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.042	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	11000	21	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.1	mg/Kg-dry	10	5/8/2019
Arsenic	7.7	1.1	mg/Kg-dry	10	5/4/2019
Barium	59	1.1	mg/Kg-dry	10	5/4/2019
Beryllium	0.73	0.53	mg/Kg-dry	10	5/4/2019
Cadmium	ND	0.53	mg/Kg-dry	10	5/4/2019
Calcium	69000	63	mg/Kg-dry	10	5/4/2019
Chromium	23	1.1	mg/Kg-dry	10	5/4/2019
Cobalt	16	1.1	mg/Kg-dry	10	5/4/2019
Copper	35	2.6	mg/Kg-dry	10	5/4/2019
Iron	23000	32	mg/Kg-dry	10	5/8/2019
Lead	17	0.53	mg/Kg-dry	10	5/4/2019
Magnesium	33000	32	mg/Kg-dry	10	5/8/2019
Manganese	500	1.1	mg/Kg-dry	10	5/4/2019
Nickel	42	1.1	mg/Kg-dry	10	5/4/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-001

Client Sample ID: 109

Collection Date: 4/30/2019 8:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW3	3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Potassium	2400	32	п	ng/Kg-dry	10	5/8/2019
Selenium	ND	1.1	n	ng/Kg-dry	10	5/4/2019
Silver	ND	1.1	n	ng/Kg-dry	10	5/4/2019
Sodium	160	63	n	ng/Kg-dry	10	5/8/2019
Thallium	ND	1.1	u	ng/Kg-dry	10	5/4/2019
Vanadium	26	1.1	n	ng/Kg-dry	10	5/4/2019
Zinc	55	5.3	n	ng/Kg-dry	10	5/4/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10		mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.54	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND.	0.010		mg/L	5	5/5/2019
Cobalt	0.037	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese ·	3.6	0.010		mg/L	5	5/5/2019
Nickel	0.077	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	, ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.022	n	ng/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.32	n	ng/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/1/2019	Analyst: JLV
pH	8.00		1	pH Units	1	5/1/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-001

Client Sample ID: 109

Collection Date: 4/30/2019 8:00:00 AM

Matrix: Soil

15041155 005						
Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Percent Moisture	D2974			Prep	Date: 5/1/2019	Analyst: FN
Percent Moisture	20.7	0.2	•	wt%	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-002

Client Sample ID: 110

Collection Date: 4/30/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier U	Jnits	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/2019	Analyst: AET
Acetone	ND	0.13	mg/	Kg-dry	1	5/7/2019
Benzene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Bromodichloromethane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Bromoform	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Bromomethane	ND	0.018	mg/	Kg-dry	1	5/7/2019
2-Butanone	ND	0.13	mg/	Kg-dry	1	5/7/2019
Carbon disulfide	ND	0.089	mg/	Kg-dry	1	5/7/2019
Carbon tetrachloride	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Chlorobenzene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Chloroethane	ND	0.018	mg/	Kg-dry	1	5/7/2019
Chloroform	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Chloromethane	ND	0.018	mg/	Kg-dry	1	5/7/2019
Dibromochloromethane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0036	mg/	Kg-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0036	mg/	Kg-dry	1	5/7/2019
Ethylbenzene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
2-Hexanone	ND	0.036	mg/	Kg-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.036	mg/	Kg-dry	1	5/7/2019
Methylene chloride	ND	0.018	mg/	Kg-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Styrene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Tetrachloroethene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Toluene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
1,1,1-Trichloroethane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
1,1,2-Trichloroethane	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Trichloroethene	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Vinyl chloride	ND	0.0089	mg/	Kg-dry	1	5/7/2019
Xylenes, Total	ND	0.027	mg/	Kg-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B)	Prep	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.040	mg/	Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.040	mg/	Kg-dry	1	5/2/2019

ND - I

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 May 09, 2019 **ANALYTICAL RESULTS**

Date Printed:

Client:

Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID: 19041193-002 Client Sample ID: 110

Collection Date: 4/30/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS		.70C (SW3550B)	Prep (Date: 5/1/2019	Analyst: DM
Aniline	ND	0.40	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.40	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND .	0.040	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.20	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	·ND	0.20	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.20	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.40	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.040	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.20	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.20	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.20	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.20	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-002

Client Sample ID: 110

Collection Date: 4/30/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.040	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.20	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.20	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.080	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.80	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
PCBs		82A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.096	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Work Order: Environmental Group Services, Ltd.

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-002

Client Sample ID: 110

Collection Date: 4/30/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B) Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.019	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	13000	21	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.1	mg/Kg-dry	10	5/8/2019
Arsenic	7.1	1.0	mg/Kg-dry	10	5/4/2019
Barium	110	1.0	mg/Kg-dry	10	5/4/2019
Beryllium	0.95	0.52	mg/Kg-dry	10	5/4/2019
Cadmium	ND	0.52	mg/Kg-dry	10	5/4/2019
Calcium	64000	62	mg/Kg-dry	10	5/4/2019
Chromium	30	1.0	mg/Kg-dry	10	5/4/2019
Cobalt	16	1.0	mg/Kg-dry	10	5/4/2019
Copper	40	2.6	mg/Kg-dry	10	5/4/2019
Iron	26000	31	mg/Kg-dry	10	5/8/2019
Lead	18	0.52	mg/Kg-dry	10	5/4/2019
Magnesium	27000	31	mg/Kg-dry	10	5/8/2019
Manganese	550	1.0	mg/Kg-dry	10	5/4/2019
Nickel	48	1.0	mg/Kg-dry	10	5/4/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-002

Client Sample ID: 110

Collection Date: 4/30/2019 8:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Potassium	3200	31	I	mg/Kg-dry	10	5/8/2019
Selenium	ND	1.0	I	mg/Kg-dry	10	5/4/2019
Silver	ND	1.0	I	mg/Kg-dry	10	5/4/2019
Sodium	160	62	I	mg/Kg-dry	10	5/8/2019
Thallium	ND	1.0	I	mg/Kg-dry	10	5/4/2019
Vanadium	29	. 1.0	I	mg/Kg-dry	10	5/4/2019
Zinc	61	5.2	I	mg/Kg-dry	10	5/4/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	•	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.44	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.020	0.010		mg/L	5	5/5/2019
Copper .	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.0	0.010		mg/L	5	5/5/2019
Nickel	0.053	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.022	1	mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.30	ı	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/1/2019	Analyst: JLV
pH	8.08			pH Units	1	5/1/2019
Percent Moisture	D297	' 4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lah ID:

19041193-002

Client Sample ID: 110

Collection Date: 4/30/2019 8:30:00 AM

Matrix: Soil

Lau ID . 190411934	002					
Analyses	Result	RL (Qualifier	Units	DF	Date Analyzed
Percent Moisture	D2974			Prep	Date: 5/1/2019	Analyst: FN
Percent Moisture	17.6	0.2	•	wt%	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-003

Client Sample ID: 111

Collection Date: 4/30/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qu	alifier Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Pre	Date: 4/30/201	9 Analyst: AET
Acetone	ND	0.092	mg/Kg-dry	1	5/7/2019
Benzene	ND	0.0061	mg/Kg-dry	1	5/7/2019
Bromodichloromethane	ND	0.0061	mg/Kg-dry	1	5/7/2019
Bromoform	ND	0.0061	mg/Kg-dry	1	5/7/2019
Bromomethane	ND	0.012	mg/Kg-dry	1	5/7/2019
2-Butanone	ND	0.092	mg/Kg-dry	1	5/7/2019
Carbon disulfide	ND	0.061	mg/Kg-dry	1	5/7/2019
Carbon tetrachloride	ND	0.0061	mg/Kg-dry	1	5/7/2019
Chlorobenzene	ND	0.0061	mg/Kg-dry	1	5/7/2019
Chloroethane	ND	0.012	mg/Kg-dry	1	5/7/2019
Chloroform	ND	0.0061	mg/Kg-dry	1	5/7/2019
Chloromethane	ND	0.012	mg/Kg-dry	1	5/7/2019
Dibromochloromethane	ND	0.0061	mg/Kg-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.0061	mg/Kg-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.0061	mg/Kg-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.0061	mg/Kg-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.0061	mg/Kg-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.0061	mg/Kg-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.0061	mg/Kg-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	5/7/2019
Ethylbenzene	ND	0.0061	mg/Kg-dry	1	5/7/2019
2-Hexanone	ND	0.024	mg/Kg-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.024	mg/Kg-dry	1 '	5/7/2019
Methylene chloride	ND	0.012	mg/Kg-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.0061	mg/Kg-dry	1	5/7/2019
Styrene	ND	0.0061	mg/Kg-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.0061	mg/Kg-dry	1	5/7/2019
Tetrachloroethene	ND	0.0061	mg/Kg-dry	1	5/7/2019
Toluene	ND	0.0061	mg/Kg-dry	1	5/7/2019
1,1,1-Trichloroethane	ND	0.0061	mg/Kg-dry	1	5/7/2019
1,1,2-Trichloroethane	. ND	0.0061	mg/Kg-dry		5/7/2019
Trichloroethene	ND	0.0061	mg/Kg-dry		5/7/2019
Vinyl chloride	ND	0.0061	mg/Kg-dry	1	5/7/2019
Xylenes, Total	ND	0.018	mg/Kg-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW355		Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.041	mg/Kg-dry	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019 ANALYTICAL RESULTS

Date I I III co. 171ay 03, 2

Client: Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project: Franklin (EB-2)

Lab ID: 19041193-003

Client Sample ID: 111

Collection Date: 4/30/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qu	ıalifier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW355	i 0B) Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.41	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.41	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	· ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1 ′	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

19041193 Revision 0 Work Order:

Project:

Franklin (EB-2)

Lab ID:

19041193-003

Client Sample ID: 111

Collection Date: 4/30/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.041	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.082	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.82	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs		082A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.099	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.099	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-003

Client Sample ID: 111

Collection Date: 4/30/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4´-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4´-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4´-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	14000	23	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.3	mg/Kg-dry	10	5/8/2019
Arsenic	9.0	1.1	mg/Kg-dry	10	5/4/2019
Barium	94	1.1	mg/Kg-dry	10	5/4/2019
Beryllium	0.99	0.57	mg/Kg-dry	10	5/4/2019
Cadmium	ND	0.57	mg/Kg-dry	10	5/4/2019
Calcium	83000	68	mg/Kg-dry	10	5/4/2019
Chromium	34	1.1	mg/Kg-dry	10	5/4/2019
Cobalt	19	1.1	mg/Kg-dry	10	5/4/2019
Copper	27	2.8	mg/Kg-dry	10	5/4/2019
Iron	23000	34	mg/Kg-dry	10	5/8/2019
Lead	16	0.57	mg/Kg-dry	10	5/4/2019
Magnesium	31000	34	mg/Kg-dry	10	5/8/2019
Manganese	600	1.1	mg/Kg-dry	10	5/4/2019
Nickel	51	1.1	mg/Kg-dry	10	5/4/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2)

19041193-003

Client Sample ID: 111

Collection Date: 4/30/2019 9:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier Units	DF	Date Analyzed
Metals by ICP/MS	, SW6	6020A (SW3	8 050B) Prep	Date: 5/3/2019	Analyst: MDT
Potassium	3600	34	mg/Kg-dry	10	5/8/2019
Selenium	ND	1.1	mg/Kg-dry	10	5/4/2019
Silver	ND	1.1	mg/Kg-dry	- 10	5/4/2019
Sodium	170	68	mg/Kg-dry	10	5/8/2019
Thallium	ND	1.1	mg/Kg-dry	10	5/4/2019
Vanadium	33	1.1	mg/Kg-dry	10	5/4/2019
Zinc	64	5.7	mg/Kg-dry	10	5/4/2019
TCLP Metals by ICP/MS	SW1	1311/6020A	(SW3005A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	mg/L	5	5/8/2019
Antimony	ND	0.015	mg/L	5	5/8/2019
Arsenic	· ND	0.010	mg/L	5	5/5/2019
Barium	0.34	0.050	mg/L	5	5/5/2019
Beryllium	ND	0.0050	mg/L	5	5/5/2019
Cadmium	ND	0.0050	mg/L	5	5/5/2019
Chromium	ND	0.010	mg/L	5	5/5/2019
Cobalt	0.023	0.010	mg/L	5	5/5/2019
Copper	ND	0.10	mg/L	5	5/5/2019
Iron	ND	0.25	mg/L	5	5/5/2019
Lead	, ND	0.0050	mg/L	5	5/5/2019
Manganese	3.7	0.010	mg/L	5	5/5/2019
Nickel	0.055	0.020	mg/L	5	5/5/2019
Selenium	ND	0.010	mg/L	5	5/5/2019
Silver	· ND	0.010	. mg/L	5	5/5/2019
Thallium	ND	0.0050	mg/L	5	5/5/2019
Vanadium	ND	0.010	mg/L	5	5/5/2019
Zinc	ND	0.050	mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A	Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020	mg/L	1	5/3/2019
Mercury	SW7	471B	Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.022	mg/Kg-dry	1	5/6/2019
Cyanide, Total	SWS	012A	Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND .	0.31	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SWS	045C	Prep	Date: 5/1/2019	Analyst: JLV
рН	7.93		pH Units	1	5/1/2019
Percent Moisture	D29	74	Prep	Date: 5/1/2019	Analyst: FN

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-003

Client Sample ID: 111

Collection Date: 4/30/2019 9:00:00 AM

Matrix: Soil

Eab 10: 190 (1195 005	<u></u>					
Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Percent Moisture	D2974			Prep	Date: 5/1/2019	Analyst: FN
Percent Moisture	19.9	0.2	•	wt%	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-004

Client Sample ID: 112

Collection Date: 4/30/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	Qualifier Un	its	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/2019	Analyst: AET
Acetone	ND	0.10	mg/K	g-dry	1	5/7/2019
Benzene	ND	0.0066	mg/K	g-dry	1	5/7/2019
Bromodichloromethane	ND	0.0066	mg/K	g-dry	1	5/7/2019
Bromoform	ND	0.0066	mg/Kg	g-dry	1	5/7/2019
Bromomethane	ND	0.013	mg/Kg	g-dry	1	5/7/2019
2-Butanone	ND	0.10	mg/Kg	g-dry	1	5/7/2019
Carbon disulfide	ND	0.066	mg/K	g-dry	1	5/7/2019
Carbon tetrachloride	ND	0.0066	mg/K	g-dry	1	5/7/2019
Chlorobenzene	ND	0.0066	mg/K	g-dry	1	5/7/2019
Chloroethane	ND	0.013	mg/K	g-dry	1	5/7/2019
Chloroform	ND	0.0066	mg/K	g-dry	1	5/7/2019
Chloromethane	ND	0.013	mg/K	g-dry	1	5/7/2019
Dibromochloromethane	ND	0.0066	mg/K	g-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.0066	mg/Kg	g-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.0066	mg/K	g-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.0066	mg/K	g-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.0066	mg/K	g-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.0066	mg/K	g-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.0066	mg/K	g-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0027	mg/K	g-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0027	mg/Kg	g-dry	1	5/7/2019
Ethylbenzene	ND	0.0066	mg/K	g-dry	1	5/7/2019
2-Hexanone	ND	0.027	mg/K	g-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.027	mg/K	g-dry	1	5/7/2019
Methylene chloride	ND	0.013	mg/K	g-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.0066	mg/Kg	g-dry	1	5/7/2019
Styrene	ND	0.0066	mg/K	g-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.0066	mg/Kg	g-dry	1	5/7/2019
Tetrachloroethene	ND	0.0066	mg/K	g-dry	1	5/7/2019
Toluene	ND	0.0066	mg/K	g-dry	1	5/7/2019
1,1,1-Trichloroethane	ND	0.0066	mg/K	g-dry	1	5/7/2019
1,1,2-Trichloroethane	ND	0.0066	mg/K	g-dry	1	5/7/2019
Trichloroethene	ND	0.0066	mg/K	g-dry	1	5/7/2019
Vinyl chloride	ND	0.0066	mg/K	g-dry	1	5/7/2019
Xylenes, Total	ND	0.020	mg/K	g-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS		270C (SW35		•	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.041	mg/K	•	1	5/2/2019
Acenaphthylene	ND	0.041	mg/K	g-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: M

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-004

Client Sample ID: 112

Collection Date: 4/30/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	r Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)	•	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.42	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.41	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1 '	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.041	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.41	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.041	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

ers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-004

Client Sample ID: 112

Collection Date: 4/30/2019 9:30:00 AM

Matrix: Soil

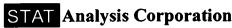
Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	70C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.041	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.041	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	· 0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.041	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.41	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.041	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachiorophenol	ND	0.084	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.041	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.84	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs		82A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1254	, ND	0.10	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.10	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

· Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 09, 2019 Date Reported: **Date Printed:** May 09, 2019

ANALYTICAL RESULTS

Environmental Group Services, Ltd.

19041193 Revision 0 Work Order:

Project:

Franklin (EB-2)

Lab ID:

Client:

19041193-004

Client Sample ID: 112

Collection Date: 4/30/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	r Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.041	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	13000	22	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.2	mg/Kg-dry	10	5/8/2019
Arsenic	5.3	1.1	mg/Kg-dry	10	5/4/2019
Barium	73	1.1	mg/Kg-dry	10	5/4/2019
Beryllium	0.78	0.55	mg/Kg-dry	10	5/4/2019
Cadmium	ND	0.55	mg/Kg-dry	10	5/4/2019
Calcium	69000	66	mg/Kg-dry	10	5/4/2019
Chromium	27	1.1	mg/Kg-dry	10	5/4/2019
Cobalt	16	1.1	mg/Kg-dry	10	5/4/2019
Copper	29	2.8	mg/Kg-dry	10	5/4/2019
Iron	23000	33	mg/Kg-dry	10	5/8/2019
Lead	14	0.55	mg/Kg-dry	10	5/4/2019
Magnesium	32000	33	mg/Kg-dry	10	5/8/2019
Manganese	550	1.1	mg/Kg-dry	10	5/4/2019
Nickel	40	1.1	mg/Kg-dry	10	5/4/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-004

Client Sample ID: 112

Collection Date: 4/30/2019 9:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Potassium	3100	33		mg/Kg-dry	10	5/8/2019
Selenium	ND	1.1		mg/Kg-dry	10	5/4/2019
Silver	ND	1.1		mg/Kg-dry	10	5/4/2019
Sodium	160	66		mg/Kg-dry	10	5/8/2019
Thallium	· ND	1.1		mg/Kg-dry	10	5/4/2019
Vanadium	27	1.1		mg/Kg-dry	10	5/4/2019
Zinc	55	5.5		mg/Kg-dry	10	5/4/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10		mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium ·	0.59	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.039	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	4.1	0.010		mg/L	5	5/5/2019
Nickel	0.082	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.022		mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A	•	Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.32		mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/1/2019	Analyst: JLV
рН	8.00			pH Units	1	5/1/2019
Percent Moisture	D297	'4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers: J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported:

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID: Franklin (EB-2) 19041193-004 Client Sample ID: 112

Collection Date: 4/30/2019 9:30:00 AM

Matrix: Soil

Analyses Result RL Qualifier Units DF Date Analyzed

Percent Moisture Percent Moisture 20.9 0.2 * wt% 1 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client: Environment

Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID: 19041193-005

Client Sample ID: 113

Collection Date: 4/30/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/2019	Analyst: AET
Acetone	ND	0.22	n	ng/Kg-dry	1	5/7/2019
Benzene	ND	0.014	n	ng/Kg-dry	1	5/7/2019
Bromodichloromethane	ND	0.014	n	ng/Kg-dry	1	5/7/2019
Bromoform	ND	0.014	n	ng/Kg-dry	1	5/7/2019
Bromomethane	ND	0.029	п	ng/Kg-dry	1	5/7/2019
2-Butanone	ND	0.22	п	ng/Kg-dry	1	5/7/2019
Carbon disulfide	ND	0.14	n	ng/Kg-dry	1	5/7/2019
Carbon tetrachloride	ND	0.014	n	ng/Kg-dry	1	5/7/2019
Chlorobenzene	ND	0.014	n	ng/Kg-dry	1	5/7/2019
Chloroethane	ND	0.029	n	ng/Kg-dry	1	5/7/2019
Chloroform	ND	0.014	n	ng/Kg-dry	1	5/7/2019
Chloromethane	ND	0.029	n	ng/Kg-dry	1	5/7/2019
Dibromochloromethane	ND	0.014	n	ng/Kg-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.014	n	ng/Kg-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.014	n	ng/Kg-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.014	n	ng/Kg-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.014	n	ng/Kg-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.014	n	ng/Kg-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.014		ng/Kg-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0058		ng/Kg-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0058	п	ng/Kg-dry	1	5/7/2019
Ethylbenzene	ND	0.014		ng/Kg-dry	1	5/7/2019
2-Hexanone	ND	0.058	n	ng/Kg-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.058		ng/Kg-dry	1	5/7/2019
Methylene chloride	ND	0.029		ng/Kg-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.014		ng/Kg-dry	1	5/7/2019
Styrene	ND	0.014		ng/Kg-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.014		ng/Kg-dry	1	5/7/2019
Tetrachloroethene	ND	0.014		ng/Kg-dry	1	5/7/2019
Toluene	ND	0.014		ng/Kg-dry	1	5/7/2019
1,1,1-Trichloroethane	ND	0.014		ng/Kg-dry	1	5/7/2019
1,1,2-Trichloroethane	ND	0.014		ng/Kg-dry	1	5/7/2019
Trichloroethene	ND	0.014		ng/Kg-dry	1	5/7/2019
Vinyl chloride	ND	0.014		ng/Kg-dry	1	5/7/2019
Xylenes, Total	ND	0.043		ng/Kg-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B)	Prep	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.040	•	ng/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.040	n	ng/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019

ANALYTICAL RESULTS

Client: Work Order: Environmental Group Services, Ltd.

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2)

19041193-005

Client Sample ID: 113

Collection Date: 4/30/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualifi	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	s swaz	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.40	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	NĐ	0.040	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.40	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.40	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.040	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.040	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	mg/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.040	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	mg/Kg-dry	1	5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2)

19041193-005

Client Sample ID: 113

Collection Date: 4/30/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualif	ier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW3550B)		Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.040	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry .	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	· 1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.081	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.81	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs	SW80	82A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.098	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.098	mg/Kg-dry	1	5/1/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Client Sample ID: 113

Collection Date: 4/30/2019 10:00:00 AM

Matrix: Soil

Lab ID: 19041193-005		iviatrix: Soii						
Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed			
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN			
4,4´-DDD	ND	0.0020	mg/Kg-dry	1	5/1/2019			
4,4'-DDE	ND	0.0020	mg/Kg-dry	1	5/1/2019			
4,4'-DDT	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Aldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019			
alpha-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019			
alpha-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019			
beta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Chlordane	ND	0.020	mg/Kg-dry	1	5/1/2019			
delta-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Dieldrin	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Endosulfan I	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Endosulfan II	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Endosulfan sulfate	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Endrin	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Endrin aldehyde	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Endrin ketone	ND	0.0020	mg/Kg-dry	1	5/1/2019			
gamma-BHC	ND	0.0020	mg/Kg-dry	1	5/1/2019			
gamma-Chlordane	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Heptachlor	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Heptachlor epoxide	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Methoxychlor	ND	0.0020	mg/Kg-dry	1	5/1/2019			
Toxaphene	ND	0.040	mg/Kg-dry	1	5/1/2019			
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/3/2019	Analyst: MDT			
Aluminum	13000	21	mg/Kg-dry	10	5/8/2019			
Antimony	ND	2.1	mg/Kg-dry	10	5/8/2019			
Arsenic	8.7	1.0	mg/Kg-dry	10	5/4/2019			
Barium	90	1.0	mg/Kg-dry	10	5/4/2019			
Beryllium	0.93	0.51	mg/Kg-dry	10	5/4/2019			
Cadmium	ND	0.51	mg/Kg-dry	10	5/4/2019			
Calcium	80000	62	mg/Kg-dry	10	5/4/2019			
Chromium	31	1.0	mg/Kg-dry	10	5/4/2019			
Cobalt	15	1.0	mg/Kg-dry	10	5/4/2019			
Copper	28	2.6	mg/Kg-dry	10	5/4/2019			
Iron	23000	31	mg/Kg-dry	10	5/8/2019			
Lead	15	0.51	mg/Kg-dry	10	5/4/2019			
Magnesium	30000	31	mg/Kg-dry	10	5/8/2019			
Manganese	580	1.0	mg/Kg-dry	10	5/4/2019			
Nickel	44	1.0	mg/Kg-dry	10	5/4/2019			

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

• - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID: Franklin (EB-2) 19041193-005 Client Sample ID: 113

Collection Date: 4/30/2019 10:00:00 AM

Matrix: Soil

Analyses	Result	· RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Potassium	3100	31		mg/Kg-dry	10	5/8/2019
Selenium	ND	1.0	1	mg/Kg-dry	10	5/4/2019
Silver	ND	1.0	1	mg/Kg-dry	10	5/4/2019
Sodium	170	62	1	mg/Kg-dry	10	5/8/2019
Thallium	ND	1.0	1	mg/Kg-dry	10	5/4/2019
Vanadium	31	1.0	1	mg/Kg-dry	10	5/4/2019
Zinc	60	5.1	ı	mg/Kg-dry	10	5/4/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10	·	mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.41	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.020	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.6	0.010		mg/L	5	5/5/2019
Nicket	0.063	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.022	• 1	mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.31	(mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/1/2019	Analyst: JLV
pH	8.00			pH Units	1	5/1/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

Qualifiers:

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2) 19041193-005

Client Sample ID: 113

Collection Date: 4/30/2019 10:00:00 AM

Matrix: Soil

RL Qualifier Units DF **Date Analyzed** Result Analyses Analyst: FN D2974 Prep Date: 5/1/2019 **Percent Moisture** 5/2/2019 **Percent Moisture** 18.6 0.2

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:**

ANALYTICAL RESULTS

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-006

Client Sample ID: 114

Collection Date: 4/30/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/201 9	Analyst: AET
Acetone	ND	0.095	mç	g/Kg-dry	1	5/7/2019
Benzene	ND	0.0064	mç	g/Kg-dry	1	5/7/2019
Bromodichloromethane	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
Bromoform	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
Bromomethane	ND	0.013	mę	g/Kg-dry	1	5/7/2019
2-Butanone	ND	0.095	mę	g/Kg-dry	1	5/7/2019
Carbon disulfide	ND	0.064	mç	g/Kg-dry	1	5/7/2019
Carbon tetrachloride	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
Chlorobenzene	ND	0.0064	mç	g/Kg-dry	1	5/7/2019
Chloroethane	ND	0.013	mç	g/Kg-dry	1	5/7/2019
Chloroform	ND	0.0064	m	g/Kg-dry	1	5/7/2019
Chloromethane	ND	0.013	mg	g/Kg-dry	1	5/7/2019
Dibromochloromethane	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.0064	m	g/Kg-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.0064	mç	g/Kg-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0025	mg	g/Kg-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0025	mg	g/Kg-dry	1	5/7/2019
Ethylbenzene	ND	0.0064	mg	g/Kg-dry	1	5/7/2019
2-Hexanone	ND	0.025		g/Kg-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.025		g/Kg-dry	1	5/7/2019
Methylene chloride	ND	0.013		g/Kg-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.0064		g/Kg-dry	1	5/7/2019
Styrene	ND	0.0064		g/Kg-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.0064		g/Kg-dry	1	5/7/2019
Tetrachloroethene	ND	0.0064		g/Kg-dry	1	5/7/2019
Toluene	ND	0.0064		g/Kg-dry	1	5/7/2019
1,1,1-Trichloroethane	ND	0.0064		g/Kg-dry	1	5/7/2019
1,1,2-Trichloroethane	ND	0.0064		g/Kg-dry	1	5/7/2019
Trichloroethene	ND	0.0064		g/Kg-dry	1	5/7/2019
Vinyl chloride	ND	0.0064		g/Kg-dry	1	5/7/2019
Xylenes, Total	ND	0.019		g/Kg-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B)	Prep	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.040		g/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.040	m	g/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-006

Client Sample ID: 114

Collection Date: 4/30/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier \	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	270C (SW	3550B)	Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.40	mg	/Kg-dry	1	5/2/2019
Anthracene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Benzidine	ND	0.40	mg	/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Benzoic acid	ND	1.0	mg	/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.21	mg	/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.21	mg	/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.21	mg	/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	1.0	mg	/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.21	mg	/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.21	mg	/Kg-dry	1	5/2/2019
Carbazole	ND	0.21	mg	/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.21	mg	/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.40	mg	/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.21	mg	/Kg-dry	1	5/2/2019
2-Chlorophenol	ND	0.21	mg	/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.21	mg	/Kg-dry	1	5/2/2019
Chrysene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.040	mg	/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.21	mg	/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.21	mg	/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.21	mg	/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.21	mg	/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.21	mg	/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.21	mg	/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.21	mg	/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.40	_	/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	1.0	_	/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.040	_	/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.040	_	/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.21		/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.21	•	/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

May 09, 2019 Date Reported: **Date Printed:**

ANALYTICAL RESULTS

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2) 19041193-006

Client Sample ID: 114

Collection Date: 4/30/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.040	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.040	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.21	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.040	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.21	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.40	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.040	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.21	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.081	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.040	mg/Kg-dry	, 1	5/2/2019
Phenol	ND	0.21	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.040	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.81	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.21	mg/Kg-dry	1	5/2/2019
PCBs	SW80	082A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016 ·	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.096	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.096	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project: Lab ID:

Franklin (EB-2)

19041193-006

Client Sample ID: 114

Collection Date: 4/30/2019 10:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Pesticides	SW8	081B (SW35	50B) Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4´-DDE	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4´-DDT	ND	0.0019	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Chlordane	, ND	0.019	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin ·	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.040	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW30	50B) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	13000	20	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.0	mg/Kg-dry	10	5/8/2019
Arsenic	11	1.0	mg/Kg-dry	10	5/4/2019
Barium .	89	1.0	mg/Kg-dry	10	5/4/2019
Beryllium	0.94	0.50	mg/Kg-dry	10	5/4/2019
Cadmium	ND	0.50	mg/Kg-dry	10	5/4/2019
Calcium	77000	61	mg/Kg-dry	10	5/4/2019
Chromium	31	1.0	mg/Kg-dry	10	5/4/2019
Cobalt	19	1.0	mg/Kg-dry	10	5/4/2019
Copper	31	2.5	mg/Kg-dry	10	5/4/2019
Iron	23000	30	mg/Kg-dry	10	5/8/2019
Lead	16	0.50	mg/Kg-dry	10	5/4/2019
Magnesium	31000	30	mg/Kg-dry	10	5/8/2019
Manganese	580	1.0	mg/Kg-dry	10	5/4/2019
Nickel	47	1.0	mg/Kg-dry	10	5/4/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-006

Client Sample ID: 114

Collection Date: 4/30/2019 10:30:00 AM

Matrix: Soil

Metals by ICP/MS Potassium Selenium Silver Sodium Thallium Vanadium Zinc TCLP Metals by ICP/MS	\$W6 3500 ND ND 170 ND 31 61	020A (SW: 30 1.0 1.0 61 1.0	mg/K mg/K mg/K	g-dry 10	9 Analyst: MDT 5/8/2019 5/4/2019
Potassium Selenium Silver Sodium Thallium Vanadium Zinc TCLP Metals by ICP/MS	ND ND 170 ND 31	1.0 1.0 61 1.0	mg/K mg/K	g-dry 10	
Silver Sodium Thallium Vanadium Zinc TCLP Metals by ICP/MS	ND 170 ND 31	1.0 61 1.0	mg/K		5/4/2019
Sodium Thallium Vanadium Zinc TCLP Metals by ICP/MS	170 ND 31	61 1.0	-		V V 1 V
Thallium Vanadium Zinc TCLP Metals by ICP/MS	ND 31	1.0	malK	g-dry 10	5/4/2019
Vanadium Zinc CLP Metals by ICP/MS	31		ilig/i\	g-dry 10	5/8/2019
Zinc [CLP Metals by ICP/MS			mg/K	g-dry 10	5/4/2019
CLP Metals by ICP/MS	£1	1.0	mg/K	g-dry 10	5/4/2019
·	01	5.0	mg/K	g-dry 10	5/4/2019
	SW1	311/6020A	(SW3005A)	Prep Date: 5/3/201	9 Analyst: MDT
Aluminum	ND	0.10	mg	/L 5	5/8/2019
Antimony	ND	0.015	mg	/L 5	5/8/2019
Arsenic .	ND	0.010	mg	/L 5	5/5/2019
Barium	0.50	0.050	mg	/L 5	5/5/2019
Beryllium	ND	0.0050	mg	/L 5	5/5/2019
Cadmium	ND .	0.0050	mg	/L 5	5/5/2019
Chromium	ND	0.010	mg	/L 5	5/5/2019
Cobalt	0.034	0.010	mg	/L 5	5/5/2019
Copper	ND	0.10	mg	/L 5	5/5/2019
Iron	ND.	0.25	mg	/L 5	5/5/2019
Lead	ND	0.0050	mg	/L 5	5/5/2019
Manganese	3.8	0.010	mg	/L 5	5/5/2019
Nickel	0.075	0.020	mg	/L 5	5/5/2019
Selenium	ND	0.010	mg	/L 5	5/5/2019
Silver	ND	0.010	mg	ı/L 5	5/5/2019
Thallium	ND	0.0050	mg	/L 5	5/5/2019
Vanadium	ND	0.010	mg	/L 5 ·	5/5/2019
Zinc	ND	0.050	mg	/L 5	5/5/2019
CLP Mercury	SW1	311/7470A		Prep Date: 5/3/201	9 Analyst: LB
Mercury	ND	0.00020	mg	/L 1	5/3/2019
Mercury	SW7	471B		Prep Date: 5/6/201	9 Analyst: LB
Mercury	ND	0.020	mg/K	g-dry 1	5/6/2019
Cyanide, Total	SW9	012A		Prep Date: 5/5/201	9 Analyst: MD
Cyanide	ND	0.30	mg/K	g-dry 1	5/5/2019
oH (25 °C)		045C		Prep Date: 5/1/201	•
pH	8.03		рН С	Inits 1	5/1/2019
Percent Moisture	D297	' 4		Prep Date: 5/1/201	9 Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order: Project:

19041193 Revision 0

Lab ID:

Franklin (EB-2)

19041193-006

Client Sample ID: 114

Collection Date: 4/30/2019 10:30:00 AM

Matrix: Soil

Analyses Result RL Qualifier Units DF Date Analyzed

Percent Moisture Percent Moisture 17.4 0.2 * wt% 1 5/2/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019 **ANALYTICAL RESULTS**

______,

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-007

Client Sample ID: 115

Collection Date: 4/30/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Q)ualifier	Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B		Prep	Date: 4/30/2019	Analyst: AE
Acetone	ND	0.21	m	g/Kg-dry	1	5/7/2019
Benzene	ND	0.014	m	g/Kg-dry	1	5/7/2019
Bromodichloromethane	ND	0.014	m	g/Kg-dry	1	5/7/2019
Bromoform	ND	0.014	m	g/Kg-dry	1	5/7/2019
Bromomethane	ND	0.028	m	g/Kg-dry	1	5/7/2019
2-Butanone	ND	0.21	m	g/Kg-dry	1	5/7/2019
Carbon disulfide	ND	0.14	m	g/Kg-dry	1	5/7/2019
Carbon tetrachloride	ND	0.014	m	g/Kg-dry	1	5/7/2019
Chlorobenzene	ND	0.014	m	g/Kg-dry	1	5/7/2019
Chloroethane	ND	0.028	m	g/Kg-dry	1	5/7/2019
Chloroform	ND	0.014	m	g/Kg-dry	1	5/7/2019
Chloromethane	ND	0.028	m	g/Kg-dry	1	5/7/2019
Dibromochloromethane	ND	0.014	m	g/Kg-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.014	m	g/Kg-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.014	m	g/Kg-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.014	m	g/Kg-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.014	· m	g/Kg-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.014	m	g/Kg-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.014	m	g/Kg-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0055	m	g/Kg-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0055	m	g/Kg-dry	1	5/7/2019
Ethylbenzene	ND	0.014	m	g/Kg-dry	1	5/7/2019
2-Hexanone	ND	0.055	m	g/Kg-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.055	m	g/Kg-dry	1	5/7/2019
Methylene chloride	ND	0.028	m	g/Kg-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.014	m	g/Kg-dry	1	5/7/2019
Styrene	ND	0.014	m	g/Kg-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.014	m	g/Kg-dry	1	5/7/2019
Tetrachloroethene	ND	0.014	m	g/Kg-dry	1	5/7/2019
Toluene	ND	0.014	m	g/Kg-dry	1	5/7/2019
1,1,1-Trichloroethane	ND	0.014	m	g/Kg-dry	1	5/7/2019
1,1,2-Trichloroethane	ND	0.014	m	g/Kg-dry	1	5/7/2019
Trichloroethene	ND	0.014	m	g/Kg-dry	1	5/7/2019
Vinyl chloride	ND	0.014	m	g/Kg-dry	1	5/7/2019
Xylenes, Total	ND	0.041	wi	g/Kg-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	550B)	Prep	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.039	m	g/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.039	m	g/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-007

Client Sample ID: 115

Collection Date: 4/30/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL (Qualifier Uni	ts DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3		Prep Date: 5/1/2	2019 Analyst: DM
Aniline	ND	0.39	mg/Kg	-dry 1	5/2/2019
Anthracene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Benz(a)anthracene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Benzidine	ND	0.39	mg/Kg	-dry 1	5/2/2019
Benzo(a)pyrene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Benzo(b)fluoranthene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Benzo(g,h,i)perylene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Benzo(k)fluoranthene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Benzoic acid	ND	0.97	mg/Kg	-dry 1	5/2/2019
Benzyl alcohol	ND	0.20	mg/Kg	-dry 1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.20	mg/Kg	-dry 1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.20	mg/Kg	-dry 1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	0.97	mg/Kg	-dry 1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.20	mg/Kg	-dry 1	5/2/2019
Butyl benzyl phthalate	ND	0.20	mg/Kg	-dry 1	5/2/2019
Carbazole	ND	0.20	mg/Kg	-dry 1	5/2/2019
4-Chloroaniline	ND	0.20	mg/Kg	-dry 1	5/2/2019
4-Chloro-3-methylphenol	ND	0.39	mg/Kg	-dry 1	5/2/2019
2-Chloronaphthalene	ND	0.20	mg/Kg	-dry 1	5/2/2019
2-Chlorophenol	ND	0.20	mg/Kg	-dry 1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.20	mg/Kg	-dry 1	5/2/2019
Chrysene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Dibenz(a,h)anthracene	ND	0.039	mg/Kg	-dry 1	5/2/2019
Dibenzofuran	ND	0.20	mg/Kg	-dry 1	5/2/2019
1,2-Dichlorobenzene	ND	0.20	mg/Kg	-dry 1	5/2/2019
1.3-Dichlorobenzene	ND	0.20	mg/Kg	-dry 1	5/2/2019
1,4-Dichlorobenzene	ND	0.20	mg/Kg	•	5/2/2019
3,3'-Dichlorobenzidine	ND	0.20	mg/Kg	-dry 1	5/2/2019
2,4-Dichlorophenol	ND	0.20	mg/Kg	•	5/2/2019
Diethyl phthalate	ND	0.20	mg/Kg		5/2/2019
2,4-Dimethylphenol	ND	0.20	mg/Kg	•	5/2/2019
Dimethyl phthalate	ND	0.20	mg/Kg		5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.39	mg/Kg	•	5/2/2019
2,4-Dinitrophenol	ND	0.97	mg/Kg	•	5/2/2019
2.4-Dinitrotoluene	ND	0.039	mg/Kg		5/2/2019
2,6-Dinitrotoluene	ND	0.039	mg/Kg		5/2/2019
Di-n-butyl phthalate	ND	0.20	mg/Kg	•	5/2/2019
Di-n-octyl phthalate	ND	0.20	mg/Kg	•	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-007

Client Sample ID: 115

Collection Date: 4/30/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Quali	fier Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3550B) Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.039	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.039	mg/Kg-dry	1	5/2/2019
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachtorobutadiene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.20	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.039	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.039	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.20	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.078	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.039	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.039	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.78	mg/Kg-dry	1 .	5/2/2019
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
PCBs	SW8	082A (SW3550B) Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.093	mg/Kg-dry	1	5/1/2019
Aroclor.1221	ND	0.093	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.093	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.093	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.093	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.093	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.093	mg/Kg-dry	1	5/1/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Project:

Lab ID:

Environmental Group Services, Ltd.

Work Order: 19041

19041193 Revision 0

Franklin (EB-2) 19041193-007 Client Sample ID: 115

Collection Date: 4/30/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDE	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4´-DDT	ND	0.0019	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.019	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosuifan I	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.038	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	12000	21	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.1	mg/Kg-dry	10	5/8/2019
Arsenic	7.7	1.1	mg/Kg-dry	10	5/4/2019
Barium	110	1.1	mg/Kg-dry	10	5/4/2019
Beryllium	0.93	0.53	mg/Kg-dry	10	5/4/2019
Cadmium	ND	0.53	mg/Kg-dry	10	5/4/2019
Catcium	87000	63	mg/Kg-dry	10	5/4/2019
Chromium	29	1.1	mg/Kg-dry	10	5/4/2019
Cobalt	14	1.1	mg/Kg-dry	10	5/4/2019
Copper	36	2.6	mg/Kg-dry	10	5/4/2019
Iron	33000	32	mg/Kg-dry	10	5/4/2019
Lead	17	0.53	mg/Kg-dry	10	5/4/2019
Magnesium	35000	32	mg/Kg-dry	10	5/8/2019
Manganese	620	1.1	mg/Kg-dry	10	5/4/2019
Nickel	42	1.1	mg/Kg-dry	10	5/4/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766
Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com
Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:** May 09, 2019

ANALYTICAL RESULTS

Environmental Group Services, Ltd.

Work Order: 19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

Client:

19041193-007

Client Sample ID: 115

Collection Date: 4/30/2019 11:00:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Potassium	3700	32	'n	ng/Kg-dry	10	5/4/2019
Selenium	ND	1.1	n	ng/Kg-dry	10	5/4/2019
Silver	. ND	1.1	n	ng/Kg-dry	10	5/4/2019
Sodium	220	63	n	ng/Kg-dry	10	5/4/2019
Thallium	ND	1.1	n	ng/Kg-dry	10	5/4/2019
Vanadium	31	1.1	n	ng/Kg-dry	10	5/4/2019
Zinc	61	5.3	n	ng/Kg-dry	10	5/4/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005A	A) Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	ND	0.10		mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.38	. 0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.029	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese	3.5	0.010		mg/L	5	5/5/2019
Nickel	0.079	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010	•	mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep	Date: 5/3/2019	Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.018	m	ng/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.30	m	ng/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/1/2019	Analyst: JLV
рН	7.70			pH Units	1	5/1/2019
Percent Moisture	D297	74		Prep	Date: 5/1/2019	Analyst: FN

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

15.6

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

Percent Moisture

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2) 19041193-007

Client Sample ID: 115

Collection Date: 4/30/2019 11:00:00 AM

Matrix: Soil

RL Qualifier DF **Date Analyzed** Result Units Analyses Analyst: FN Prep Date: 5/1/2019 D2974 **Percent Moisture** 5/2/2019

0.2

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-008

Client Sample ID: 116

Collection Date: 4/30/2019 11:30:00 AM

Matrix: Soil

Analyses	Result	RL Q	ualifier Units	DF	Date Analyze
Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 4/30/2019	Analyst: AE'
Acetone	ND	0.11	mg/Kg-dry	1	5/7/2019
Benzene	ND	0.0073	mg/Kg-dry	1	5/7/2019
Bromodichloromethane	ND	0.0073	mg/Kg-dry	1	5/7/2019
Bromoform	ND	0.0073	mg/Kg-dry	1	5/7/2019
Bromomethane	ND	0.015	mg/Kg-dry	1	5/7/2019
2-Butanone	ND	0.11	mg/Kg-dry	1	5/7/2019
Carbon disulfide	ND	0.073	mg/Kg-dry	, 1	5/7/2019
Carbon tetrachloride	ND	0.0073	mg/Kg-dry	1	5/7/2019
Chlorobenzene	ND	0.0073	mg/Kg-dry	1	5/7/2019
Chloroethane	ND	0.015	mg/Kg-dry	1	5/7/2019
Chloroform	ND	0.0073	mg/Kg-dry	1	5/7/2019
Chloromethane	ND	0.015	mg/Kg-dry	1	5/7/2019
Dibromochloromethane	ND	0.0073	mg/Kg-dry	1	5/7/2019
1,1-Dichloroethane	ND	0.0073	mg/Kg-dry	1	5/7/2019
1,2-Dichloroethane	ND	0.0073	mg/Kg-dry	1	5/7/2019
1,1-Dichloroethene	ND	0.0073	mg/Kg-dry	1	5/7/2019
cis-1,2-Dichloroethene	ND	0.0073	mg/Kg-dry	1	5/7/2019
trans-1,2-Dichloroethene	ND	0.0073	mg/Kg-dry	1	5/7/2019
1,2-Dichloropropane	ND	0.0073	mg/Kg-dry	1	5/7/2019
cis-1,3-Dichloropropene	ND	0.0029	mg/Kg-dry	1	5/7/2019
trans-1,3-Dichloropropene	ND	0.0029	mg/Kg-dry	1	5/7/2019
Ethylbenzene	ND	0.0073	mg/Kg-dry	1	5/7/2019
2-Hexanone	ND	0.029	mg/Kg-dry	1	5/7/2019
4-Methyl-2-pentanone	ND	0.029	mg/Kg-dry	1	5/7/2019
Methylene chloride	ND	0.015	mg/Kg-dry	1	5/7/2019
Methyl tert-butyl ether	ND	0.0073	mg/Kg-dry	1	5/7/2019
Styrene	ND	0.0073	mg/Kg-dry	1	5/7/2019
1,1,2,2-Tetrachloroethane	ND	0.0073	mg/Kg-dry	1	5/7/2019
Tetrachloroethene	ND	0.0073	mg/Kg-dry	1	5/7/2019
Toluene	ND	0.0073	mg/Kg-dry	1	5/7/2019
1,1,1-Trichloroethane	· ND	0.0073	mg/Kg-dry	1	5/7/2019
1,1,2-Trichloroethane	ND	0.0073	mg/Kg-dry	1	5/7/2019
Trichloroethene	ND	0.0073	mg/Kg-dry	1	5/7/2019
Vinyl chloride	ND	0.0073	mg/Kg-dry	1	5/7/2019
Xylenes, Total	ND	0.022	mg/Kg-dry	1	5/7/2019
Semivolatile Organic Compounds by GC/MS	SW8	270C (SW35	50B) Prep	Date: 5/1/2019	Analyst: DM
Acenaphthene	ND	0.039	mg/Kg-dry	1	5/2/2019
Acenaphthylene	ND	0.039	mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019 **Date Printed:**

ANALYTICAL RESULTS

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2) 19041193-008

Client Sample ID: 116

Collection Date: 4/30/2019 11:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	S SW82	70C (SW	3550B)	Prep	Date: 5/1/2019	Analyst: DM
Aniline	ND	0.39	·	mg/Kg-dry	1	5/2/2019
Anthracene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
Benz(a)anthracene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
Benzidine	ND	0.39	r	mg/Kg-dry	1	5/2/2019
Benzo(a)pyrene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
Benzo(b)fluoranthene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
Benzo(g,h,i)perylene	ND	0.039	ı	mg/Kg-dry	1	5/2/2019
Benzo(k)fluoranthene	ND	0.039	ı	mg/Kg-dry	1	5/2/2019
Benzoic acid	ND	0.97	r	mg/Kg-dry	1	5/2/2019
Benzyl alcohol	ND	0.20	r	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethoxy)methane	ND	0.20	r	mg/Kg-dry	1	5/2/2019
Bis(2-chloroethyl)ether	ND	0.20	r	mg/Kg-dry	1	5/2/2019
Bis(2-ethylhexyl)phthalate	ND	0.97	r	mg/Kg-dry	1	5/2/2019
4-Bromophenyl phenyl ether	ND	0.20	r	mg/Kg-dry	1	5/2/2019
Butyl benzyl phthalate	ND	0.20	r	mg/Kg-dry	1	5/2/2019
Carbazole	ND	0.20	r	mg/Kg-dry	1	5/2/2019
4-Chloroaniline	ND	0.20	r	ng/Kg-dry	1	5/2/2019
4-Chloro-3-methylphenol	ND	0.39	r	mg/Kg-dry	1	5/2/2019
2-Chloronaphthalene	ND	0.20	ı	mg/Kg-dry	1 .	5/2/2019
2-Chlorophenol	ND	0.20	r	mg/Kg-dry	1	5/2/2019
4-Chlorophenyl phenyl ether	ND	0.20	r	mg/Kg-dry	1	5/2/2019
Chrysene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
Dibenz(a,h)anthracene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
Dibenzofuran	ND	0.20	r	mg/Kg-dry	1	5/2/2019
1,2-Dichlorobenzene	ND	0.20	r	mg/Kg-dry	1	5/2/2019
1,3-Dichlorobenzene	ND	0.20	ı	mg/Kg-dry	1	5/2/2019
1,4-Dichlorobenzene	ND	0.20	ı	mg/Kg-dry	1	5/2/2019
3,3'-Dichlorobenzidine	ND	0.20	ſ	ng/Kg-dry	1	5/2/2019
2,4-Dichlorophenol	ND	0.20	ſ	ng/Kg-dry	1	5/2/2019
Diethyl phthalate	ND	0.20	1	ng/Kg-dry	1	5/2/2019
2,4-Dimethylphenol	ND	0.20	r	ng/Kg-dry	1	5/2/2019
Dimethyl phthalate	ND	0.20	r	mg/Kg-dry	1	5/2/2019
4,6-Dinitro-2-methylphenol	ND	0.39	r	mg/Kg-dry	1	5/2/2019
2,4-Dinitrophenol	ND	0.97	r	ng/Kg-dry	1	5/2/2019
2,4-Dinitrotoluene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
2,6-Dinitrotoluene	ND	0.039	r	mg/Kg-dry	1	5/2/2019
Di-n-butyl phthalate	ND	0.20	r	ng/Kg-dry	1	5/2/2019
Di-n-octyl phthalate	ND	0.20		mg/Kg-dry	1	5/2/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time


* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project:

Franklin (EB-2)

Lab ID:

19041193-008

Client Sample ID: 116

Collection Date: 4/30/2019 11:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualifie	er Units	DF	Date Analyzed
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 5/1/2019	Analyst: DM
Fluoranthene	ND	0.039	mg/Kg-dry	1	5/2/2019
Fluorene	ND	0.039	mg/Kg-dry	1 '	5/2/2019
Hexachlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachlorobutadiene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachlorocyclopentadiene	ND	0.20	mg/Kg-dry	1	5/2/2019
Hexachloroethane	ND	0.20	mg/Kg-dry	1	5/2/2019
Indeno(1,2,3-cd)pyrene	ND	0.039	mg/Kg-dry	1	5/2/2019
Isophorone	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Methylnaphthalene	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Methylphenol	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Methylphenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Naphthalene	ND	0.039	mg/Kg-dry	1	5/2/2019
2-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
3-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Nitroaniline	ND	0.20	mg/Kg-dry	1	5/2/2019
2-Nitrophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
4-Nitrophenol	ND	0.39	mg/Kg-dry	1	5/2/2019
Nitrobenzene	ND	0.039	mg/Kg-dry	1	5/2/2019
N-Nitrosodi-n-propylamine	ND	0.039	mg/Kg-dry	1	5/2/2019
N-Nitrosodimethylamine	ND	0.20	mg/Kg-dry	1	5/2/2019
N-Nitrosodiphenylamine	ND	0.20	mg/Kg-dry	1	5/2/2019
2, 2'-oxybis(1-Chloropropane)	ND	0.20	mg/Kg-dry	1	5/2/2019
Pentachlorophenol	ND	0.079	mg/Kg-dry	1	5/2/2019
Phenanthrene	ND	0.039	mg/Kg-dry	1	5/2/2019
Phenol	ND	0.20	mg/Kg-dry	1	5/2/2019
Pyrene	ND	0.039	mg/Kg-dry	1	5/2/2019
Pyridine	ND	0.79	mg/Kg-dry	1	5/2/2019
1,2,4-Trichlorobenzene	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4,5-Trichlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
2,4,6-Trichlorophenol	ND	0.20	mg/Kg-dry	1	5/2/2019
CBs	SW80	82A (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
Aroclor 1016	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1221	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1232	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1242	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1248	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1254	ND	0.095	mg/Kg-dry	1	5/1/2019
Aroclor 1260	ND	0.095	mg/Kg-dry	1	5/1/2019

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID: Franklin (EB-2)

19041193-008

Client Sample ID: 116

Collection Date: 4/30/2019 11:30:00 AM

Matrix: Soil

Analyses	Result	RL Qualific	er Units	DF	Date Analyzed
Pesticides	SW8	081B (SW3550B)	Prep	Date: 5/1/2019	Analyst: EN
4,4'-DDD	ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDE	· ND	0.0019	mg/Kg-dry	1	5/1/2019
4,4'-DDT	ND	0.0019	mg/Kg-dry	1	5/1/2019
Aldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
alpha-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
beta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Chlordane	ND	0.019	mg/Kg-dry	1	5/1/2019
delta-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
Dieldrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan I	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan II	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endosulfan sulfate	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin aldehyde	ND	0.0019	mg/Kg-dry	1	5/1/2019
Endrin ketone	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-BHC	ND	0.0019	mg/Kg-dry	1	5/1/2019
gamma-Chlordane	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Heptachlor epoxide	ND	0.0019	mg/Kg-dry	1	5/1/2019
Methoxychlor	ND	0.0019	mg/Kg-dry	1	5/1/2019
Toxaphene	ND	0.039	mg/Kg-dry	1	5/1/2019
Metals by ICP/MS	SW6	020A (SW3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Aluminum	11000	21	mg/Kg-dry	10	5/8/2019
Antimony	ND	2.1	mg/Kg-dry	10	5/8/2019
Arsenic	11	1.1	mg/Kg-dry	10	5/4/2019
Barium	93	1.1	mg/Kg-dry	10	5/4/2019
Beryllium	0.91	0.53	mg/Kg-dry	10	5/4/2019
Cadmium	ND	0.53	mg/Kg-dry	10	5/4/2019
Calcium	78000	64	mg/Kg-dry	10	5/4/2019
Chromium	29	1.1	mg/Kg-dry	10	5/4/2019
Cobalt	17	1.1	mg/Kg-dry	10	5/4/2019
Copper	38	2.7	mg/Kg-dry	10	5/4/2019
Iron	29000	32	mg/Kg-dry	10	5/4/2019
Lead	18	0.53	mg/Kg-dry	10	5/4/2019
Magnesium	29000	32	mg/Kg-dry	10	5/8/2019
Manganese	600	1.1	mg/Kg-dry	10	5/4/2019
Nickel	44	1.1	mg/Kg-dry	10	5/4/2019

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported: May 09, 2019

ANALYTICAL RESULTS

Date Printed: May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID: Franklin (EB-2)

19041193-008

Client Sample ID: 116

Collection Date: 4/30/2019 11:30:00 AM

Matrix: Soil

Analyses	Result	RL	Qualifier	Units	, DF	Date Analyzed
Metals by ICP/MS	SW6	020A (SW	3050B)	Prep	Date: 5/3/2019	Analyst: MDT
Potassium	3800	32		mg/Kg-dry	10	5/4/2019
Selenium	ND	1.1	•	mg/Kg-dry	10	5/4/2019
Silver	ND	1.1	•	mg/Kg-dry	10	5/4/2019
Sodium	230	64		mg/Kg-dry	10	5/4/2019
Thallium	. ND	1.1		mg/Kg-dry	10	5/4/2019
Vanadium	29	1.1	1	mg/Kg-dry	10	5/4/2019
Zinc	66	5.3	•	mg/Kg-dry	10	5/4/2019
TCLP Metals by ICP/MS	SW1	311/6020A	(SW3005		Date: 5/3/2019	Analyst: MDT
Aluminum	0.12	0.10		mg/L	5	5/8/2019
Antimony	ND	0.015		mg/L	5	5/8/2019
Arsenic	ND	0.010		mg/L	5	5/5/2019
Barium	0.31	0.050		mg/L	5	5/5/2019
Beryllium	ND	0.0050		mg/L	5	5/5/2019
Cadmium	ND	0.0050		mg/L	5	5/5/2019
Chromium	ND	0.010		mg/L	5	5/5/2019
Cobalt	0.028	0.010		mg/L	5	5/5/2019
Copper	ND	0.10		mg/L	5	5/5/2019
Iron	ND	0.25		mg/L	5	5/5/2019
Lead	ND	0.0050		mg/L	5	5/5/2019
Manganese .	3.6	0.010		mg/L	5	5/5/2019
Nickel	0.060	0.020		mg/L	5	5/5/2019
Selenium	ND	0.010		mg/L	5	5/5/2019
Silver	ND	0.010		mg/L	5	5/5/2019
Thallium	ND	0.0050		mg/L	5	5/5/2019
Vanadium	ND	0.010		mg/L	5	5/5/2019
Zinc	ND	0.050		mg/L	5	5/5/2019
TCLP Mercury	SW1	311/7470A		Prep Date: 5/3/2019		Analyst: LB
Mercury	ND	0.00020		mg/L	1	5/3/2019
Mercury	SW7	471B		Prep	Date: 5/6/2019	Analyst: LB
Mercury	ND	0.021	•	mg/Kg-dry	1	5/6/2019
Cyanide, Total	SW9	012A		Prep	Date: 5/5/2019	Analyst: MD
Cyanide	ND	0.30	1	mg/Kg-dry	1	5/5/2019
pH (25 °C)	SW9	045C		Prep	Date: 5/1/2019	Analyst: JLV
рН	7.86			pH Units	1	5/1/2019
Percent Moisture	D297	4		Prep	Date: 5/1/2019	Analyst: FN

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766

Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com

Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP Lab Code 101202-0

Date Reported:

May 09, 2019

ANALYTICAL RESULTS

Date Printed:

May 09, 2019

Client:

Environmental Group Services, Ltd.

Work Order:

19041193 Revision 0

Project: Lab ID:

Franklin (EB-2) 19041193-008

Client Sample ID: 116

Collection Date: 4/30/2019 11:30:00 AM

Matrix: Soil

Result Qualifier Units DF Date Analyzed **Analyses** Prep Date: 5/1/2019 Analyst: FN D2974 **Percent Moisture** 0.2 5/2/2019 **Percent Moisture** 16.5

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Analysis Corporation STAT

CHAIN OF CUSTODY RECORD 2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com

921195

am/pm Lab No. 2 ð Turn Around Time (Days) Additional Information: Results Needed: Quote No.: P.O. No.: Preservation Code: A = None B = HNO, C = NaOH G = Other Š $D = H_2SO_4$ E = HCI F = 5035/EnCoreComments: 4 072181 15 1900 Containers 1607 4/30/15/16:52 No. of 7 Client Tracking No.: Preserv Grab Date/Time: 🖊 Date/Time: Date/Time: Date/Time: Date/Time Date/Time: Сошр. Matrix 0530 0900 Cool 1050 OSO Ş 1130 Phone: Time Taken 1100 e-mail: Fax: Date Taken 4/30 EB-2 Billy EBX. OM Client Sample Number/Description: FRANKLIM 1697 (elinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature Received by: (Signature) Received by: (Signature) Received by: (Signature) Project Location: Project Number: Project Name: QC Level: 1 Sampler(s): Report To: Company: 110 Ξ 114

Sample Receipt Checklist

Client Name EGSL				Date and Tim	e Received:	4/30/2019 4:32:00 PM
Work Order Number 1	9041193			Received by:	EAA	
Checklist completed by:	Eh .	4/2 bate	0/19	Reviewed by:	A. L.	3/01/19 Date
Matrix:		Carrier name	STAT Analysis			
Shipping container/cooler	in good condition?		Yes 🗹	No 🗆	Not Present	
Custody seals intact on s	hippping container/coo	ler?	Yes 🗌	No 🗆	Not Present	
Custody seals intact on s	ample bottles?		Yes 🗌	No 🗆	Not Present	
Chain of custody present	?		Yes 🗹	No 🗆		
Chain of custody signed v	vhen relinquished and	received?	Yes 🗹	No 🗆		
Chain of custody agrees v	vith sample labels/con	tainers?	Yes 🗹	No 🗆		
Samples in proper contain	ner/bottle?		Yes 🗹	No 🗆		
Sample containers intact?	,		Yes 🗹	No 🗆		
Sufficient sample volume	for indicated test?		Yes 🗹	No 🗆		
All samples received with	in holding time?		Yes 🗹	No 🗆		
Container or Temp Blank	temperature in compli	ance?	Yes 🗹	No 🗆	Temperatu	re 4.1 °C
Water - VOA vials have z		No VOA vials subr	nitted 😰	Yes 🖾	No 🔁	
Water - Samples pH chec	ked?		Yes 🖾	No 🕮	Checked by:	
Water - Samples properly	preserved?	•	Yes 🖾	No 🕮	pH Adjusted?	
Any No response must be	e detailed in the comm	ents section below.		====	· =====	
Comments:	· · · · · · · · · · · · · · · · · ·					
		•	<u> </u>			
Client / Person contacted:		Date contacted:		Conta	acted by:	
Response:			· · · · · · · · · · · · · · · · · · ·			
					·	

APPENDIX G
IEPA approved Comprehensive No Further Action Required (NFR) letter, issued June 17, 2019

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

217/524-3300

June 17, 2019

CERTIFIED MAIL
7018 1830 0000 5288 5158

Bridge Development Partners Attn: Mark Houser 1000 Irving Park Road, Suite 150 Itasca, Illinois 60143

Re:

0310965121/Cook County

Franklin Park/Magellan Pipeline

Site Remediation Program/Technical Reports

No Further Remediation Letter

IEPA-DIVISION OF RECORDS MANAGEMENT
RELEASABLE

AUG 12 2019

REVIEWER: MJK

Dear Mr. Houser:

The Remedial Action Completion Report (received February 7, 2019/Log No. 19-68700) and the Supplement to EGSL's February 1, 2019 RACR (received May 30, 2019/Log No. 19-69413), as prepared by Environmental Group Services Limited (EGSL) for the above referenced Remediation Site, have been reviewed and approved by the Illinois Environmental Protection Agency ("Illinois EPA"). These Reports demonstrate the remediation objectives approved for the site, in accordance with 35 Illinois Administrative Code Part 742 are above the existing concentrations of regulated substances and the remedial action was completed in accordance with the Remedial Action Plan (received August 15, 2017/Log No. 17-65297) and 35 Illinois Administrative Code Part 740.

The Remediation Site, consisting of 48 acres, is located at 10601 Franklin Avenue, Franklin Park, Illinois. Pursuant to Section 58.10 of the Illinois Environmental Protection Act ("Act") (415 ILCS 5/1 et seq.), your request for a no further remediation determination is granted under the conditions and terms specified in this letter. The Remediation Applicant, as identified on the Illinois EPA's Site Remediation Program DRM-1 Form (received July 26, 2017/Log No. 17-65156), is Bridge Development Partners.

This comprehensive No Further Remediation Letter ("Letter") signifies a release from further responsibilities under the Act for the performance of the approved remedial action. This Letter shall be considered prima facie evidence that the Remediation Site described in the attached Illinois EPA Site Remediation Program Environmental Notice and shown in the attached Site Base Map does not constitute a threat to human health and the environment and does not require further remediation under the Act if utilized in accordance with the terms of this Letter.

4302 N. Main Street, Rockford, IL 61103 (815) 987-7760 595 S. State Street, Elgin, IL 60123 (847) 608-3131 2125 S. First Street, Champaign, IL 61820 (217) 278-5800 2009 Mall Street Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 2309 W. Main Street, Suite 116, Marion, IL 62959 (618) 993-7200 100 W. Randolph Street, Suite 4-500, Chicago, IL 60601

Conditions and Terms of Approval

Level of Remediation and Land Use Limitations

- 1) The Remediation Site is restricted to industrial/commercial land use.
- 2) The land use specified in this Letter may be revised if:
 - a) Further investigation or remedial action has been conducted that documents the attainment of objectives appropriate for the new land use; and
 - b) A new Letter is obtained and recorded in accordance with Title XVII of the Act and regulations adopted thereunder.

Preventive, Engineering, and Institutional Controls

The implementation and maintenance of the following controls are required as part of the approval of the remediation objectives for this Remediation Site.

Preventive Controls:

3) At a minimum, a safety plan should be developed to address possible worker exposure in the event that any future excavation and construction activities may occur within the contaminated soil. Any excavation within the contaminated soil will require implementation of a safety plan consistent with NIOSH Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities, OSHA regulations (particularly in 29 CFR 1910 and 1926), state and local regulations, and other USEPA guidance. Soil excavated below must be returned to the same depth from which it was excavated or properly managed or disposed in accordance with applicable state and federal regulations.

Engineering Controls:

- 4) The asphalt barrier, as shown on the attached Site Base Map, must remain over the contaminated soils. This asphalt barrier must be properly maintained as an engineered barrier to inhibit inhalation and ingestion of the contaminated media.
- 5) The concrete cap barrier, as shown on the attached Site Base Map, must remain over the contaminated soils. This concrete cap barrier must be properly maintained as an engineered barrier to inhibit inhalation and ingestion of the contaminated media.
- 6) The concrete slab of the building, as shown on the attached Site Base Map, must remain over the contaminated soils. This concrete slab must be properly maintained as an engineered barrier to inhibit inhalation and ingestion of the contaminated media.

7) The alternative engineered barrier, which is comprised of 18 inches of clean soil over a Mirafi 180N geotextile in the areas shown on the attached Site Base Map, must remain over the contaminated soils. This alternative engineered barrier must be properly maintained as an engineered barrier to inhibit ingestion of the contaminated media.

Institutional Controls:

- 8) Any existing buildings or any future buildings constructed on the site must contain a full concrete slab-on-grade floor or full concrete basement floor and walls with no sumps.
- 9) No person shall construct, install, maintain, or operate a well at the Remediation Site. All water supplies and water services for the Remediation Site must be obtained from a public water supply system. The provisions of this institutional control shall be applicable to all water usage (e.g., domestic, industrial/commercial uses and outdoor watering).

Other Terms

- 10) Where the Remediation Applicant is <u>not</u> the sole owner of the Remediation Site, the Remediation Applicant shall complete the attached *Property Owner Certification of the No Further Remediation Letter under the Site Remediation Program* Form. This certification, by original signature of each property owner, or the authorized agent of the owner(s), of the Remediation Site or any portion thereof who is not a Remediation Applicant shall be recorded along with this Letter.
- 11) Further information regarding this Remediation Site can be obtained through a written request under the Freedom of Information Act (5 ILCS 140) to:

Illinois Environmental Protection Agency Attn: Freedom of Information Act Officer Division of Records Management #16 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276

- 12) Pursuant to Section 58.10(f) of the Act (415 ILCS 5/58.10(f)), should the Illinois EPA seek to void this Letter, the Illinois EPA shall provide notice to the current title holder and to the Remediation Applicant at the last known address. The notice shall specify the cause for the voidance, explain the provisions for appeal, and describe the facts in support of this cause. Specific acts or omissions that may result in the voidance of the Letter under Sections 58.10(e)(1)-(7) of the Act (415 ILCS 5/58.10(e)(1)-(7)) include, but shall not be limited to:
 - a) Any violation of institutional controls or the designated land use restrictions;
 - b) The failure to operate and maintain preventive or engineering controls or to comply with any applicable groundwater monitoring plan;

- c) The disturbance or removal of contamination that has been left in-place in accordance with the Remedial Action Plan. Access to soil contamination may be allowed if, during and after any access, public health and the environment are protected consistent with the Remedial Action Plan;
- d) The failure to comply with the recording requirements for this Letter;
- e) Obtaining the Letter by fraud or misrepresentation;
- f) Subsequent discovery of contaminants, not identified as part of the investigative or remedial activities upon which the issuance of the Letter was based, that pose a threat to human health or the environment;
- g) The failure to pay the No Further Remediation Assessment Fee within forty-five (45) days after receiving a request for payment from the Illinois EPA;
- h) The failure to pay in full the applicable fees under the Review and Evaluation Services Agreement within forty-five (45) days after receiving a request for payment from the Illinois EPA.
- 13) Pursuant to Section 58.10(d) of the Act, this Letter shall apply in favor of the following persons:
 - a) Bridge Development Partners;
 - b) The owner and operator of the Remediation Site;
 - c) Any parent corporation or subsidiary of the owner of the Remediation Site;
 - d) Any co-owner, either by joint-tenancy, right of survivorship, or any other party sharing a relationship with the owner of the Remediation Site;
 - e) Any holder of a beneficial interest of a land trust or inter vivos trust, whether revocable or irrevocable, involving the Remediation Site;
 - f) Any mortgagee or trustee of a deed of trust of the owner of the Remediation Site or any assignee, transferee, or any successor-in-interest thereto;
 - g) Any successor-in-interest of the owner of the Remediation Site;
 - h) Any transferee of the owner of the Remediation Site whether the transfer was by sale, bankruptcy proceeding, partition, dissolution of marriage, settlement or adjudication of any civil action, charitable gift, or bequest;
 - i) Any heir or devisee of the owner of the Remediation Site;

- j) Any financial institution, as that term is defined in Section 2 of the Illinois Banking Act and to include the Illinois Housing Development Authority, that has acquired the ownership, operation, management, or control of the Remediation Site through foreclosure or under the terms of a security interest held by the financial institution, under the terms of an extension of credit made by the financial institution, or any successor-in-interest thereto; or
- k) In the case of a fiduciary (other than a land trustee), the estate, trust estate, or other interest in property held in a fiduciary capacity, and a trustee, executor, administrator, guardian, receiver, conservator, or other person who holds the remediated site in a fiduciary capacity, or a transferee of such party.
- 14) This letter, including all attachments, must be recorded as a single instrument within forty-five (45) days of receipt with the Office of the Recorder of Cook County. For recording purposes, the Illinois EPA Site Remediation Program Environmental Notice attached to this Letter should be the first page of the instrument filed. This Letter shall not be effective until officially recorded by the Office of the Recorder of Cook County in accordance with Illinois law so that it forms a permanent part of the chain of title for the Magellan Pipeline property.
- 15) Within thirty (30) days of this Letter being recorded by the Office of the Recorder of Cook County, a certified copy of this Letter, as recorded, shall be obtained and submitted to the Illinois EPA to:

Mr. Jim Scott Illinois Environmental Protection Agency Bureau of Land/RPMS #24 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276

16) In accordance with Section 58.10(g) of the Act, a No Further Remediation Assessment Fee based on the costs incurred for the Remediation Site by the Illinois EPA for review and evaluation services will be applied in addition to the fees applicable under the Review and Evaluation Services Agreement. Request for payment of the No Further Remediation Assessment Fee will be included with the billing statement.

If you have any questions regarding the Magellan Pipeline property, you may contact the Illinois EPA project manager, Andrew Catlin at 217-524-3290.

Sincerely.

Gregory W. Dunn, Manager

Remedial Project Management Section Division of Remediation Management

Bureau of Land

Attachments: Illinois EPA Site Remediation Program Environmental Notice

Site Base Map

Property Owner Certification of No Further Remediation Letter under the

Site Remediation Program Form Instructions for Filing the NFR Letter

cc: Magellan Pipeline Company, L.P.

Attn: Melanie Little

One Williams Center MD 28

Tulsa, OK 74172

EGSL

Attn: Bill Lennon bill@EGSL.com

Bureau of Land File

Mr. Jim Scott

PREPARED BY:

Mark Houser Bridge Development Partners 1000 Irving Park Rd., Suite 150 Itasca, IL 60143

RETURN TO:

Mark Houser Bridge Development Partners 1000 Irving Park Rd., Suite 150 Itasca, IL 60143

THE ABOVE SPACE FOR RECORDER'S OFFICE

This Environmental No Further Remediation Letter must be submitted by the remediation applicant within 45, days of its receipt, to the Office of the Recorder of Cook County.

Illinois State EPA Number: 0310965121

Bridge Development Partners, the Remediation Applicant, whose address is 1000 Irving Park Rd., Suite 150, Itasca, IL 60143 has performed investigative and/or remedial activities for the remediation site depicted on the attached Site Base Map and identified by the following:

1. Legal description or Reference to a Plat Showing the Boundaries:

LOT 1 - BRIDGE POINT FRANKLIN PARK SUBDIVISION LEGAL DESCRIPTION

LOT 1 IN BRIDGE POINT FRANKLIN PARK SUBDIVISION, BEING A SUBDIVISION OF PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JULY 25, 2018 AS DOCUMENT 1820619201, IN COOK COUNTY, ILLINOIS:

ALSO DESCRIBED AS FOLLOWS:

THAT PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT THE NORTHWEST CORNER OF LOT 1 IN LAPHROP STAR SUBDIVISION ACCORDING TO THE PLAT THEREOF RECORDED OCTOBER 24, 1997 AS DOCUMENT 9779220 BEING ALSO A POINT ON THE SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE AS DEDICATED PER DOCUMENT 17808231; THENCE ALONG THE WESTERLY LINE OF LOT 1 AND LOT 2 IN SAID LAPHROP STAR SUBDIVISION FOR THE FOLLOWING 3 COURSES: 1) THENCE SOUTH 16 DEGREES 15 MINUTES 39 SECONDS WEST, A DISTANCE OF 105.15 FEET; 2) THENCE SOUTH 36 DEGREES 51 MINUTES 19 SECONDS WEST, A DISTANCE OF 158.52 FEET; 3) THENCE SOUTH 02 DEGREES 10 MINUTES 19 SECONDS EAST, A DISTANCE OF 635.66 FEET TO THE NORTH LINE OF THE SOUTH 13 ACRES OF THE SOUTHEAST QUARTER OF SAID SOUTHEAST QUARTER AS MONUMENTED AND OCCUPIED; THENCE SOUTH 88 DEGREES 27 MINUTES 38 SECONDS WEST ALONG SAID NORTH LINE, A DISTANCE OF 490.09 FEET; THENCE NORTH 00 DEGREES 00 MINUTES 07 SECONDS EAST, A DISTANCE OF 860.53 FEET TO THE SOUTH RIGHT-OF-WAY OF SAID FRANKLIN AVENUE; THENCE NORTH 88 DEGREES 29 MINUTES 01 SECONDS EAST, A DISTANCE OF 590.53 FEET TO THE POINT OF BEGINNING, IN COOK COUNTY, ILLINOIS.

CONTAINING 425,370 SOUARE FEET OR 9.765 ACRES MORE OR LESS.

LOT 2 - BRIDGE POINT FRANKLIN PARK SUBDIVISION LEGAL DESCRIPTION

LOT 2 IN BRIDGE POINT FRANKLIN PARK SUBDIVISION, BEING A SUBDIVISION OF PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JULY 25, 2018 AS DOCUMENT 1820619201, IN COOK COUNTY, ILLINOIS.

ALSO DESCRIBED AS FOLLOWS:

THAT PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHWEST CORNER OF LOT 1 IN LAPHROP STAR SUBDIVISION ACCORDING TO THE PLAT THEREOF RECORDED OCTOBER 24, 1997 AS DOCUMENT 9779220 BEING ALSO A POINT ON THE SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE AS DEDICATED PER DOCUMENT 17808231; THENCE SOUTH 88 DEGREES 29 MINUTES 01 SECONDS WEST ALONG SAID SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE, A DISTANCE OF 590.53 FEET TO THE POINT OF BEGINNING; THENCE SOUTH 00 DEGREES 00 MINUTES 07 SECONDS WEST, A DISTANCE OF 860.53 FEET TO THE NORTH LINE OF THE SOUTH 13 ACRES OF THE SOUTHEAST QUARTER OF SAID SOUTHEAST QUARTER AS MONUMENTED AND OCCUPIED; THENCE SOUTH 88 DEGREES 27 MINUTES 38 SECONDS WEST ALONG SAID NORTH LINE, A DISTANCE OF 27.35 FEET TO THE WEST LINE OF THE SOUTHEAST QUARTER OF SAID SOUTHEAST QUARTER AS MONUMENTED AND OCCUPIED: THENCE SOUTH 02 DEGREES 03 MINUTES 52 SECONDS EAST ALONG SAID WEST LINE, A DISTANCE OF 428.55 FEET TO SOUTH LINE OF SAID SOUTHEAST OUARTER BEING ALSO THE NORTH RIGHT-OF-WAY OF BELMONT AVENUE AS MONUMENTED AND OCCUPIED: THENCE SOUTH 88 DEGREES 30 MINUTES 32 SECONDS WEST ALONG SAID SOUTH LINE, A DISTANCE OF 634.11 FEET; THENCE NORTH 00 DEGREES 31 MINUTES 23 SECONDS WEST, A DISTANCE OF 45.45 FEET TO A TANGENT CURVE; THENCE NORTHERLY ALONG SAID TANGENT CURVE CONCAVE TO THE SOUTHEAST HAVING A RADIUS OF 67.50 FEET SUBTENDING A CHORD BEARING NORTH 05 DEGREES 57 MINUTES 57 SECONDS WEST, AN ARC DISTANCE OF 15.29 FEET TO A RADIAL CURVE; THENCE NORTHERLY ALONG SAID RADIAL CURVE CONCAVE TO THE SOUTHEAST HAVING A RADIUS OF 169.00 FEET SUBTENDING A CHORD BEARING NORTH 22 DEGREES 07 MINUTES 47 SECONDS EAST, AN ARC DISTANCE OF 57.07 FEET TO A POINT OF REVERSE CURVATURE; THENCE NORTHERLY ALONG SAID REVERSE CURVE CONCAVE TO THE NORTHWEST HAVING A RADIUS OF 243.00 FEET SUBTENDING A CHORD BEARING NORTH 15 DEGREES 54 MINUTES 09 SECONDS EAST, AN ARC DISTANCE OF 134.89 FEET TO A TANGENT LINE; THENCE NORTH 00 DEGREES 00 MINUTES 02 SECONDS EAST, A DISTANCE OF 1066.47 FEET; THENCE NORTH 89 DEGREES 09 MINUTES 32 SECONDS EAST. A DISTANCE OF 365.93 FEET TO SAID SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE BEING A POINT ON A CURVE: THENCE EASTERLY ALONG SAID CURVE CONCAVE TO THE NORTHEAST HAVING A RADIUS OF 1519.41 FEET SUBTENDING A CHORD BEARING SOUTH 87 DEGREES 46 MINUTES 27 SECONDS EAST, AN ARC DISTANCE OF 198.49 FEET TO A TANGENT LINE; THENCE NORTH 88 DEGREES 29 MINUTES 01 SECONDS EAST ALONG SAID TANGENT LINE BEING ALSO SAID SOUTHERLY RIGHT-OF-WAY LINE OF FRANKLIN AVENUE, A DISTANCE OF 22.67 FEET TO THE POINT OF BEGINNING, IN COOK COUNTY, ILLINOIS.

CONTAINING 761,961 SQUARE FEET OR 17.492 ACRES MORE OR LESS.

LOT 3 - BRIDGE POINT FRANKLIN PARK SUBDIVISION LEGAL DESCRIPTION

LOT 3 IN BRIDGE POINT FRANKLIN PARK SUBDIVISION, BEING A SUBDIVISION OF PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JULY 25, 2018 AS DOCUMENT 1820619201, IN COOK COUNTY, ILLINOIS.

ALSO DESCRIBED AS FOLLOWS:

THAT PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHWEST CORNER OF LOT 1 IN LAPHROP STAR SUBDIVISION ACCORDING TO THE PLAT THEREOF RECORDED OCTOBER 24, 1997 AS DOCUMENT 9779220 BEING ALSO A POINT ON THE SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE AS DEDICATED PER DOCUMENT 17808231: THENCE

SOUTH 88 DEGREES 29 MINUTES 01 SECONDS WEST ALONG SAID SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE, A DISTANCE OF 613.20 FEET TO A POINT OF CURVATURE; THENCE WESTERLY ALONG SAID CURVE BEING THE SAID SOUTHERLY RIGHT-OF WAY CONCAVE TO THE NORTHEAST HAVING A RADIUS OF 1519.41 FEET SUBTENDING A CHORD BEARING NORTH 87 DEGREES 46 MINUTES 27 SECONDS WEST, AN ARC DISTANCE OF 198.49 FEET TO A NON-TANGENT LINE; THENCE SOUTH 89 DEGREES 09 MINUTES 32 SECONDS WEST, A DISTANCE OF 365.93 FEET TO THE POINT OF BEGINNING; THENCE SOUTH 00 DEGREES 00 MINUTES 02 SECONDS WEST, A DISTANCE OF 1066.47 FEET TO A TANGENT CURVE; THENCE SOUTHERLY ALONG SAID TANGENT CURVE CONCAVE TO THE NORTHWEST HAVING A RADIUS OF 243.00 FEET SUBTENDING A CHORD BEARING SOUTH 15 DEGREES 54 MINUTES 09 SECONDS WEST, AN ARC DISTANCE OF 134.89 FEET TO A REVERSE CURVE; THENCE SOUTHERLY ALONG SAID REVERSE CURVE CONCAVE TO THE SOUTHEAST HAVING A RADIUS OF 169.00 FEET SUBTENDING A CHORD BEARING SOUTH 22 DEGREES 07 MINUTES 47 SECONDS WEST, AN ARC DISTANCE OF 57.07 FEET TO A COMPOUND CURVE; THENCE SOUTHERLY ALONG SAID COMPOUND CURVE CONCAVE TO THE SOUTHEAST HAVING A RADIUS OF 67.50 FEET SUBTENDING A CHORD BEARING SOUTH 05 DEGREES 57 MINUTES 57 SECONDS WEST, AN ARC DISTANCE OF 15.29 FEET TO A TANGENT LINE; THENCE SOUTH 00 DEGREES 31 MINUTES 35 SECONDS EAST, A DISTANCE OF 45.45 FEET TO THE SOUTH LINE OF SAID SOUTHEAST QUARTER BEING ALSO THE NORTH RIGHT-OF-WAY OF BELMONT AVENUE AS MONUMENTED AND OCCUPIED; THENCE SOUTH 88 DEGREES 30 MINUTES 32 SECONDS WEST ALONG SAID SOUTH LINE, A DISTANCE OF 319.67 FEET; THENCE NORTH 61 DEGREES 01 MINUTES 35 SECONDS WEST, A DISTANCE OF 65.09 FEET; THENCE NORTH 50 DEGREES 48 MINUTES 22 SECONDS WEST, A DISTANCE OF. 88.95 FEET; THENCE NORTH 02 DEGREES 44 MINUTES 51 SECONDS WEST, A DISTANCE OF 158.10 FEET; THENCE NORTH 07 DEGREES 18 MINUTES 42 SECONDS WEST, A DISTANCE OF 105.65 FEET; THENCE NORTH 00 DEGREES 00 MINUTES 07 SECONDS EAST, A DISTANCE OF 237.29 FEET TO A TANGENT CURVE; THENCE NORTHWESTERLY ALONG SAID CURVE CONCAVE TO THE SOUTHWEST HAVING A RADIUS OF 18.50 FEET SUBTENDING A CHORD BEARING NORTH 44 DEGREES 59 MINUTES 53 SECONDS WEST, AN ARC DISTANCE OF 29.06 FEET TO A TANGENT LINE; THENCE NORTH 89 DEGREES 59 MINUTES 53 SECONDS WEST, A DISTANCE OF 36.48 FEET; THENCE NORTH 00 DEGREES 00 MINUTES 00 SECONDS WEST, A DISTANCE OF 701.33 FEET; THENCE NORTH 89 DEGREES 09 MINUTES 32 SECONDS EAST, A DISTANCE OF 580.56 FEET TO THE POINT OF BEGINNING, IN COOK COUNTY, ILLINOIS.

CONTAINING 708,485 SQUARE FEET OR 16.265 ACRES MORE OR LESS.

OUTLOT A - BRIDGE POINT FRANKLIN PARK SUBDIVISION LEGAL DESCRIPTION

OUTLOT A IN BRIDGE POINT FRANKLIN PARK SUBDIVISION, BEING A SUBDIVISION OF PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JULY 25, 2018 AS DOCUMENT 1820619201, IN COOK COUNTY, ILLINOIS.

ALSO DESCRIBED AS FOLLOWS:

THAT PART OF THE SOUTH HALF OF THE SOUTHEAST QUARTER OF SECTION 20, TOWNSHIP 40 NORTH, RANGE 12 EAST OF THE THIRD PRINCIPAL MERIDIAN, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHWEST CORNER OF LOT 1 IN LAPHROP STAR SUBDIVISION ACCORDING TO THE PLAT THEREOF RECORDED OCTOBER 24, 1997 AS DOCUMENT 9779220 BEING ALSO A POINT ON THE SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE AS DEDICATED PER DOCUMENT 17808231; THENCE SOUTH 88 DEGREES 29 MINUTES 01 SECONDS WEST ALONG SAID SOUTHERLY RIGHT-OF-WAY OF FRANKLIN AVENUE, A DISTANCE OF 613.20 FEET TO A POINT OF CURVATURE, THENCE WESTERLY ALONG SAID CURVE BEING THE SAID SOUTHERLY RIGHT-OF WAY CONCAVE TO THE NORTHEAST HAVING A RADIUS OF 1519.41 FEET SUBTENDING A CHORD BEARING NORTH 87 DEGREES 46 MINUTES 27 SECONDS WEST, AN ARC DISTANCE OF 198.49 FEET TO A NON-TANGENT LINE; THENCE SOUTH 89 DEGREES 09 MINUTES 32 SECONDS WEST, A DISTANCE OF 942.49 FEET TO THE POINT OF BEGINNING; THENCE SOUTH 00 DEGREES 00 MINUTES 00 SECONDS EAST, A DISTANCE OF 701.33 FEET; THENCE SOUTH 89 DEGREES 59 MINUTES 53 SECONDS EAST, A DISTANCE OF 32.48 FEET TO A TANGENT CURVE; THENCE SOUTHEASTERLY ALONG SAID CURVE CONCAVE TO THE SOUTHWEST HAVING A RADIUS OF 18.50 FEET SUBTENDING A CHORD BEARING SOUTH 44 DEGREES 59 MINUTES 53 SECONDS EAST, AN ARC DISTANCE OF 29.06 FEET TO A TANGENT LINE; THENCE SOUTH 00 DEGREES 00 MINUTES 07 SECONDS WEST, A DISTANCE OF 237.29 FEET; THENCE SOUTH 07 DEGREES 18 MINUTES 42 SECONDS EAST, A DISTANCE OF 105.65 FEET; THENCE SOUTH 02 DEGREES 44 MINUTES 51 SECONDS EAST, A DISTANCE OF 158.10 FEET; THENCE SOUTH 50 DEGREES 48 MINUTES 22 SECONDS EAST, A DISTANCE OF 88.95 FEET; THENCE SOUTH 61 DEGREES 01 MINUTES 35 SECONDS EAST, A DISTANCE OF 65.09 FEET TO THE SOUTH LINE OF SAID

SOUTHEAST QUARTER BEING ALSO THE NORTH RIGHT-OF-WAY OF BELMONT AVENUE AS MONUMENTED AND OCCUPIED; THENCE SOUTH 88 DEGREES 30 MINUTES 32 SECONDS WEST ALONG SAID SOUTH LINE, A DISTANCE OF 100.00 FEET TO A NON-TANGENT CURVE; THENCE NORTHWESTERLY ALONG A CURVE CONCAVE TO THE NORTHEAST HAVING A RADIUS OF 397.78 FEET SUBTENDING A CHORD BEARING NORTH 54 DEGREES 16 MINUTES 44 SECONDS WEST, AN ARC DISTANCE OF 141.99 FEET TO A NON-TANGENT LINE; THENCE NORTH 40 DEGREES 40 MINUTES 30 SECONDS WEST, A DISTANCE OF 78.95 FEET TO A NON-TANGENT CURE; THENCE NORTHERLY ALONG SAID CURVE CONCAVE TO THE NORTHEAST HAVING A RADIUS OF 553.70 FEET SUBTENDING A CHORD BEARING NORTH 16 DEGREES 22 MINUTES 04 SECONDS WEST, AN ARC DISTANCE OF 274.18 FEET TO A NON-TANGENT LINE; THENCE NORTH 02 DEGREES 10 MINUTES 11 SECONDS WEST, A DISTANCE OF 555.95 FEET TO A NON-TANGENT CURVE; THENCE NORTHEASTERLY ALONG SAID CURVE CONCAVE TO THE SOUTHEAST HAVING A RADIUS OF 439.28 FEET SUBTENDING A CHORD BEARING NORTH 23 DEGREES 44 MINUTES 52 SECONDS EAST, AN ARC DISTANCE OF 397.79 FEET TO A NON-TANGENT LINE; THENCE NORTH 89 DEGREES 09 MINUTES 32 SECONDS EAST, A DISTANCE OF 0.97 FEET TO THE POINT OF BEGINNING, IN COOK COUNTY, ILLINOIS.

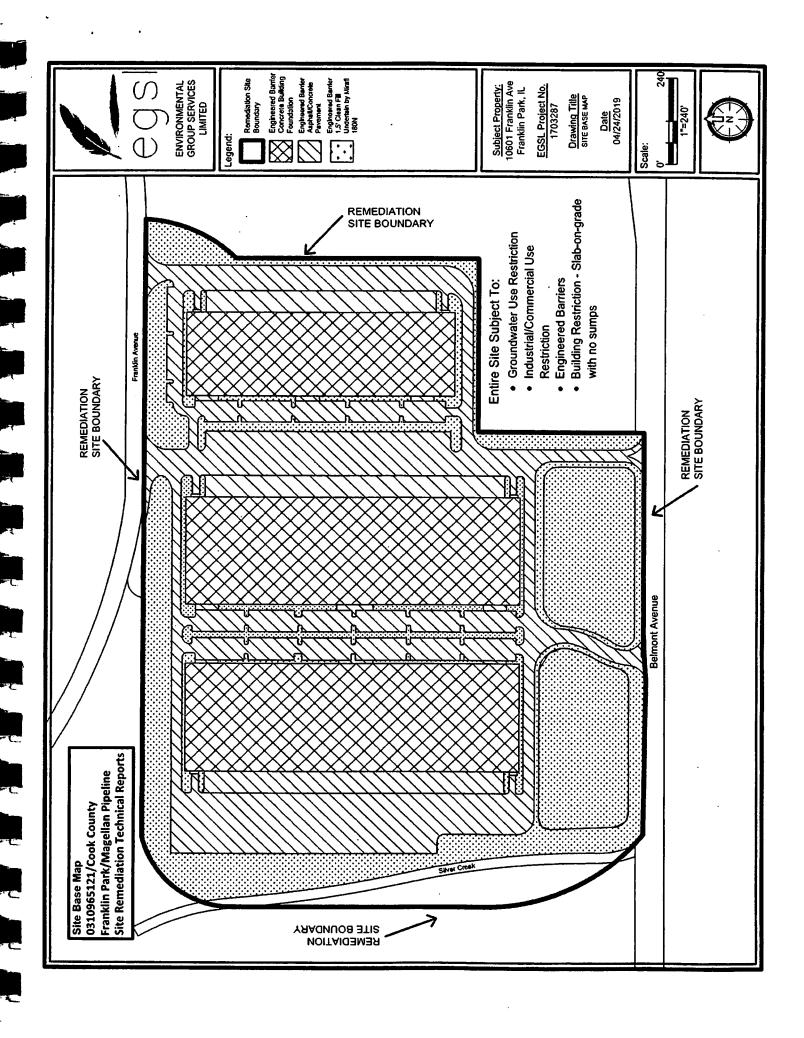
CONTAINING 198,040 SQUARE FEET 4.546 ACRES MORE OR LESS.

2. Common Address: 10601 Franklin Avenue, Franklin Park, IL

3. Real Estate Tax Index/Parcel Index Number: 12-20-401-020

4. Remediation Site Owner: Magellan Pipeline Company, L.P.

One Williams Center MD 28


Tulsa, OK 74172

5. Land Use: Industrial/Commercial

6. Site Investigation: Comprehensive

See NFR letter for other terms.

(Illinois EPA Site Remediation Program Environmental Notice)

PROPERTY OWNER CERTIFICATION OF THE NFR LETTER UNDER THE SITE REMEDIATION PROGRAM

Where the Remediation Applicant (RA) is not the sole owner of the remediation site, the RA shall obtain the certification by original signature of each owner, or authorized agent of the owner(s), of the remediation site or any portion thereof who is not an RA. The property owner(s), or the duly authorized agent of the owner(s) must certify, by original signature, the statement appearing below. This certification shall be recorded in accordance with Illinois Administrative Code 740.620.

Include the full legal name, title, the company, the street address, the city, the state, the ZIP code, and the telephone number of all other property owners. Include the site name, street address, city, ZIP code, county, Illinois inventory identification number and real estate tax index/parcel index number.

A duly authorized agent means a person who is authorized by written consent or by law to act on behalf of a property owner including, but not limited to:

- For corporations, a principal executive officer of at least the level of vicepresident;
- 2. For a sole proprietorship or partnership, the proprietor or a general partner, respectively; and
- For a municipality, state or other public agency, the head of the agency or ranking elected official.

For multiple property owners, attach additional sheets containing the information described above, along with a signed, dated certification for each. All property owner certifications must be recorded along with the attached NFR letter.

	Pi	roperty Owner Inform	mation
Owner's Name:			
Title:			
Company:			
Street Address:			
City:	State:	Zip Code:	Phone:
		Site Information	•
Site Name:			
Site Address:			
City:	State:	Zip Code:	County:
Illinois inventory identification	on number:		
Real Estate Tax Index/Parcel	Index No.		
I hereby certify that I have re and any land use limitations			ation Letter and that I accept the terms and conditions
Owner's Signature:			Date:
SUBSCRIBED AND SWORN TO I			
	•		
Notary Public		•	

The Illinois EPA is authorized to require this information under Sections 415 ILCS 5/58 - 58.12 of the Environmental Protection Act and regulations promulgated thereunder. If the Remediation Applicant is not also the sole owner of the remediation site, this form must be completed by all owners of the remediation site and recorded with the NFR Letter. Failure to do so may void the NFR Letter. This form has been approved by the Forms Management Center. All information submitted to the Site Remediation Program is available to the public except when specifically designated by the Remediation Applicant to be treated confidentially as a trade secret or secret process in accordance with the Illinois Compiled Statutes, Section 7(a) of the Environmental Protection Act, applicable Rules and Regulations of the Illinois Pollution Control Board and applicable Illinois EPA rules and guidelines.

Notice to Remediation Applicant

Please follow these instructions when filing the NFR letter with the County Recorder's Office

Instructions for Filing the NFR Letter

The following documents must be filed:

- A. Body of the NFR Letter (contains appropriate terms and conditions, tables, etc.)
- B. Attachments to NFR letter
- Illinois EPA Site Remediation Program Environmental Notice (Legal Description and PIN of property)
- Maps of the site
- Table A: Regulated Substances of Concern (if applicable.)
- Property Owner Certification
- C. A copy of the ordinance, if applicable, used to address groundwater contamination
- 1. Place the Illinois EPA Site Remediation Program Environmental Notice on top of the NFR prior to giving it to the Recorder.
- 2. If you are not the owner (record title holder) of the property on the date of filing of this NFR, you must attach a **completed** owner's certification form signed by the owner of the property at the time of filing (e.g., if the property recently sold, the new owner must sign).
- 3. If any of the terms and conditions of the NFR letter references a groundwater ordinance, you must record a copy of the groundwater ordinance with the NFR letter.
- 4. If any of the terms and conditions of the NFR letter references a highway agreement, you must record the highway agreement if specifically required by the municipality granting the agreement, the County or the Illinois Department of Transportation.
- 5. Within thirty (30) days of this NFR Letter being recorded by the Office of the Recorder of the County in which the property is located, a certified copy of this Letter, as recorded, shall be obtained and submitted to the Illinois EPA to:

Jim Scott
Illinois Environmental Protection Agency
Bureau of Land/RPMS
1021 North Grand Avenue East
Post Office Box 19276
Springfield, IL 62794-9276

6. Remove this page from the NFR letter, prior to recording.

If you have any questions call (217) 524-6940 and speak with the "project manager on-call" in the Site Remediation Program.

40	U.S. Postal Savice" GERTIFIED MAIL® REC Comestic Mail Only	24 egg
\ r	For delivery information, visit our website	Neg ummmana sasas
57	Condenses villaging and Condenses and Conden	B D A CO
1		. USE
E 6	Certified Mail Fee	
288	\$	EL:
S	Extra Services & Fees (check box, add fee as appropriate) Return Receipt (hardcopy)	
	Return Receipt (electronic)	Postmerk
0000	Certified Mail Restricted Delivery \$	Here
	Adult Signature Required \$	1.01
	Adult Signature Restricted Delivery \$	12/ 5012
	Postage	
٠٣	\$	FILE
9	Total Postage and Fees	
1.		
9	Bridge Development Partners	
701	Attn: Mark Houser	***************************************
۳-	1000 Irving Park Rd., Suite 150	••••••
u	Itasca, Illinois 60143	
Š	365131	_

SENDER: COMPLETE THIS SECTION

- Complete items 1, 2, and 3. Print your name and address on the reverse
- so that we can return the card to you. ■ Attach this card to the back of the mailpiece,
- or on the front if space permits. 1. Article Addressed to:

Bridge Development Partners Attn: Mark Houser 1000 Irving Park Rd., Suite 150

Itasca, Illinois 60143

9590 9402 3341 7227 8478 93

COMPLETE THIS SECTION ON DELIVERY

□ Agent

□ Addressee B. Received by (Printed Name) Date of Delivery MARK C-4RISTENSON

☐ Yes D. Is delivery address different from item 1?

If YES, enter delivery address below:

3. Service Type

□ Adult Signature

SCCertified Mail®

□ Insured Mail

(over \$500)

☐ Collect on Delivery

☐ Adult Signature Restricted Delivery

☐ Collect on Delivery Restricted Delivery

☐ Certified Mall Restricted Delivery

☐ Insured Mail Restricted Delivery

☐ Priority Mall Express®

☐ Registered Mail™ ☐ Registered Mail Restricted Delivery ☐ Return Receipt for Merchandise

☐ Signature Confirmation™

□ Signature Confirmation **Restricted Delivery**

PS Form 3811, July 2015 PSN 7530-02-000-9053

2. Article Number (Transfer from service label)

Domestic Return Receipt

Postal Service

Sender: Please print your name, address, and Zillinois Environmental

Protection Agency

P.O. Box 19276 – Mail Code 24 Springfield, IL 62794-9276

_ ԿՈՒՈւդինինինինինինինինինինինինինինինինի